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Background: Healthcare-associated infection (HAI) remains a significant risk 
for hospitalized patients and a challenging burden for the healthcare system. 
This study presents a clinical decision support tool that can be used in clinical 
workflows to proactively engage secondary assessments of pre-symptomatic 
and at-risk infection patients, thereby enabling earlier diagnosis and treatment.

Methods: This study applies machine learning, specifically ensemble-based 
boosted decision trees, on large retrospective hospital datasets to develop an 
infection risk score that predicts infection before obvious symptoms present. 
We extracted a stratified machine learning dataset of 36,782 healthcare-associated 
infection patients. The model leveraged vital signs, laboratory measurements and 
demographics to predict HAI before clinical suspicion, defined as the order of a 
microbiology test or administration of antibiotics.

Results: Our best performing infection risk model achieves a cross-validated AUC 
of 0.88 at 1  h before clinical suspicion and maintains an AUC >0.85 for 48  h before 
suspicion by aggregating information across demographics and a set of 163 vital 
signs and laboratory measurements. A second model trained on a reduced feature 
space comprising demographics and the 36 most frequently measured vital signs 
and laboratory measurements can still achieve an AUC of 0.86 at 1  h before 
clinical suspicion. These results compare favorably against using temperature 
alone and clinical rules such as the quick sequential organ failure assessment 
(qSOFA) score. Along with the performance results, we also provide an analysis of 
model interpretability via feature importance rankings.

Conclusion: The predictive model aggregates information from multiple 
physiological parameters such as vital signs and laboratory measurements to 
provide a continuous risk score of infection that can be deployed in hospitals to 
provide advance warning of patient deterioration.
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Background

Healthcare-associated infection (HAI), also referred to as 
nosocomial infection, remains a significant risk for hospitalized 
patients and a significant burden on healthcare systems. It has been 
reported that approximately 1 in 31 hospital patients develop an HAI 
on any given day (1), and nearly 99,000 people in the U.S. die annually 
from HAIs (2). Recent data shows that the incidence of HAI’s 
increased during the pandemic (2020) revealing the fragile nature of 
interventions aimed at prevention (3). Over the last decade, the CDC 
has developed guidelines and strategies for the prevention of HAIs, 
focusing on improving clinical practice and antibiotic stewardship. 
While this guidance has shown some utility in lowering the incidence 
across several types of HAI, improving the outcomes for those who 
become infected remains challenging, particularly for the critically ill.

Early detection of de-novo infectious disease is critical for 
improving the outcomes of infected patients (4, 5), for the timely 
implementation of control measures critical to preventing its spread 
(6), and for reducing substantial healthcare costs associated with 
preventable HAIs (7). Hospitalized patients suffering from influenza, 
up to 20% of whom are nosocomial in origin, have better outcomes 
when treated with antiviral agents immediately after symptoms 
present (8). Antibiotic treatment has also been shown to be more 
effective in producing better outcomes for sepsis patients when 
administered early in the progression of the infection, particularly for 
mechanically ventilated patients (4, 5).

Clinical decision support (CDS) tools have received a great deal 
of attention over the last decade, including those focused on the 
detection of infection (9–11). Many of these CDS tools are rule based 
and developed through physician consensus and guidelines. These 
include more standardized solutions like the acute kidney injury 
(AKI) eAlert that has been deployed in hospitals in Wales (12, 13) and 
the National Early Warning Score (NEWS) that is standard for 
detecting general clinical deterioration in the United Kingdom (14). 
While these approaches benefit from clinician experience, they are 
simplified to remain generalizable and fail to capture the complete 
clinical context required to discriminate difficult or atypical cases. In 
addition, these approaches are not easily tailored or adapted, for 
example, to specific patient populations. More recently, several studies 
have suggested data-driven approaches to create physiological risk 
prediction algorithms, including in the areas of infection and sepsis 
prediction (9, 15–17).

This study uses machine learning applied on large retrospective 
hospital datasets to develop a clinical decision support (CDS) 
algorithm for the early detection of infection in hospitalized patients. 
By aggregating information across demographics and a set of 163 vital 
signs and laboratory measurements, we  find our best-performing 
model can achieve a cross-validated AUC of 0.88 at 1 h before clinical 
suspicion and maintains an AUC >0.85 for the 48 h period prior to 
clinical suspicion of infection. By distilling the model down to a set of 
36 most frequently measured vital signs, laboratory measurements 
and demographics, we can still maintain an AUC of 0.86 at 1 h before 

clinical suspicion. In the results, we  further contrast our models 
against established clinical scoring systems—quick sequential organ 
failure assessment (qSOFA), and against tracking individual vital signs 
alone (e.g., temperature, etc.).

Methods

Description of data

We combined clinical data from three large hospital datasets: the 
MIMIC-III (Medical Information Mart for Intensive Care III) 
database comprising deidentified health-related data from patients 
who stayed in critical care units of the Beth Israel Deaconess Medical 
Center between 2001 and 2012 (18), the eICU dataset from Philips’ 
electronic ICU telemedicine business populated with deidentified 
patients’ data from a combination of many critical care units 
throughout the continental United States between 2003 and 2016 (19), 
and a dataset of deidentified electronic medical records from patients 
who stayed in critical care units or low-acuity settings such as general 
wards in Banner Health collected from 2010 to 2015. In total, the 
combined dataset includes over 6.5 million patient encounters 
collected from more than 450 hospitals. Supplementary Figure S1 
indicates the types of data present in each hospital dataset.

Ethical approval

The MIMIC-III project was approved by the Institutional Review 
Boards of Beth Israel Deaconess Medical Center (Boston, MA) and 
the Massachusetts Institute of Technology (Cambridge, MA). Use of 
the eICU data was approved by the Philips Internal Committee for 
Biomedical Experiments. Banner Health data use was a part of an 
ongoing retrospective deterioration detection study approved by the 
Institutional Review Board of Banner Health and by the Philips 
Internal Committee for Biomedical Experiments. Requirement for 
individual patient consent was waived because the project did not 
impact clinical care, was no greater than minimal risk, and all 
protected health information was removed from the limited dataset 
used in this study.

Infection and control cohort extraction

We define infection patients as those who (1) have a confirmed 
infection diagnosis, and (2) have data indicating clinical suspicion of 
infection. Patients in the infection cohort were selected as those with 
confirmed infection diagnoses via ICD-9 and whose timing of clinical 
suspicion of infection could be localized by a microbiology culture test 
order. In the cases where more than one microbiology culture tests 
were ordered during the hospital stay, we used the earliest timing of 
the orders to mark clinical suspicion of infection for the given patient. 
Infection patients were then further screened into an HAI cohort if 
the timing of clinical suspicion of infection occurred at least 48 h 
after admission.

Patients in the control cohort were selected as those who have 
neither an infection-related ICD-9 diagnosis code nor any 
microbiology culture tests ordered. Since the selection criteria 

Abbreviations: HAI, Healthcare-associated infection; CDS, Clinical decision support; 

qSOFA, Quick sequential organ failure assessment; SHAP, Shapley additive 

explanations; Spec, Specificity; TNR, True negative rate; AUC, Area under the 

ROC curve.
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identified a much larger set of control patients than HAI patients, 
we randomly down-sampled the control cohort population without 
replacement to maintain a prior infection odds (prevalence) of 12.5%. 
This ensured that the training dataset would not be overly dominated 
by control patients, while still maintaining the HAI cohort as the 
minority class. Because our machine-learning methodology requires 
extracting clinical data before clinical suspicion of infection, 
we generated synthetic event times for the control patients, such that 
clinical data used for prediction for the control patients could 
be extracted in the same way as was done for the infection patients. To 
reduce bias, and to ensure sufficient data prior to event time for model 
building, we randomly assigned a time-point that is at least 48 h after 
the control patient’s first clinical measurement, and that precedes the 
end of the control patient’s hospital stay as the synthetic event time.

Figure 1 shows the general decision scheme for infection and 
control cohort extraction. Curation of infection ICD-9 codes is 
described in detail in the Supplementary material.

For a subset of eICU hospitals, due to limited availability of 
microbiology interfaces, microbiology charting data was either 
missing, sporadic, or incomplete. In such cases, the microbiology 
culture test criterion was replaced with the administration of 
non-prophylactic antibiotics. The cohort selection was otherwise the 
same: infection patients were those with at least one administration of 
non-prophylactic antibiotics and who had at least one ICD-9 code 
indicating infection, while control patients were selected as those who 
had neither an ICD-9 code nor any administration of non-prophylactic 
antibiotics. Clinical suspicion of infection (and screening for the HAI 
cohort) was then derived using the administration time of first 
non-prophylactic antibiotics. We validated, in the MIMIC-III dataset, 
that the two criteria (microbiology culture test versus non-prophylactic 
antibiotics administration) yield a large overlap of the selected cohorts 
(see Supplementary material). Extraction of antibiotic records and 
non-prophylactic labelling details are also described in the 
Supplementary material.

Description of features and feature subsets 
used by the models

The extracted features are comprised of three sets of information: 
demographics (e.g., age, gender, height, weight), vital sign 
measurements (e.g., heart rate, blood pressure, temperature), and 

laboratory measurements (e.g., metabolic panels, complete blood 
count, and arterial blood gas). After feature extraction from each of 
the three hospital datasets, we applied an extensive preprocessing and 
cleaning pipeline to create a common and consistent dataset (see 
Supplementary material). A full list of the features is given in the 
Supplementary Table S1.

For training our machine learning algorithms, we  defined an 
observation time as 1 h before each patient’s clinical suspicion of 
infection (or randomly assigned event time for control patients). 
We then extracted the latest measured value of each feature leading up 
to the observation time and assembled these measurements into a 
physiological state vector for each patient. This feature vector was then 
augmented with features characterizing temporal trends from vital 
sign measurements during the 48 h window preceding the observation 
time, which was between 49 h before to 1 h before clinical suspicion 
(or randomly assigned event time for control patients). To mitigate 
sensitivity to outliers, we applied physiologic plausibility filters to the 
vital signs measured during the 48 h window before calculating trends. 
Trend features on laboratory measurements were excluded since they 
tend to be  measured aperiodically (e.g., daily). Vital sign 
measurements, however, can have temporal resolution as high as every 
5 min, e.g., in eICU dataset when data is consistently interfaced from 
bedside vital signs monitors into eCareManager. We extracted five 
trend features for the following vital signs: temperature, heart rate, 
systolic, diastolic, and mean blood pressures, oxygen saturation1 
(SpO2), and respiration. For example, these trend features for heart 
rate are:

 ▪ Avg. (heart rate): the average heart rate value over a 48 h window.
 ▪ Min. (heart rate): the minimum heart rate value over a 

48 h window.
 ▪ Max. (heart rate): the maximum heart rate value over a 

48 h window.
 ▪ Var. (heart rate): the variance of heart rate over a 48 h window.
 ▪ CoefVar. (heart rate), or CV (heart rate): the coefficient of 

variation of heart rate over a 48 h window, defined as the standard 
deviation divided by the mean.

1 Oxygen saturation is predominantly from pulse oximetry measurements 

and in addition blood gas measurements.

FIGURE 1

Cohort inclusion/exclusion criteria flow diagram.
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During the validation stage of our algorithm, we  additionally 
applied the classifiers trained on the observation time of 1 h before 
clinical suspicion to earlier time windows in order to characterize 
predictive performance over time. These earlier observation times 
were 6 h, 12 h, 18 h, 24 h, and 48 h before clinical suspicion for infection 
patients (or randomly assigned event time for control patients). In 
those instances, we extracted a physiological state vector at earlier 
observation times in an analogous manner. For example, for the 
observation time of 6 h before clinical suspicion, we extracted the 
latest measured value of each feature leading up to 6 h before clinical 
suspicion and extracted trend features from vital sign measurements 
during the 48 h window preceding the observation time (that was 
between 54 h before to 6 h before clinical suspicion). Figure 2 provides 
a visual summary of the feature extraction pipeline.

Description of algorithms used

We employed two groups of algorithms: (a) linear classifiers, 
which identify a separating hyperplane in the original feature space; 
and (b) ensemble-based methods, which iteratively construct a 
powerful classifier from a set of “weak” nonlinear classifiers. We chose 
linear classifiers and ensemble-based methods over neural network 
techniques because we preferred to maintain interpretability of the 
trained model for clinical deployment, and to minimize the usage of 
computation resources to enable flexible applications. For linear 
classifiers we choose logistic regression, and for ensemble methods 
we benchmarked against abstained adaptive boosting with univariate 
decision stumps (20) and gradient boosting of decision trees using the 
XGBoost algorithm (21). Since our dataset is imbalanced in terms of 
infection prevalence, we employed stratified 5-fold cross-validation, 
and we did this for each of the three hospital datasets separately: with 
stratification, both the ratio of control to infection patients, and the 
ratio of patients from different hospital datasets are maintained in 
both training and testing sets. We compared model performance of 
different algorithms using the average model performance from the 
testing sets of the 5-fold cross-validation. Information about 

imputation, hyperparameter tuning and performance evaluation is 
detailed in the Supplementary material.

Description of model interpretation 
methods

The abstained adaptive boosting algorithm with decision stumps 
(20) can be expressed as a generalized additive model of the form 
R x r x r x r xp p( ) = ( ) + ( ) +…+ ( )1 1 2 2  where R(x) is the composite 

(ensemble) classifier, x1, x2, …, xp are the p feature inputs, and rj(xj), 
j = 1, …, p are the “weak learner” classifiers learned for each feature. 
In this case, infection patients are labeled as class 1 (controls are class 
−1), so that a larger value of R(x) indicates the classifier’s stronger 
confidence of the patient having infection. As a result, each rj(xj) can 
be interpreted as an infection risk function evaluated with respect to 
a single feature. Because each rj(xj) is the weighted sum of decision 
stumps acting on the respective feature, the infection risk of a single 
feature is a step function of the feature value, where each step is a 
decision threshold for different levels of infection risk. In order to 
control for the impact of feature missingness, we analyzed the relative 
importance of features through each rj(xj) in two ways: (1) total feature 
importance, which evaluates a feature’s importance across the entire 
cohort, and is calculated as the difference in the average infection risk 
between infection cohort and control cohort from the respective 
feature; and (2) adjusted feature importance, which isolates the feature’s 
contribution on the subset of patients that have the feature measured, 
and is calculated as the difference in the average infection risk between 
infection cohort and control cohort that have the respective feature 
measured. Therefore, total feature importance gives an indication of a 
feature’s effectiveness under typical hospital workflow conditions, 
while adjusted feature importance can identify discriminative features 
despite being less frequently measured.

The gradient boosting algorithm can be interpreted using SHAP 
(Shapley Additive exPlanations) method (22). SHAP assigns each 
feature an importance value for a particular prediction, therefore 
we can compare feature importance by examining the distribution of 

FIGURE 2

Diagram of the feature extraction pipeline.
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SHAP values which represent the impacts each feature has on the 
model output.

Results

The cohort selection criteria resulted in a total training dataset size 
of 293,109 patients (256,327 control patients; 36,782 HAI patients). Of 
these patients, 63% are from the Banner Health dataset, 32% are from 
the eICU dataset, and 5% are from the MIMIC-III dataset. The 
majority of these patients are treated under ICU or general ward 
settings. Between the two infection cohort criteria (microbiology 
culture orders vs. non-prophylactic antibiotics administration), 26,599 
HAI patients are identified from microbiology lab and ICD-9 code, 
while 10,183 infection patients are identified from non-prophylactic 
antibiotic administration and ICD-9 code.

Model performance

We compared machine learning algorithms in their ability to 
discriminate infection from control patients using clinical data 
acquired up to 1 h before clinical suspicion of infection. Our results 
show that gradient boosting with two level decision trees yielded the 
best performance with a mean AUC of 0.88 (standard deviation of 
0.0009 from 5 testing folds), specificity of 0.93 and sensitivity of 0.54 
at the break-even point (where sensitivity is approximately equal to 
positive predictive value (PPV), see Supplementary material), 
Sensitivity of 0.80 and 0.64, respectively, for when Specificity is 0.80 
and 0.90 (Table  1: Xgboost). This performance was robust with 
different iterations of randomly down-sampled control cohort (AUC 
of 0.8839 ± 0.0003; mean ± standard deviation from 5 iterations). 
Abstained adaptive boosting with decision stump achieved a mean 
AUC of 0.85, specificity of 0.92 and sensitivity of 0.47 at break-even 
point, sensitivity of 0.73 and 0.54, respectively, for when specificity is 
0.80 and 0.90 (Table  1: Abstained AdaBoost). Logistic regression 
performs poorly compared with ensemble algorithms, with a mean 
AUC of 0.77, specificity of 0.91 and sensitivity of 0.40 at break-even 
point, sensitivity of 0.60 and 0.43, respectively, for when specificity is 
0.80 and 0.90 (Table 1: Logistic Regression). These results suggest that 
ensemble models are superior to linear models in predicting infection.

Next, we asked if ensemble models perform better than established 
empirical rules and clinical scores in infection prediction. First, fever 
or high body temperature (>98.6 F) is one of the first symptoms that 
lead to clinical suspicion of infection. Therefore, we  compared 
temperature measurements between the infection and control cohorts 

and calculated the discriminative power of temperature at 1 h before 
clinical suspicion. Temperature by itself has an AUC = 0.59 for 
detecting infection, which is far inferior to performance achieved with 
gradient boosting (AUC = 0.88). Second, qSOFA—quick sequential 
organ failure assessment—was introduced by the Third International 
Consensus Definitions for Sepsis and Septic Shock task force in 2016, 
and is proposed as a quick assessment tool for identifying sepsis 
among patients with infection (23). Based on the Sepsis-3 criteria, 
we  extracted Glasgow Coma Score, Systolic Blood Pressure, and 
Respiratory Rate from the medical database, and derived qSOFA 
scores at 1 h before clinical suspicion of infection. In total 111,651 
qSOFA scores were extracted, 22,460 from infection cohort and 89,191 
from control cohort (infection prevalence = 20.1%). We  then 
calculated the area under ROC curve of infection prediction by using 
qSOFA alone. qSOFA by itself has an AUC = 0.59 when predicting 
infection at 1 h before suspicion of infection. To ensure a fair 
comparison with ensemble models, we  re-trained the gradient 
boosting algorithm using data from the subset of patient cohort that 
have qSOFA available. Gradient boosting on the patient subset 
achieves an AUC of 0.83 which is substantially better than the 
performance of qSOFA. Overall our results suggest advantages of 
ensemble models over established clinical methods in 
infection prediction.

We further benchmarked ensemble model performance when 
feature sets are reduced. First, we excluded all lab measurements and 
focused on 14 vital signs and demographics factors (plus 50 derived 
trend features), as they are continuously available and more 
predictably available than lab measurements. Gradient boosting, 
re-trained from the feature space excluding labs, achieved a mean 
AUC of 0.81, specificity of 0.92 and sensitivity of 0.42 at break-even 
point, sensitivity of 0.62 and 0.45, respectively, for when specificity is 
0.80 and 0.90 at 1 h before clinical suspicion of infection (Table 1: 
GradientBoost—exclude lab). Second, we  excluded infrequently 
measured features that are available for less than 70% of the patient 
cohort. This produced a reduced feature space with 36 vitals, 
demographics and laboratory measurements (plus 32 derived trend 
features). Gradient boosting model, re-trained from frequently 
measured features, achieved a mean AUC of 0.86, specificity of 0.93 
and sensitivity of 0.50 at break-even point, sensitivity of 0.74 and 0.57, 
respectively, for when specificity is 0.80 and 0.90 at 1 h before clinical 
suspicion of infection (Table 1: Xgboost—reduced features). These 
results suggest that it is possible to obtain good performance when 
reducing the total feature space by half.

In addition, we investigated the infection prediction performance of 
ensemble models at earlier time points. We applied the most interpretable 
model (Abstained AdaBoost) and the best performing model (Gradient 

TABLE 1 Performance of infection prediction at 1  h before clinical suspicion of infection.

Algorithm AUC
Sensitivity (spec) 
break-even point

Sensitivity @ 
specificity  =  0.8

Sensitivity @ 
specificity  =  0.9

GradientBoost 0.884 0.537 (0.934) 0.800 0.635

Abstained AdaBoost 0.852 0.469 (0.924) 0.731 0.536

Logistic Regression 0.772 0.399 (0.914) 0.597 0.431

GradientBoost—exclude lab 0.810 0.415 (0.916) 0.622 0.449

GradientBoost—reduced 

features
0.862 0.499 (0.928) 0.750 0.574
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Boosting) to earlier observation windows to characterize predictive 
performance over time using the full feature space (Figure 3). Despite 
degraded model performance over time, gradient boosting maintains an 
AUC >0.85, while abstained adaptive boosting maintains an AUC >0.81 
for 48 h before clinical suspicion. These results support an assertion that 
it is possible to predict hospital acquired infection earlier, up to 48 h 
before clinical suspicion of infection.

Model interpretation

To better understand the biomarkers leveraged by the ensemble-
based models, we first analyze the AdaBoost algorithm with decision 

stumps since it is easier to interpret, and then contrast with feature 
importance scores on the GradientBoost algorithm with decision trees 
using the SHAP (Shapley additive explanations) method (22).

We first examined the top  15 features ranked by total feature 
importance and adjusted feature importance derived from abstained 
adaptive boosting model trained in the full feature space (Table 2). As 
described in Methods, total feature importance evaluates a feature’s 
importance across the entire cohort, and adjusted feature importance 
isolates the feature’s contribution on the subset of patients that have the 
feature measured. From both metrics, we found that the top 15 features 
are a mix of laboratory measurements and vital signs. Adjusted feature 
importance, in particular, identifies discriminative features from 
laboratory measurements despite being less frequently measured.

FIGURE 3

Predictive performance of AdaBoost and GradientBoost models relative to time of clinical suspicion.

TABLE 2 Feature importance rankings from abstained AdaBoost model (top 15).

Total feature importance Adjusted feature importance

Rank Feature Rank Feature

1 Albumin 1 Albumin

2 Max. (SpO2) 2 TIBC

3 pH 3 Fibrinogen

4 Min. (SpO2) 4 Temperature

5 Temperature 5 ESR

6 Avg. (SpO2) 6 PVRI

7 Var. (SpO2) 7 Max. (Temperature)

8 Lactate 8 Urinary RBC

9 Bands 9 Avg. (Respiration)

10 Max. (Temperature) 10 WBC

11 Avg. (Respiration) 11 BUN

12 CV (SpO2) 12 CRP

13 FiO2 13 Ferritin

14 WBC 14 Neutrophils

15 Bicarbonate 15 Var. (Temperature)

Total feature importance evaluates a feature’s importance across the entire cohort; adjusted feature importance isolates the feature’s contribution on the subset of patients that have the feature 
measured.

https://doi.org/10.3389/fmed.2023.1213411
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Feng et al. 10.3389/fmed.2023.1213411

Frontiers in Medicine 07 frontiersin.org

The learned risk functions behave in clinically interpretable 
ways. Figure 4 visualizes the risk functions (black) for a subset of 
the most important laboratory features, along with population 
distribution underlays for infection (red) and control (blue) 
populations. The learned risk functions for these representative 
features are either monotonically increasing, suggesting that an 
elevation of the respective clinical measurement is associated 
with higher infection risk; or monotonically decreasing, 
suggesting that a decrease of the respective clinical measurement 
is associated with higher infection risk. During training, each risk 
function is assembled from a collection of decision stumps that 
identify key feature thresholds that distinguish levels of infection 
risk. The scale of the risk function (the y-axis in Figure 4 plots) 
is unitless, but can be used to compare the relative importance of 
features (see Methods and Table  2 for further details on 
feature importance).

Amongst laboratory measurements, a number of features 
associated with, but not necessarily specific to, inflammation were 
identified. The top feature across both scoring metrics was associated 
with hypoalbuminemia (low albumin levels <3 g/dL), which has been 
shown to correlate with inflammation, shock, and sepsis (24). High 
RDW (>15%) was also a strong biomarker, with literature showing it 
correlated with inflammation markers CRP and ESR (14). With 
respect to the adjusted feature importance score, a number of 
infrequently measured features, but highly discriminative, were 
identified by the model, all of which show associations with 
inflammatory response: low TIBC (<240 mcg/dL; prevalence = 3%), 

elevated Fibrinogen (>325 mg/dL; prevalence = 5%), and elevated ESR 
(>45 mm/h; prevalence = 2%).

Many other laboratory values were also discriminative. Increased 
risk is identified when Bicarbonate levels fall below approximately 
24 mEq/L, which may be indicative of metabolic acidosis, in particular 
lactic acidosis (elevated Lactate levels above 1.5 mmol/L were also 
contributing to infection risk). White blood cell concentrations (25) 
were also strong indicators in the top 15 features, with elevated bands 
and neutrophil concentrations. Other notable indicators are low HDL 
and LDL cholesterol levels (26), and increases in blood platelets, which 
is a sign of host defense and induction of inflammation and tissue 
repair in response to infection onset (27).

Although laboratory measurements play a significant role, the 
model also aggregates information from a number of vital signs. The 
infection risk function based on temperature increases rapidly above 
37.8°C, although this accounts for a small percentage of infection 
patients (5,105 out of 40,406 (~12.6%) of infection patients registered 
a fever ≥37.8°C at the 1 h window). For controls, 5,579 out of the 
96,505 control patients (~5.8%) exhibited a fever ≥37.8C. Infection 
patients tend to have an elevated heart rate and macro variability, 
which is reported to be critical for the diagnosis and prognosis of 
infection by many studies (28, 29). For blood pressure, patients tend 
to have a decreased blood pressure (systolic, diastolic, and mean), and 
this effect was often selected by the classifier. Many trend variability 
features on vitals were selected across temperature, heart rate, blood 
pressure, oxygen saturation (SpO2), and respiration, as the infection 
cohort tends to exhibit a heavier right tail in feature variance measures. 

FIGURE 4

AdaBoost risk functions (black) for a subset of the most important laboratory measurements, along with population distribution underlays for infection 
(red) and control (blue) populations.
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Changes in vital signs are also reported in the literature to accompany 
the development of infection (30, 31).

We additionally applied SHAP analysis to extract feature 
importance rankings from the gradient boosting method (Figure 5). 
We have observed overlaps in the selected features between the more 
interpretable AdaBoost model and gradient boosting, such as 
albumin, SpO2, bicarbonate, temperature, lactate and BUN.

Algorithm performance on infection 
subgroups

Patients’ host responses to pathogens vary between pathogens 
and primary sites of infection which result in heterogeneous 
physiological changes. The extracted HAI cohort is mainly from, 
ranked by high to low prevalence, the following five infection types 
(defined by ICD-9 codes—see Supplementary material): pneumonia 
(17,224 patients), bloodstream infection (12,891 patients), bone/
joint/tissue/soft tissue infection (11,613 patients), sepsis (9,643 
patients) and urinary system infection (9,118 patients). Note that 
these patients are primarily from ICUs or general wards, and some 
patients can have more than one HAI. To compare detection 
performance on different infection types, we  calculated recall 
(Sensitivity) from the model for patient subgroups of different 
infection types (Figure  6). We  found that the infection model 
(Table  1: Xgboost) has the highest recall in predicting Sepsis 
(recall = 0.70) and bloodstream infection (recall = 0.67), followed by 
pneumonia (recall = 0.61), bone/joint/tissue/soft tissue infection 
(recall = 0.50) and urinary system infection (recall = 0.46). This result 

indicates that the infection model performs the best in predicting 
subgroups of patients that have high acuity.

Impact of comorbidities on algorithm 
performance

The previous section assessed true positive rates (recall/sensitivity) 
for various infection types. By the same token, we  may also 
characterize true negative performance of the algorithm with respect 

FIGURE 5

Top 15 important features of the GradientBoost model from SHAP analysis. Each dot is a patient; color indicates the value of the feature. SHAP value is 
on the x-axis: large positive value—feature contributes strongly to predict infection; large negative value—feature contributes strongly to predict 
control.

FIGURE 6

True positives and false negatives from GradientBoost model for the 
top five prevalence infection categories.

https://doi.org/10.3389/fmed.2023.1213411
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Feng et al. 10.3389/fmed.2023.1213411

Frontiers in Medicine 09 frontiersin.org

to various chronic comorbidities exhibited by the control patient 
population. To do so, we calculated the Elixhauser Comorbidity index 
(32) for each control patient, which associates diagnostic ICD-9 codes 
[see Table 2 of (32)] with a set of 30 comorbidity categories. Of the 
256,327 control patients, 194,364 (76%) exhibited at least one 
comorbidity—see Figure  7 for a summary of prevalence of each 
comorbidity category amongst control patients. We then calculated 
the infection model’s true negative rate (TNR) on the control patient 
population that exhibited each of the 30 comorbidity categories. In 
addition, we compared true negative rate for control patients with at 
least one comorbidity (76% of all control patients, labeled “with 
comorbidities”) to the true negative rate for control patients without 

any documented comorbidities (24% of all control patients, labeled 
“without comorbidities”)—see Figure 8.

The model performs better at ruling out infection on control 
patients without comorbidities than those with comorbidities 
(TNR = 0.95 vs. TNR = 0.925), suggesting that confounding chronic 
conditions contribute to the false positive rate of the model. 
Interestingly, with respect to individual comorbidity categories, the 
model performs best at ruling out infection on control patients with 
neurological comorbidities (e.g., depression, psychoses), drug/alcohol 
abuse, and hypothyroidism; presumably since such conditions may 
have limited overlap in physiological biomarkers related to infection. 
The worst performing comorbidity categories include fluid/electrolyte 

FIGURE 7

Comorbidity prevalence amongst control patients.

FIGURE 8

True negative rates (specificity) by comorbidity category. x-axis: “with comorbidities”—control patients with at least one comorbidity; “without 
comorbidities”—control patients without any documented comorbidities; 30 comorbidity categories are ordered by prevalence shown in Figure 6 to 
highlight that the differences in true negative rate are not simple reflections of prevalence.
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disorders, coagulopathy, weight loss, metastatic cancer, lymphoma, 
anemia, and AIDS.

Discussion

Our work addresses the fundamental problem of early prediction 
of HAI, to allow prompt treatment and prevention of infectious 
disease transmission. We presented a large-scale, retrospective big 
data machine learning study that provides a data-driven approach to 
the problem, which can be  tailored and adapted to different 
populations of interest. Infection can be detected by our model with 
high accuracy in its pre-symptomatic state at 48 h before 
clinical suspicion.

The training data of 293,109 patients for our infection prediction 
model was curated from three large hospital datasets that included 
patient encounters under both high-acuity and low-acuity settings 
from >400 US hospitals in the span of 16 years. The purpose of using 
such a large scale dataset for training was to enable the infection 
prediction model to learn from a heterogeneous patient cohort and to 
accommodate different data availability and frequencies under 
different care settings. An extensive preprocessing and data cleaning 
pipeline was developed to create a common and consistent dataset 
across the hospitals and acuity settings (see Supplementary material). 
Because the model was not biased by a single hospital or a single 
dataset, it should generalize well in real-world use cases in 
predicting infection.

Ensemble models proved to perform significantly better than both 
the established empirical rules and clinical scores, and logistic 
regression, with gradient boosting having the best performance. 
AdaBoost provided an interpretable model which allows us to map the 
feature importance to its relevance in clinical literature. For example, 
multiple laboratory values associated with inflammation ranked high 
in the feature importance metric, as well as features indicative of 
acidosis. High heart rate, high temperature and macro variability of 
vital signs were also indicative of infection, consistently with what has 
been reported in the literature (28–31). This characteristic of 
interpretability not only further validates our model, but also provides 
meaningful information in the clinical setting, quantifying the effect 
that appropriate action on each of these parameters would have in 
preventing HAI. It is well known that interpretability of the decision 
support model is vital to the acceptance of such a predictor in the 
clinical setting (33).

One important finding of our study is that the high performance 
of the model is obtained only by aggregating multiple biomarkers. No 
single “super feature” exists that allows superior classification. This 
likely reflects at the same time the variable etiology of the HAI—which 
can be of different natures (respiratory, blood stream infection, sepsis, 
etc.), the individual variability in the response, and the multi-system 
nature of the effect of the infection on the patient’s physiology. On the 
other hand, it is still possible to obtain prediction performance that 
are clinically viable with a reasonable number of clinical 
measurements. We have showed that with a core set of 36 clinical 
measurements, the infection model performs at an AUC = 0.86 at 1 h 
before clinical suspicion of infection.

The algorithm presented in this work could be implemented in a 
hospital setting by leveraging the existing monitoring systems and 
infrastructure. When risk of infection is predicted in advance, 

knowledge of the contributing parameters provided by the 
transparency of the model would allow secondary assessment and 
prompt intervention. While the best performing model employs a 
combination of laboratory test values and vital signs across 163 
features, a model trained on 36 of the most frequently measured vital 
signs, labs and demographics achieves an AUC of 0.86 at 1 h before 
clinical suspicion. Moreover, a model trained with only vital signs and 
demographics still achieves an acceptable area under the curve, equal 
to 0.81. A similar model could be employed in a context that is outside 
of the hospital (e.g., home monitoring via wearable devices) or in 
other situations where laboratory values are not easily obtainable.

Limitations

In this section we describe a couple of limitations on our study 
due to the complex nature of analyzing large retrospective 
hospital datasets.

First, we tested our model using six different observation times 
that were 1 h, 6 h, 12 h,18 h, 24 h, and 48 h before clinical suspicion of 
infection. This design warranted us to have at least an hour of 
prediction gap before the labeled time of clinical suspicion of infection. 
This was because determining the exact timing of clinical suspicion of 
infection was difficult and might not be possible, a prediction gap was 
built into account for the time differences between the true clinical 
suspicion of infection and when the culture was ordered in the EMR 
system. We reasoned in high-acuity settings such as ICUs this 1 h gap 
was sufficient. For the general ward encounters in Banner dataset, 
clinical suspicion of infection may arise a couple of hours before the 
ordering of microbiology culture test given the typical workflow in 
that environment. In this case it is more accurate to look at the 
performance at the observation time of 6 h before clinical suspicion 
instead of 1 h to evaluate the model in predicting infection shortly 
before the true clinical suspicion of infection (we reported AUC = 0.88 
at 6 h before clinical suspicion, Figure 3 blue line).

Second, our infection and control cohort selection criteria were 
designed to be  conservative, in that we  only included patients in 
infection cohort if they satisfied both criteria (ICD-9 and 
microbiology) and only included patients in control cohort if they met 
none of the two criteria. This means that we  excluded, from the 
infection cohort, those patients who had an infection diagnosis but 
whose timing of clinical suspicion of infection could not be localized; 
and that we excluded, from the control cohort, those patients who had 
a microbiology culture test ordered but did not have an infection 
diagnosis. For the latter patient group, some of them may have a 
negative culture but the culture was ordered based on clinical 
suspicion. It would be interesting to examine the model performance 
in those patients. We suspect, because those patients may have overlap 
in symptomatology (hence the clinical suspicion) and physiological 
biomarkers related to infection, our model may have a degraded 
performance in true negative rates in this group of patients.

Finally, the patient encounters used in this study happened before 
the full adoption of ICD-10 therefore we used ICD-9 to select the 
infection patients. We  understand that ICD-10 have improved 
granularity over ICD-9 therefore are more specific in identifying 
health conditions. For training a general infection prediction model 
where different types of infections were grouped in the same category, 
we believe the granularity provided in ICD-9 is sufficient. However, it 
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would be interesting to see how using ICD-10 would affect the model 
performance in different infection categories (Figure 6).

Conclusion

This study developed an algorithm for early identification of 
infection in hospitalized patients, using machine learning applied to 
large retrospective hospital datasets. The model is able to identify 
patients who are infected with reasonable performance up to 48 h before 
clinical suspicion of infection (AUC >0.85). The trained models utilize 
ensembles of decision trees, which are readily interpretable and provide 
ranked lists of feature importance. The primary model leveraging all 
available (163) vital signs, laboratory measurements and demographics 
achieves the best performance; however, a secondary model limited to 
the 36 most commonly measured clinical measurements still achieves 
an AUC = 0.86 at 1 h before clinical suspicion. The models compare 
favorably to established clinical rules and show high potential for real-
world hospital deployment as a clinical decision support aid.
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