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The leaf phenology of seasonally dry tropical forests (SDTFs) is highly seasonal,
marked by synchronized flushing of new leaves triggered by the first rains of the
wet season. Such phenological transitions may not be accurately detected by
remote sensing vegetation indices and derived transition dates (TDs) due to the
coarse spatial and temporal resolutions of satellite data. The aim of this study was
to compared TDs from PhenoCams and satellite remote sensing (RS) and used the
TDs calculated from PhenoCams to select the best thresholds for RS time series
and calculate TDs. For this purpose, we assembled cameras in seven sites along an
aridity gradient in the Brazilian Caatinga, a region dominated by SDTFs. The leafing
patterns were registered during one to three growing seasons from 2017 to 2020.
We drew a region of interest (ROI) in the images to calculate the normalized green
chromatic coordinate index. We compared the camera data with the NDVI time
series (2000–2019) derived from near-infrared (NIR) and red bands from MODIS
product data. Using calibrated PhenoCam thresholds reduced the mean absolute
error by 5 days for SOS and 34 days for EOS, compared to common thresholds in
land surface phenology studies. On average, growing season length (LOS) did not
differ significantly among vegetation types, but the driest sites showed the highest
interannual variation. This pattern was applied to leaf flushing (SOS) and leaf fall
(EOS) as well. We found a positive relationship between the accumulated
precipitation and the LOS and between the accumulated precipitation and
maximum and minimum temperatures and the vegetation productivity (peak
and accumulated NDVI). Our results demonstrated that (A) the fine temporal
resolution of phenocamera phenology time series improved the definitions of TDs
and thresholds for RS landscape phenology; (b) long-term RS greening responded
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to the variability in rainfall, adjusting their timing of green-up and green-down, and
(C) the amount of rainfall, although not determinant for the length of the growing
season, is related to the estimates of vegetation productivity.
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1 Introduction

Phenological data have been successfully used to understand
ecological aspects from the individual level, as in plant–animal
interactions (Morellato et al., 2016), to the ecosystem level, in
terms of the role of vegetation dynamics in driving carbon and
energy fluxes (Reich, 1995; Polgar and Primack, 2011; Richardson
et al., 2013). The newly realized potential of phenology as a
monitoring tool, in tandem with recent advances in technology,
has enabled the use of automated phenological monitoring
techniques at different levels of observation (Morellato et al.,
2016; Alberton et al., 2017; Albernethy et al., 2018; Piao et al.,
2019). New digital near-remote sensing sensors have proven to
effectively monitor multiple sites (Richardson et al., 2018) while
advancing in answering key ecological questions even for tropical
regions (Alberton et al., 2014; Alberton et al., 2017; Alberton et al.,
2019; Paloschi et al., 2020; Alberton et al., 2023; Medeiros et al.,
2023; Wang et al., 2023).

Land surface phenology (LSP) works with satellite imagery
collections from a wide variety of orbital sensors. Among the
most commonly applied mechanisms to track long-term leafing
trends are the MODIS products (Huete et al., 2002; Khare et al.,
2022). The derived time series of vegetation indices (VIs), such as
enhanced vegetation index (EVI) and normalized difference
vegetation index (NDVI), is the base for calculations of the
phenological metrics that define the growing seasons, such as the
start of season (SOS), the peak of season (POS), and the end of
season (EOS), that in general correspond to the green-up, maturity,
and senescence stages of a target vegetation (Zhang et al., 2003;
Tuanmu et al., 2010; Berra and Gaulton, 2021). Leafing transition
dates derived from MODIS time series have been reliably applied to
the regional scale for seasonal vegetation in the tropics (Streher et al.,
2017). Nonetheless, the evaluation of the correspondence between
satellite-derived transition dates and community biological events
(phenophases) remains a challenge since leaf transitions cannot be
identified from moderate-resolution remote sensing images, yet
most studies do not validate satellite data with on-the-ground
phenological observations or ground-based sensors (Chambers
et al., 2013; Rankine et al., 2017).

Several methods have been applied to calculate phenological
metrics from satellite-derived time series data (Jönson and Eklund,
2002; Jönson and Eklund, 2004; de Beurs and Henebry, 2005; de
Beurs and Henebry, 2009; Zeng et al., 2020). The curve fitting is a
common approach (e.g., Gaussian or logistic models) based on the
detection of changes in the curvature rate of the greening and green-
down patterns and usually defining standardized thresholds from
the seasonal amplitude of the curve (e.g., 10, 20, 50%, and 90%;
Zhang et al., 2003; Jönson and Eklund, 2002; Jönson and Eklund,
2004; Tuanmu et al., 2010). In this sense, the usage of PhenoCam, a
ground-based digital sensor, has been proposed as a tool to validate

or complement satellite data by testing the correspondence and the
bias between the transition dates derived from both satellites and
phenocameras (Klosterman et al., 2014; Melaas et al., 2016; Zhang
et al., 2018; Thapa et al., 2021). Nevertheless, the usage of
phenocamera time series to calibrate satellite indices, based on
the choice of the best representative threshold for a given
transition date, has been rarely applied (Richardson et al., 2018).
This can be particularly important for a fast-response vegetation,
such as the Brazilian Caatinga, a seasonally dry tropical forest
(SDTF), as the minimum time interval for the currently available
remote satellite imagery is about 7–15 days, and constant cloudiness
may reduce the available temporal imagery. The Caatinga biome is
dominated by deciduous tree species, mainly driven by soil moisture
seasonality (Vico et al., 2015; Paloschi et al., 2020; Wright et al.,
2021), changing from leafless to fully developed crowns a few days
after the first rainfall events (Machado et al., 1997; Alberton et al.,
2019).

The Brazilian Caatinga biome is characterized by low annual
rainfall, ranging from 250 to 1,200 mm, and a long dry season with
elevated air temperatures (Araújo et al., 2007; de Queiroz et al.,
2017). Most tree species from the Caatinga are deciduous, remaining
leafless (100% leaf shedding) throughout the dry season. This
phenological behavior is regarded as an adaptation to avoid
water loss or irreversible collapse of xylem water transport
capabilities during the dry season (Wright et al., 2021).
Consequently, leaf flushing and leaf shedding in the Caatinga are
driven mainly by changes in soil moisture (Paloschi et al., 2020;
Wright et al., 2021) and, therefore, rainfall patterns (Alberton et al.,
2019). While leaf flushing is triggered synchronically among species
and takes place a few days after a rain event, even a minor event
(Oliveira et al., 2015; Alberton et al., 2019), the patterns of leaf fall
are more diverse, with some species shedding their leaves few days
after the rainfall cessation and others staying green for longer
periods (Amorim et al., 2009; Lima et al., 2012; Pezzini et al.,
2014; Oliveira et al., 2015; Silva et al., 2020). The finely resolved
daily phenological observations of repeated digital photographs
provide essential information to detect the transition dates in this
system characterized by the fast response of vegetation to rainfall
(Alberton et al., 2019).

Semi-arid ecosystems exert a dominant role in the trend and
interannual variations of terrestrial CO2 uptake (Ahlstrom, 2015).
The vegetation phenology is tightly associated with productivity in
ecosystems with pronounced seasonal rainfall (Alberton et al., 2019;
2023). Accurately identifying the timing of leaf flush and fall is
essential for comprehending how these ecosystems transition from
carbon sinks and sources throughout the year. The validation of
Land Surface Phenology (LSP) using phenocamera data, as
conducted in tropical ecosystems by Wang et al. (2023), assumes
paramount significance when one aims to precisely determine the
phenological transition dates measured with LSP. This importance
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stems from the inherent limitations of calculating transition dates
from satellite-derived indices, as explained earlier. Therefore, the
calibration of RS method-derived phenological transition dates is
essential to provide reliable information for the assessment of large-
scale ecological processes.

The Caatinga is the largest continuous SDTF in the world
(849.516 km2; see de Queiroz et al., 2017; Fernandes et al., 2022).
Its distribution over a wide geographic area favors considerable
variability of rainfall patterns, resulting in spatially different dry
season time, intensity, and length (Sampaio, 1995; Gutiérrez et al.,
2014; de Carvalho et al., 2020). More specifically, there is a gradient
of increasing aridity and interannual variability in rainfall from the
coastal areas toward the middle of the continent (Sampaio, 1995;
Souza et al., 2016; de Carvalho et al., 2020). The spatial and
interannual variability of rainfall patterns present across the
Caatinga distribution range may strongly influence the leafing
patterns of local Caatinga vegetation (Ramos et al., unpublished),
reinforcing the importance of calibrated RS methods to accurately
measure long-term phenological patterns across areas,
encompassing environmental variability.

The implementation of precise methods for monitoring the
timing of phenological events and their responsiveness to
environmental conditions is an essential step toward
understanding shifts related to climate change. Therefore,
phenocamera monitoring may allow for a deeper comprehension
of climate change impacts across SDTFs. Furthermore, the Caatinga
region is home to numerous rural communities that depend on
agriculture and natural resources for their sustenance (Araújo et al.,
2007; Ribeiro et al., 2015). Gaining insight into phenological
patterns becomes paramount in order to optimize the scheduling
of crop planting and harvesting, as well as to promote the sustainable
management of natural resources. Accurate phenological data serve
as a valuable tool for enhancing agricultural practices and
safeguarding the livelihoods of local communities (Luna-Nieves
et al., 2017).

Thus, here, we address the following questions: (1) Can the daily
time series (green chromatic coordinates) obtained by ground-based
phenocamera digital images calibrate satellite RS methods by the
extraction of phenological transition dates in SDTFs? We used the
phenocamera-derived transition dates to estimate the optimum
thresholds for the measurements of satellite-derived phenological
transition dates in seven sites with different vegetation structures
and gradients of aridity in the Caatinga SDTF. (2) Does the land
surface phenology of SDTF change across a gradient with
contrasting environmental conditions and vegetation structure?
(3) Do the accumulated rainfall, soil moisture, water deficit, and
air temperature influence the long-term greening responses detected
by land surface NDVI across the SDTFs? We apply RS techniques
after calibration with phenocamera data to quantify the land surface
phenological transition dates and length of the growing season in
seven areas of Caatinga, using a MODIS time series of 20 years,
evaluating how these different SDTFs respond to changes in the
environmental factors across the aridity gradient. Regarding the
second objective, our hypothesis is that as the aridity increases, the
length of the growing season is shortened, increasing interannual
variability. In a similar way, for the leaf flushing and fall seasons, we
expect increasing interannual variability as the aridity increases. For
the third objective, we expect to find a significant influence of water

availability, such as accumulated rainfall, soil moisture, and water
deficit, shortening the growing season as the aridity increases.
Conversely, in less arid sites, temperature emerges as a key factor
influencing the time and length of the growing season.

2 Materials and methods

2.1 Study area

The Caatinga vegetation is the largest SDTF in the New
World, occurring mainly in Northeastern Brazil under a semi-
arid climate, Köppen’s BSh (Alvares et al., 2013). We have set up
permanent plots for long-term monitoring at seven areas in the
Caatinga (Figure 1) across a range of aridity gradient levels
(Table 1).

2.1.1 Petrolina
It is located at a protected area from the Brazilian Agricultural

Research Corporation (Embrapa, semi-arid unit), Petrolina (PET)
Municipality (9.0480° S, 40.3198° W), Pernambuco State, at 395 m
a.s.l. The area has been protected from grazing and anthropic
disturbances for the last 40 years. The most common soil is
Acrisol, and the vegetation is a scrubland composed of trees with
an average height of ~4.5 m and tree density of approximately
500 individuals ha−1 over an herbaceous and shrubby stratum
dominated by bromeliads. The dominant tree species are
Senegalia polyphylla (DC.) Britton and Rose (Fabaceae), Manihot
sp. (Euphorbiaceae), Cenostigma microphyllum (Mart. ex G. Don)
Gagnon and G.P. Lewis (Fabaceae), Sapium glandulosum (L.)
Morong (Euphorbiaceae), Handroanthus spongiosus (Rizzini)
S.Grose (Bignoniaceae), and Commiphora leptophloeos (Mart.)
J.B.Gillett (Burseraceae). Together, these species account for 88%
of the area’s total relative abundance of trees.

2.1.2 Serra Talhada
It is an experimental area located at Serra Talhada (STA)

Municipality (7.97008° S; 38.3849° W), Pernambuco State, at
467 m a.s.l. Cattle and goats graze the area during the rainy
season. The main soil class is Calcisol, and the vegetation is
mainly composed of trees with an average height of ~5 m and
tree density of approximately 780 individuals ha−1. The
dominant tree species are Aspidosperma pyrifolium Mart. and
Zucc. (Apocynaceae), Cenostigma nordestinum Gagnon and
G.P. Lewis (Fabaceae), S. polyphylla, and Anadenanthera
colubrina var. cebil (Griseb.) Altschul (Fabaceae). Together,
these species account for 79% of the area’s total relative
abundance of trees.

2.1.3 São João
It is an experimental area surrounded by agricultural lands

located at São João (SJO) Municipality (8.80967°S; 36.4054°W),
Pernambuco State, at 762 m a.s.l. Cattle and goats graze the area
during the entire year. The most common soil is Arenosol, and the
vegetation is mainly composed of trees with an average height of
~5 m and tree density of approximately 670 individuals ha−1. The
dominant tree species are Pilosocereus pachycladus F.Ritter
(Cactaceae), C. leptophloeos, Mimosa tenuiflora (Willd.) Poir.
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(Fabaceae), Piptadenia flava (Spreng. ex DC.) Benth. (Fabaceae),
Lippia origanoides Kunth (Verbenaceae), and S. glandulosum.
Together, these species account for 71% of the area’s total
relative abundance of trees.

2.1.4 Campina Grande
It is a protected area from the Instituto Nacional do

Semiárido (INSA) located at Campina Grande (CGA)
Municipality (7.280389° S; 35.976307° W), Paraíba State, at

FIGURE 1
Location and climate of the Caatinga in Brazil, delimited by the red line, highlighting the seven study sites (black stars) and Koppen’s climate
classification for Brazil from the work of Alvares et al. (2013) with emphasis for the semi-arid (Bsh) climate of Caatinga SDTF in orange. Numbers refer to
the location of seven phenocamera study sites: Petrolina (3), Serra Talhada (1), São João (2), Campina Grande (4), Cajueiro 1 (5), Cajueiro 2 (6), and Mata
Seca (7) sites. Climate dataset obtained from Abatzoglou et al., 2018 for the period 2000-2020.

TABLE 1 Mean annual rainfall, aridity index, and the start and end dates of the wet and dry seasons for the Caatinga sites.

Sites Rainfall (mm/year) Aridity index Wet/dry seasons

Petrolina 485.1 0.32 Jan–Apr/May–Dec

Serra Talhada 665.8 0.43 Nov–Apr/May–Oct

São João 716.6 0.53 Mar–July/Aug–Feb

Campina Grande 544.6 0.37 Mar–July/Aug–Feb

Cajueiro 1 711.9 0.48 Nov–May/Mar–Set

Cajueiro 2 712.1 0.48 Nov–May/Mar–Set

Mata Seca 706.9 0.48 Nov–May/Mar–Set

The aridity index is calculated as the ratio between the mean annual precipitation and the annual potential evapotranspiration. We used the global aridity index database (Zomer et al., 2022).
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493 m a.s.l. The area has been protected from grazing and
anthropic disturbances for the last 10 years. The main soil
class is sandy loam, and the vegetation is mainly composed
of trees with an average height of ~5.1 m and tree density of
approximately 675 individuals ha−1. The dominant tree species
are Cenostigma pyramidale (Tul.) Gagnon and G.P. Lewis
(Fabaceae), Combretum monetaria Mart. (Combretaceae), A.
pyrifolium, Manihot sp., and P. flava. Together, these species
account for 71% of the area’s total relative abundance of trees.

2.1.5 Parque Loagoa do Cajueiro (CAJ 1 and CAJ 2)
It is a conservation area located at Matias Cardoso Municipality,

Minas Gerais State, at 462 a.s.l. The mean annual total precipitation
is around 712 mm, there are five dry months, and the average annual
temperature is 24 °C (Pezzini et al., 2014). There are two distinct
vegetation types in the area, and we set up a Mobotix camera in the
first and a Bushnell camera in the second. The vegetation in the first
area (CAJ 1) is a tall forest composed of trees with an average height
of ~13 m with a closed canopy (~85%). The dominant tree species
are Cenostigma pluviosum var. sanfranciscanum (G.P.Lewis)
Gagnon and G.P. Lewis (Fabaceae), A. colubrina (Vell.) Brenan
(Fabaceae), Astronium urundeuvaM. Allemão (Anacardiaceae), and
Plathymenia reticulata Benth. (Fabaceae). The vegetation in the
second area (CAJ 2) is an open scrubland SDTF (Carrasco)
composed of trees with an average height of ~4 m with an open
canopy (~30%). The dominant tree species are A. pyrifolium,
Callisthene microphylla Warm. (Vochysiaceae), Cenostigma
macrophyllum Tul. (Fabaceae), Guapira tomentosa (Casar.)
Lundell (Nyctaginaceae), Mimosa arenosa (Willd.) Poir.
(Fabaceae), Poecilanthe ulei (Harms) Arroyo and Rudd
(Fabaceae), Pterocarpus rohrii Vahl (Fabaceae), Pterodon
emarginatus Vogel (Fabaceae), and Terminalia fagifolia Mart.
(Combretaceae).

2.1.6 Parque Estadual da Mata Seca
The sixth site is a conservation area located at Manga

Municipality, Minas Gerais State, at 462 a.s.l. The area is 3 km
from CAJ, the previous site. The mean annual precipitation is
706.9 mm, with five dry season months and 24 °C of mean annual
temperature (Pezzini et al., 2014). The vegetation in the area is a tall
forest composed of trees with an average height of ~13 m with a
closed canopy (~95%) and the absence of an herbaceous and shrub
layer. The dominant tree species are Handroanthus ochraceus
(Cham.) Mattos (Bignoniaceae), Amburana cearensis (Allemão)
A.C.Sm. (Fabaceae), A. urundeuva, and Cavanillesia umbellata
Ruiz and Pav (Malvaceae).

2.2 Methodology

2.2.1 Camera set up, image acquisition and
processing
2.2.1.1 Phenocameras set up and phenological in situ time
series

Camera setup: We used images from seven cameras in this study:
four digital hemispherical lens MOBOTIX Q25 cameras
(MOBOTIX AG, Germany; for detailed information on the usage
of MOBOTIX cameras for phenological observations (see Alberton

et al., 2017), placed in vertical downward (180°) orientation, and
three digital standard lens Bushnell Trophy Cam HD Essential
E3 cameras (Bushnell, EUA), placed in landscape orientation
(Figure 2). The MOBOTIX cameras were placed on the top of
the flux towers in PET (10 m high; Figure 2D), STA (10 m high;
Figure 2B), SJO (10 m high; Figure 2C), and at the forest site in CAJ
(18 m high; Figure 2F). The MOBOTIX cameras were placed at an
average distance of 10 m above the vegetation canopies, positioned
to the west (STA and SJO), to the east (PET) and to the northeast
(CAJ). The Bushnell cameras were placed at the top of the flux tower
in CGA (13 m high; Figure 2E) and Parque Estadual da Mata Seca
(MSC) (19 m high; Figure 2H) and on a pole at the Carrasco site in
CAJ (6 m high; Figure 2G), positioned to the northwest (CGA) and
southwest (MSC and CAJ). The energy supply of Mobotix cameras
comes from a system composed of a 12 V battery charged by
solar panels, while Bushnell cameras are charged by AA lithium
batteries.

Cameras were programmed to take daily images, varying from
three to four images, in the first 5 minutes of each hour, from 06:
00 a.m. to 06:00 p.m. (UC-3; Universal Time Coordinated). Images
were taken in the JPEG format with a pixel resolution of 1,280 × 960
(Alberton et al., 2017). The leafing patterns were registered during
one to three growing seasons from 2017 to 2020, with different
starting and ending dates depending on the site or camera: PET, 01/
11/2017 to 31/12/2020; STA, 28/11/2017 to 31/12/2020; CGA, 28/
11/2017 to 31/12/2020; SJO, 20/12/2017 to 03/05/2020, and CAJ, 04/
03/2018 to 24/11/2020.

Images were visually screened to remove photographs with an
obstructed field of view. To represent the plant community of each
site, we drew a region of interest (ROI) in the images, which
consisted of the selection of the entire vegetated area but
excluded the bare ground, the tower area (for the Mobotix
images), and the borders of the image (Alberton et al., 2017;
2019). The digital numbers (DNs) red, green, and blue (RGB)
color channels were extracted from the JPEG images for each
community ROI across all the daily images available. The total
RGB DN was calculated as shown in Eq. 1 (Richardson et al.,
2009). Then, the normalized green chromatic coordinate index
(GCC; see Alberton et al., 2017; Richardson et al., 2009) was
calculated as the ratio of the relative brightness of the green
color channel (green DN) to the total DN brightness, as shown
in Eq. 2:

TotalRGBDN � redDN + greenDN + blueDN, (1)
Gcc � GreenDN

TotalRGBDN
. (2)

To suppress day-to-day illumination issues in the GCC time
series, we calculated the 90th percentile of all mid-day photographs
(from 10:00 a.m. to 16:00 p.m.) (adapted from the work of
Sonnentag et al., 2012). For data analysis, we used daily GCC
time series.

2.2.1.2 Satellite data
The MODIS 16-day nadir BRDF-adjusted reflectance product

(MCD43A4) provided the red and near-infrared (NIR) bands for
the NDVI calculation. This dataset is produced daily using
16 days of Terra and Aqua MODIS data at 500 m resolution
(Guerschman et al., 2015). The landscape had a homogeneous
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composition in the 500 m resolution pixels used for all the
Caatinga sites (Figure 2), except for the SJO site, which was
composed mostly of pasture (Figure 2C). Moreover, with the
exception of the SJO site, the field of view of phenocamera images
was representative of the dominant vegetation observed in the
MODIS pixels for all sites (Figure 2).

The images used in this study were from February 2000 to
December 2020. The NDVI series were assembled for each
experimental site with the pixel value of the MCD43A4 product,
the phenocamera being the central pixel of the geographic
coordinates of each test site (Figure 2). The processes for
obtaining time series NDVI MODIS were performed using the
Google Earth Engine (GEE) tool (Gorelick et al., 2017). The GEE
tool allows you to visualize, manipulate, edit, and create temporal
and spatial data (Gorelick et al., 2017; Li et al., 2017; Pastor-Guzman
et al., 2018).

2.3 Data analyses

The workflow to calculate phenological metrics from remote
sensing and phenocamera data is described in Figure 3.

2.3.1 Phenological metrics extracted from the GCC
time series

We applied generalized additive models (GAMs) to the camera-
derived GCC time series to produce phenological curves (Alberton
et al., 2019). Then, we calculated the phenological transition dates
(Figure 3) of each growing season by applying the methodology of
derivatives proposed by Alberton et al. (2019) and applied in the
work of Paloschi et al. (2020). We determined an average threshold
value for the GCC greenness rising (50%) for the SOS and green-
down (80%) for the EOS. Then, we calculated the length of season
(LOS) as the difference between the EOS and SOS dates for each

FIGURE 2
General location of the Caatinga study sites. (A) TheMODIS pixels (Left), with the phenocamera indicated by the white dot, and the respective typical
phenocamera images (right): (B) STA, (C) SJO, (D) PET, (E) CCR, (F) CAJ 1, (G) CAJ 2, and (H) MSC. The globe web-based map was derived from Bing
satellite.
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growing season. The SOS corresponds to the start time of the leaf
out phenophase, and the EOS the leaf fall phenophase or the time
when vegetation is mostly leafless (Alberton et al., 2019; Htitiou
et al., 2019). Therefore, the proposed threshold was estimated
based on the phenocamera daily photographs to allow visual validation
of the phenological transitions of each monitored vegetation site. We
used the camera-derived green-up and green-down thresholds to
calibrate the extraction of the phenological metrics from the NDVI
time series.

2.3.2 Phenological metrics extracted from the
NDVI time series

In the initial step, the NDVI time series were calculated in
Google Earth Engine (GEE) using near-infrared (NIR) and red
bands from MODIS product data (MCD43A4). Next, we used
TIMESAT software (Jönsson and Eklundh, 2004; Jönsson and
Eklundh, 2012) to smooth the time series and calculated the
phenological metrics. The Savitzky–Golay filter (Savitzky and
Golay, 1964) from TIMESAT was applied to smooth the NDVI
time series. Then, the following phenological metrics were
calculated: start of season, end of season, length of season, peak
value of NDVI (PEAK), amplitude (AMPL), and the difference
between the peak and base level values (see Table 2).

TIMESAT software defines the percentage of the amplitude
(threshold) for the vegetation index used. Different amplitude
percentages were tested to assess the most appropriate value for all
seven sites studied. The phenological metrics derived from the in situ
cameras (see Section 2.4.1) were the reference used to evaluate the
remote sensing data (i.e., the threshold that corresponds to a given
phenocamera transition date). Then, based on the phenocamera
thresholds estimated, we set the TIMESAT parameters for estimating
the phenological metrics of a 20-year NDVI time series spanning from
2000 to 2019. We calculated the same aforementioned phenological
metrics (SOS, EOS, LOS, PEAK, and AMPL) for the twenty-year NDVI
time series.

2.4 Statistical analyses

2.4.1 Evaluating remote sensing phenological
metrics

To evaluate the better parameters to calculate the remote sensing
phenological metrics (SOS and EOS), four amplitudes were tested
with different percentiles: 5%, 10%, 15%, and 20%, and compared
with the in situ phenological data using the statistical mean absolute
error (MAE) (Eq. 3). The thresholds 5%, 10%, 15%, and 20% are
commonly used in the literature (Teles et al., 2015; Browning et al.,
2017; Ghosh and Mishra, 2017). Moreover, it is necessary to validate
the appropriate SOS and EOS thresholds in TIMESAT as these
thresholds in tropical dry forests in Brazil have not yet been studied
in detail. So, we tested these thresholds to evaluate the best
configuration.

MAE � 1
n
∑
n

i�1
yi − ŷi
∣∣∣∣

∣∣∣∣, (3)

where yi represents the value of the in situ phenological metric, ŷi
represents the predicted value of remote sensing phenological metric,
and n is the number of data (year). After defining theMAE for each site,
we computed the mean of MAE values for all sites. The smaller the
error, the closer the result of the remote sensing phenological metric to
the value of the phenological metric in situ.

2.4.2 Long-term seasonality patterns of the
Caatinga and its environmental drivers

To understand the temporal variability of land surface
phenology across the Caatinga sites, we used descriptive circular
statistics (Zar, 1996; Morellato et al., 2000; Morellato et al., 2010)
applied to the phenological metrics SOS, EOS, and peak, calculated
from the 20 years’ NDVI time series for each site, separately. We
transformed the days of the year (DOYs) into angles of a
circumference, resulting in a mean value of ~1° each day, starting
on DOY 1 and stopping onDOY 365 each year (Zar, 1996; Morellato

FIGURE 3
Flow chart of themethodology used to calculate the phenological metrics, SOS, EOS, and LOS based on phenocamera in situ andNDVIMODIS time series.
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et al., 2010). To describe the temporal patterns of the phenological
metrics, we used the mean angle µ, which is the angle around each
concentrating most variables. To infer the interannual variability of
the phenological metrics across sites, we used the angular standard
deviation (±SD) and the concentration (r) around the mean vector.

To evaluate how environmental factors influence land surface
phenology across the Caatinga sites, we fitted linear models (lm R
function). We examined variation in phenological metrics (length of
the growing season (LOS) and productivity (accumulated NDVI and
peak of NDVI) as a function of environmental factors using the time
series of all sites together. Environmental factors included
accumulated precipitation, water deficit, soil moisture, and
minimum and maximum temperatures. The environmental
factors used in this study were obtained from the TerraClimate
database (Abatzoglou et al., 2018) available at GEE. The dataset with
a spatial resolution of 0.04° uses climate-assisted interpolation,
combining climatological normals from the WorldClim dataset
(Abatzoglou et al., 2018), used for various applications (Ahamed
et al., 2022; Andrade et al., 2022; Medeiros et al., 2023). We built one
linear model for each combination of one response variable and one
explanatory variable. We also evaluated if the sites differ in the LOS
by fitting a linear model with the LOS as a function of the site since
most predictors were highly correlated with each other. We analyzed
data in R (R Core Team, 2020).

3 Results

3.1 Phenological patterns from
phenocameras and satellite

We recorded phenology simultaneously using phenocameras
(GCC) from 2017–2020, which encompassed one to three
complete growing seasons, depending on the site
(Supplementary Table S1; Figure 4) and overlapping with the
MODIS time series (NDVI). The vegetation of all sites showed
a seasonal leafing pattern (Figure 4), with marked leaf flushing
(GCC and NDVI rising) and leaf fall (GCC and NDVI declining),
except for the last growing season (2019–2020) of CAJ 1 registered
using a phenocamera, which had 352 days of duration
(Supplementary Table S1). For each growing season, the NDVI
always peaked after the GCC (Figure 4). The LOS for the Caatinga

sites determined using phenocameras was highly variable, ranging
from 177 in the driest site, Petrolina, to 352 days in the wettest site,
Cajueiro 1, the tallest forest site (Supplementary Table S1).
Additionally, there was high interannual variability in the LOS
in the three driest sites, ranging from 177 to 245 days, from 216 to
265, and from 229 to 292 in Petrolina, Serra Talhada, and Campina
Grande, respectively (Supplementary Table S1).

3.2 Evaluating phenophase transition dates
from all platforms

In general, there was good agreement between the SOS
calculated from GCC and NDVI time series. The SOS dates for
MODIS were biased early by 5 days on average (Supplementary
Table S2) in relation to the SOS phenocamera in the lowest MAE
selected (5% threshold). TheMAE of the SOS dates calculated from
the satellite time series in comparison to the camera-derived SOS
was highly variable across sites, changing from 6 days at CGA to
53 days at SJO (Table 3). The MAE across sites varied with the
threshold used (Table 3), with the 5% threshold resulting in the
lowest MAE (14.9 days; Table 3). The usage of the 5% threshold
reduced the MAE by 5.27 days compared to the 20% threshold,
which is a commonly used value for land surface phenology but
produced the highest values of MAE for the Caatinga sites
(Table 3).

The agreement between the EOS calculated from the GCC and
the NDVI time series was worse when compared to the SOS
phenophase. The EOS dates for MODIS were biased late by
11 days on average (Supplementary Table S3) in relation to EOS
PhenoCam in the lowest MAE selected (20% threshold). The MAE
of the EOS dates calculated from the satellite time series in
comparison to the camera-derived EOS was highly variable
across sites, changing from 9 days at CGA to 99 days at SJO, but
was, in general, higher than the MAE for the SOS dates (Table 4).
The MAE across sites varied with the threshold used (Table 4), with
the 20% threshold resulting in the lowest MAE (25.60 days; Table 4).
The usage of the 20% threshold reduced the MAE by 34.34 days
compared to the 5% threshold, which produced the highest values of
MAE (59.94 days; Table 4). Additionally, usage of the 20% threshold
reduced the MAE by 15.60% (Table 4) compared to the 10%
threshold, a commonly used value for LSP.

TABLE 2 Phenological metrics calculated from indices extracted from the phenocamera near-surface phenology (GCC) and from the satellite MODIS land surface
phenology (NDVI) indices.

Metric Description phenocamera Description satellite MOI

Start of season Time for which the derivatives were increasing at 50% threshold of
the greenness rising

Time for which the left edge has increased to 5%, 10%, 15%, and 20% of the seasonal
amplitude measured from the left minimum level

End of season Time for which the derivatives were decreasing at 80% threshold
of the greenness falling

Time for which the right edge has decreased to 5%, 10%, 15%, and 20% of the seasonal
amplitude

Length of
season

Time between the start and end of the growing season Time between the start and end of the growing season

Maximum
value

Maximum index value for the fitted function during the season Maximum index value for the fitted function during the season

Satellite description was adapted from the work of Reed et al. (1994) and Htitiou et al. (2019). Phenocamera description was adapted from the work of Alberton et al. (2019) and Paloschi et al.

(2020).
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3.3 Caatinga leafing patterns from MODIS
long-term time series

The transition dates for the start of the season, end of the
season, and the NDVI peak of the 20 growing seasons
(2000–2019) were seasonal for all seven sites, as indicated by
the significance of the Rayleigh test (Z) (Supplementary Table S4).
In general, the SD for both TDs and the NDVI peak was lower as
the precipitation increased (Figures 5E–F), indicating that the
interannual variability in leaf flushing and fall and in the time of
the maximum photosynthetic activity decreased toward moist
sites. Additionally, the concentration around the mean vector
(µ) for these phenophases was low for the driest sites (Figures
5A–C) but increased as the site’s precipitation increased

(Figures 5E, F), indicating that the TDs are more
concentrated around the mean in the moister sites, which is a
characteristic of lower interannual variability. On the other
hand, the patterns for the TDs at the SJO site (Figure 5D),
which has the highest precipitation among the sites, contrasted
with the abovestated result, showing the highest SD and lowest
concentration around the mean vector for both TDs and for the
time of the NDVI peak.

The LOS measured with the long-term MODIS time series did
not differ on average (F = 1.95; p = 0.07) across the Caatinga sites
(Figure 6A) but presented high interannual variability in the driest
sites (PET, CGA, STA, and SJO) (PET, CGA, and STA) when
compared to the wettest sites (CAJ 1, CAJ 2 and MSC)
(Figure 6B), with exception of SJO. This pattern for the LOS

FIGURE 4
Phenocamera GCC (green dots) andMODIS NDVI (orange dots) time series after calibration and the respective phenological transition dates, start of
season, and end of season, from 2017 to 2020 for the sites of Petrolina, Campina Grande, Serra Talhada, São João, Cajueiro 1, Cajueiro 2, and Mata Seca.
The GCC green dots correspond to the 90th percentiles extracted from the images of the mid-day hours (from 10:00 to 14:00 h), and the NDVI values
correspond to the Savitzky–Golay smoothed time series. The vertical lines correspond to the phenological transition dates, SOS (continuous lines),
and EOS (dashed lines) calculated for the GCC and NDVI, green and orange lines, respectively.
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confirmed the trend of increasing variability in the LOS for arid sites
observed with phenocamera data (Table 3) and added information
on the interannual LOS variability for the less arid sites.

3.4 Caatinga land surface greening patterns
from MODIS: long-term time series and
environmental drivers

The land surface long-term (from 2000 to 2019) evaluation
of the length of the growing season across sites was influenced
by the accumulated precipitation but not by water deficit, soil
moisture, and minimum and maximum temperatures
(Figure 7). The productivity measured as the accumulated
NDVI and peak NDVI were influenced by the accumulated
precipitation and minimum and maximum temperatures
(Figure 7). Thus, a positive relationship was observed
between productivity and accumulated precipitation and
minimum and maximum temperatures, with increases in
productivity when these environmental variables increased
(Figure 7).

4 Discussion

4.1 Seasonal phenological patterns and
differences between methods

The GCC and NDVI patterns for all seven sites indicated that
the leafing patterns of vegetation were markedly seasonal, a result
observed for other seasonally dry ecosystems (Rankine et al., 2017;
Yan et al., 2019; Paloschi et al., 2020). The high interannual
variability in the LOS registered using phenocams in the driest
sites suggests that plants in these communities adjust their
phenology to cope with the rainfall unpredictability characteristic
of the driest areas in the Caatinga region (de Carvalho et al., 2020).
However, this needs to be interpreted with caution for the wettest
sites (Cajueiro and Mata Seca) since only one growing season was
analyzed.

The peak of GCC always preceded the peak of NDVI for all sites
and growing seasons, and this delay may represent two different
aspects of the canopy activity. The peak of canopy greenness is
sensitive to the changes in the leaf color, representing how green the
canopy is, which is influenced by the young leaves being produced
(Keenan et al., 2014; Zhang et al., 2018). The NDVI peak is a proxy
for the maximum photosynthetic activity (Jin et al., 2013; Del
Castillo et al., 2018) and is representative of the total leaf
variation on a vegetation canopy (Zhang et al., 2018).

In general, we observed better agreement between the
phenocamera- and satellite-derived SOS than for the EOS
transition dates. The leaf flushing in the Caatinga SDTF occurs
fast and synchronously after the first rains of the rainy season
(Alberton et al., 2019; Paloschi et al., 2020), and this pattern was
detected similarly in both RS methods. A similar analysis for
temperate deciduous vegetation indicates a better correspondence
between the SOS and satellite index (Hufkens et al., 2012; Keenan
et al., 2014; Klosterman et al., 2014; Zhang et al., 2018) and also for
evergreen vegetation (Khare et al., 2022) in those very seasonal
ecosystems. The better agreement of TDs from both methods with
the SOS is likely related to the fast leaf flushing response in all these
markedly seasonal ecosystems (Zhang et al., 2018).

The lower agreement in EOS and the late EOS for the NDVI in
comparison to the phenocamera GCC may be caused by the more
gradual rate of change of VI from the satellite during leaf fall in
comparison to the phenocamera (Hufkens et al., 2012; Yan et al.,
2019). However, in the Caatinga SDTF, the phenocameraGCC tends to
fall more gradually after its leaf out peak, during the leaf senescence
phase, than the NDVI, which may have caused the differences between
both methods. Spatial heterogeneity has also been suggested to be an
important source of variation in phenological metrics between
phenocameras and satellites (Liu et al., 2017; Richardson et al., 2018;
Moon et al., 2019), but with the exception of the SJO site in this study,
the pixel around the camera used for the satellite NDVI calculations
presented a homogenous landscape dominated by the SDTF vegetation
(Figure 2). We found thatMAE for the SOS and EOS was highest at the
SJO site, likely due to the high spatial heterogeneity and the inclusion of
sections of farmlands within the pixel encompassing the sampled
Caatinga vegetation.

TABLE 3Mean absolute error (MAE) of the start of season estimates varying the
values of the estimate and seasonal amplitudes in TIMESAT.

Sites SOS - MAE (day)

5% 10% 15% 20%

Petrolina 28.10 26.20 25.50 20.53

Serra Talhada 7.43 12.53 11.17 14.20

São João 8.65 13.90 52.50 53.40

Campina Grande 16.00 11.65 8.15 6.00

Cajueiro 1 14.25 17.70 20.15 21.95

Cajueiro 2 15.00 11.00 8.00 5.00

Mean 14.91 15.50 20.91 20.18

TABLE 4 Mean absolute error (MAE) of the end of season estimates varying the
values of the estimate and seasonal amplitudes in TIMESAT.

Sites EOS - MAE (day)

5% 10% 15% 20%

Petrolina 80.93 44.83 29.00 19.37

Serra Talhada 51.53 36.97 32.30 27.70

São João 99.80 78.20 62.20 52.10

Campina Grande 31.57 23.33 12.67 9.60

Cajueiro 1 37.40 25.55 13.70 22.55

Cajueiro 2 53.37 31.53 17.80 21.90

Mata Seca 65.00 48.00 37.00 26.00

Mean 59.94 41.20 29.24 25.60
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FIGURE 5
Circular histograms of transition dates - TDs representing the Start of Season and the End of Season (SOS and EOS) for the Caatinga sites calculated
fromMODIS time series from2000 to 2019. Themean vector (µ) ± SD (standard deviation) for the SOS and EOS is shown in green and brown, respectively.
The peak is shown in purple. r = concentration around the mean vector. DOY represents the mean angle converted to day of the year.
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When the calibrated amplitude threshold of 5% for the
calculations of the SOS was used, the error between the
phenocamera- and satellite-derived SOS was reduced in
around 5 days in relation to the 20% threshold, which may
not be a significant reduction. However, for the calculation of
the EOS phenophase, the usage of the 20% calibrated threshold
expressively reduced the error in around 34 days in relation to the
10% threshold. The 20% amplitude threshold for calculating the
SOS and EOS transition dates is a common method applied in

LSP (Streher et al., 2017; Diem et al., 2018; Doussoulin-Guzmán et al.,
2022), but the 10% amplitude threshold suggested by Jönsson and
Eklundh (2002) produced lower biases between the phenocamera-
and satellite-derived PTs for deciduous broadleaf forests (Richardson
et al., 2018) and plants from arid ecosystems (Browning et al., 2017).
However, for the semi-arid Caatinga SDTF, the 10% amplitude
threshold was shown to produce the highest bias between both
methods for the EOS phases, evidencing the importance of
understanding the local sources of VI variability and which

FIGURE 7
Effects of the environmental factors accumulated precipitation, water deficit, soil moisture, and minimum and maximum temperatures on the land
surface phenological parameter length of the growing season and the productivity parameters of accumulated NDVI and peak NDVI across the Caatinga
sites. Data are long-term land surface NDVI greening extracted from MODIS time series from 2000 to 2019.

FIGURE 6
Interannual variability of lenght of the season (LOS) for the Caatinga sites calculated fromMODIS time series from 2000 to 2019. (A)Mean ± SD and
(B) distribution of LOS across sites.
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environmental factors trigger the seasonal responses of the vegetation,
to infer trends in LSP.

4.2 Land surface phenological variability
across sites and its environmental drivers

The leaf production (SOS) calculated for 20 growing seasons of
the NDVI time series from 2000 to 2019 demonstrated, as expected,
an increase in the interannual variability towards most arid sites
across the Caatinga. The increase in rainfall variability as the total
rainfall decreases is a typical characteristic of the Caatinga region,
resulting in the unpredictability of rainfall onset and in the mean
annual rainfall in these areas across the years (Sampaio, 1995;
Gutiérrez et al., 2014; de Carvalho et al., 2020). The leaf flushing
of trees generally occurs shortly after the rainfall pulses in the
Caatinga vegetation (Machado et al., 1997; Oliveira et al., 2015;
Alberton et al., 2019; Paloschi et al., 2020; Alberton et al., 2023;
Medeiros et al., 2023), and the higher variability of the SOS in most
arid sites indicates a local response of plants to cope with water
unpredictability as aridity increases across the Caatinga. A similar
result was found for the TDs of brown down or leaf senescence
(EOS), with an increase in interannual variability concurrent with
increasing aridity. A late or an early EOS can be solely a response to
the SOS shifts across years since these phenophases are not
uncoupled, with the EOS following the responses of the SOS.

We expected an increase in the length of the growing season
with the increase in the mean annual rainfall; however, the LOS did
not differ on average across the sites. Also, the land surface
parameter length of the growing season (LOS) increased toward
the increase in accumulated precipitation, considering the data of all
sites and the 20 growing seasons together. Other climatic variables
evaluated, such as water deficit, soil moisture, and minimum and
maximum temperatures, did not influence the LOS. On the other
hand, the interannual variability in LOS was expressively higher with
the increase in aridity. These results indicate that although the LOS
did not differ across sites, they were adjusted from year to year
through the changes in the timings of leaf flush and fall, probably as
a response to rainfall variations. The high interannual variability of
rainy season duration is likely to favor the coexistence of multiple
drought-deciduous strategies inside plant communities, such as
evergreen and different levels of deciduousness (Vico et al., 2015).

We measured accumulated and peak NDVI as proxies for
ecosystem productivity and found a direct relationship between
these variables and water availability (positive relation with
accumulated precipitation and soil moisture and negative relation
with water deficit). Our results suggest that the Caatinga
productivity increases toward the moistest sites and/or when the
total annual rainfall is higher. Gross primary productivity (GPP) and
evapotranspiration (ET) of Caatinga have demonstrated strong
dependency on water availability, being constrained mostly to the
rainy season (Costa et al., 2022; Alberton et al., 2023), showing
higher productivity in years of higher rainfall (Marques et al., 2020).
Nevertheless, it is important to acknowledge that the explained
variance in several of the relationships examined between land
surface phenology and environmental variables was relatively
low. This can likely be attributed to the additive influence of
these environmental variables. Even though the relationships

were significant for more than one variable, they were tested
individually, with one comparison made at a time (for example,
accumulated precipitation and peak NDVI and water deficit and
peak NDVI), owing to their autocorrelation.

Extreme rainfall events have been observed in the Caatinga
region as a consequence of climatic phenomena such as El Niño
(Gutiérrez et al., 2014). Additionally, future climate projections for
the area indicate rising temperatures, leading to hotter days and
nights (Torres et al., 2017). These projections also suggest that
surface soils are expected to become drier and more frequent,
intense rainfall episodes are expected, followed by prolonged dry
and warm periods characterized by a lack of precipitation and
extended dry spells (Marengo et al., 2017; Torres et al., 2017).
However, it is important to note that climate projections vary
across the region (Torres et al., 2017). This emphasizes the
critical need for a comprehensive understanding of phenological
responses to climate and environmental factors on a larger scale
while utilizing the most accurate and precise data available.

5 Conclusion

The phenocamera data successfully improved the accuracy of
phenological metrics estimated from satellites, but it was more
relevant for the leaf fall (EOS) period than for the leaf flushing
(SOS) period. The long-term calibrated satellite phenological
measurements unravel the leaf phenological patterns of the
Caatinga sites across a large spatial scale. We showed that
although all sites share the same semi-arid climate, the
phenology of plant communities may be adapted to the changes
in local aridity and the predictability of water availability. Aridity
shapes land surface phenology across sites, resulting in no
differences in averages but increasing the interannual variability
in leaf out, fall, and length of the growing season. Additionally, the
mean annual rainfall was a good predictor of the growing season
length within and across the Caatinga sites.
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