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We propose  a  novel  method  for  estimating  the  permeability  of  heterogeneous  sandstones  based  on  the  nuclear  magnetic
resonance  (NMR)  data  with  multiple  echo  spacings.  The  decaying  curves  and  their  corresponding  spectra  are  obtained
for  different  echo  spacings  to  investigate  the  relaxation  property,  the  diffusion  term,  and  the  signal  loss  contributed
by  higher  echo  spacing.  Moreover,  an  empirical  model  is  developed  to  correlate  permeability  with  the  differential
decay  rate.  The  result  shows  that  the  geometric  transversal  relaxation  time  is  positively  related  to  echo  spacing,  which
disobeys  the  traditional  cognition.  Moreover,  the  absolute  value  of  the  differential  decay  rate  is  positively  correlated  with
the  echo  spacing  and  exhibits  a  power  law behavior.  More  interestingly,  it  is  observed  that  the  permeability  diminishes
in  a  power  law behavior  with  respect  to  fitting  parameters.  This  marks  the  first  attempt  to  establish  a  relationship
between  the  permeability  and  NMR data  with  different  echo  spacings,  which  is  hopeful  to  be  extended  to  other
complex  reservoirs  with  the  availability  of  multiple  echo  spacing  data.

1. Introduction
The  low-field  nuclear  magnetic  resonance (NMR)
technique acts  as  an important  tool  in  petroleum and
geological  studies.  Compared with other  geophysical
data,  the  signal  originates  from hydrogen and provides
valuable  lithology-independent  information such as  pore
size,  porosity,  permeability,  fluid  saturation,  viscosity,
as  well  as  wettability  [1–3].  The  transversal  relaxation
time (T2)  generated by the  Carr-Purcell-Meiboom-Gill
pulse  sequence is  the  most  frequently  used parameter
nowadays.  Over  the  past  few decades,  there  have  been
tremendous examples  of  permeability  estimation using
NMR data  such as  the  Schlumberger-Doll  Research
equation and the  Timur-Coates  equation.  Although both

equations  provide  a  trend in  permeability  prediction,
their  shortcomings  are  obvious  and they are  demonstra‐
ted to  have  large  errors  in  complex reservoirs  such as
carbonate,  tight  sand,  shale,  and mudstone [4–9].  The
most  widely  used and improved permeability  models
are  based on the  two well-known equations  incorporat‐
ing the  rock typing strategy,  multiple  regressions,  and
combination with other  geophysical  data  [10–14].  Some
models  adopting the  transformation of  T2  and raw
decaying signals  are  also  reported to  achieve  favorable
results  [5].

However, the precision of these models is strongly
dependent on the accuracy of the NMR data. It is recog‐
nized that the NMR measurement can be easily distorted
due to inadequate signal acquisition, low signal-to-noise
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ratio, inaccurate inversion algorithm, as well as the
presence of paramagnetic materials [15, 16], resulting in an
unreliable result.

This work discusses the NMR relaxation of the heteroge‐
neous sandstone with different echo spacings to investigate
the correlation between the permeability and the differential
decay rate, aiming to propose a novel method for predict‐
ing the permeability. The rest of the paper is organized as
follows. In Section 2, we describe the NMR theory and the
experimental procedure. In Section 3, we analyzed the NMR
responses at different echo spacings and proposed a novel
model. We provide the conclusion and discussion in the last
section.

2. Theory and Experiment
According to the NMR principle, the transversal relaxation
time of the porous media is expressed as [2],

(1)1T2
= 1T2s + 1T2b + 1T2d = ρ2

SV + 1T2b + D GγTE 2

12

where T2s, T2b, and T2d represent the surface transverse
relaxation time, the bulk transverse relaxation time, and the
diffusion transverse relaxation time, respectively. S is the
surface area of pore space, V  is the pore volume, ρ2 is the
transversal surface relaxivity, D is the diffusion coefficient, γ
is the gyromagnetic ratio, TE is the echo spacing, and G is
the magnetic field gradient.

In many studies, bulk and diffusion relaxations are often
neglected. Consequently, the transversal relaxation time can
be expressed as [2],

(2)1T2
= 1T2s = ρ2

SV =ρ2
Fsr

where Fs is the pore shape factor and r is the pore radius.
Most pore structure evaluation methods and permeabil‐

ity models are based on the above assumption. However, the
diffusion term cannot be ignored when the internal gradient
is strong or the echo spacing is large, particularly in volcanic
and shale reservoirs [17–19].

For well-defined porous media with a single intrin‐
sic relaxation time, the differential decay rate between
two different echo spacings is stated as [20],

(3)∇ 1T2
= 1T2El − 1T2Es =

DG2γ2 TEl2 − TEs2
12

where TEl and TEs represent the long and short echo
spacings, respectively, and T2El and T2Es are the geomet‐
ric transversal relaxation time of the long and short echo
spacings.

The echo signal inverse problem can be transformed into
a linear equation-solving problem:

(4)y = Ax + ε

Figure 1: General lithology and reservoir property of the studied area.
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where y is the measured echo signal; A = exp − t/T2 ; ε
is the error; and x is the vector to be solved.

The formula obtained after regularization [21, 22]:

(5)xα = argmin Ax − y 2
2 + α2 Lx 2

2

where α is the regularization parameter and L matrix is
the regularization operator.

The studied area is located in the eastern segment of
Alkin Piedmont, Qaidam Basin, western China. Figure 1(a)
presents the mineral distributions from the X-ray diffrac‐
tion analysis. It is shown that the main constitutes are
quartz and clay. Figure 1(b) and Figure 1(c) represent the
frequency distributions of gas porosity and gas permeability,
indicating that the reservoir property is poor. Figure 1(d)
shows the crossplot of the porosity and the permeability for
typical samples. It is obvious that the relationship between
the porosity and the permeability is scattered, indicating
high heterogeneity.

Ten core samples were selected to conduct NMR
experiments. After the necessary pretreatments, the gas
porosity and steady-state permeability were measured first.
Then, we used a 2 MHz NMR benchtop developed by
the NIUMAG Corporation to detect the relaxation signals
of brine-saturated samples. The detailed experimental
procedure was elaborated in our previous publications [23].
The NMR acquisition parameters are as follows: the number
of scans is 50, the waiting time is 6 seconds, the receiving
gain is 80%, and the echo spacing series are 0.2 ms, 0.3 ms,
0.6 ms, 0.9 ms, and 1.2 ms, respectively.

3. Results and Analysis
Figure 2(a) shows the comparison between the gas porosity
and the brine-filled porosity. It is seen that the porosity
measured by both methods is equivalent. A slight deviation
is attributed to the experimental error. Figure 2(b) depicts
the relationship between the brine-filled porosity and the
NMR porosity at different echo spacings. Generally, the
NMR porosity is lower than the brine-filled porosity. The
phenomenon reveals that the porosity is underestimated

by NMR measurements, which may be contributed by the
fast relaxation components or other factors. In addition,
the NMR porosity is generally inversely proportional to the
echo spacing [20, 24]. However, each sample has its unique
deviation trend with the echo spacing.

Figure 3 represents the T2 spectra measured at differ‐
ent echo spacings for brine-saturated samples. It is seen
that the amplitude is also inversely proportional to the
echo spacing but with different trends. More interestingly,
substantial signal losses are observed for samples with high
echo spacing, indicating the insufficient acquisition of fast
relaxation components.

(6)T2,mean = ∑fiT2i
∑fi

Where T2,mean is the geometric T2 mean; T2i is the ith
T2 relaxation; and fi is the amplitude of the ith T2 relaxation
component.

It is obvious from Figure 4(a) that the geometric
T2 mean is positively correlated with the echo spacing.
Consequently, a negative differential decay rate is observed,
as shown in Figure 4(b). The possible reason may be that
the influence of the signal loss caused by the echo spacing
is more distinct than the diffusional relaxation induced by
the internal gradient. The phenomenon is of great impor‐
tance for petrophysicists, and special precautions should be
taken when using the NMR data for formation evaluation.
Moreover, the power function can be used to describe the
relationship between the differential decay rate and the echo
spacing, which is expressed as,

(7)− ∇ 1T2
= ATEB

where A and B are fitting parameters.
Figure 4(c) and 4(d) show the relationship between

the permeability and the above two fitting parameters.
Interestingly, it is observed that the permeability exponen‐
tially decays with A, which is expressed by,

Figure 2: Comparisons among the porosity measured with different methods.
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Figure 3: NMR T2 spectra of brine-saturated samples at different echo spacings.
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(8)K = cA‐d=c(
log − ∇ 1T2Blog TE )‐d

where K is the permeability and c and d are fitting
parameters. In this study, they are 0.447 and 1.172,
respectively. The correlation coefficient is 0.946.

Meanwhile, the conventional porosity-permeability
crossplot is also implemented to fit permeability, as is
shown in Figure 4(e). It is obvious that the correlation is
poor. Figure 4(f) compares the predicted permeability and

the measured permeability for all core samples. It is seen
that the NMR-based permeability achieves higher reliability
compared with the regression of the porosity although the
theoretical fundamentals are not known.

4. Conclusions
Based on NMR measurements of heterogeneous sandstone
samples at different echo spacings, we have reached the
following conclusions:

Figure 4: NMR T2 spectra of brine-saturated samples at different echo spacings.
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(1) The echo spacing has a significant influence on NMR
signals. Both the NMR porosity and the amplitude of
T2 spectra are inversely proportional to the echo
spacing.

(2) The differential decay rate is negatively correlated
with the echo spacing, indicating that the influence
of the echo spacing is larger than the internal
gradient.

(3) The permeability is strongly correlated with the
fitting parameter, and a power law behavior was
observed between the absolute differential decay rate
and the echo spacing.

(4) The proposed permeability utilizing multiple echo
spacing NMR data achieves favorable results
compared with the conventional porosity-
permeability crossplot model.

However, much work should be done to extend this model
to field applications and other complex reservoirs. The
theoretical fundamentals and the intrinsic mechanism of
the relationship between the permeability and the echo
spacing should be further investigated.
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