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Transverse wave velocity plays an important role in seismic exploration and reservoir assessment in the oil and gas industry.
Due to the lack of transverse wave velocity data from actual production activities, it is necessary to predict transverse wave
velocity based on longitudinal wave velocity and other reservoir parameters. This paper proposes a fusion network based
on spatiotemporal attention mechanism and gated recurrent unit (STAGRU) due to the significant correlation between the
transverse wave velocity and reservoir parameters in the spatiotemporal domain. In the case of tight sandstone reservoirs in the
Junggar Basin, the intersection plot technique is used to select four well logging parameters that are sensitive to transverse wave
velocity: longitudinal wave velocity, density, natural gamma, and neutron porosity. The autocorrelation technique is employed
to analyze the depth-related correlation of well logging curves. The relationship between the spatiotemporal characteristics
of these well logging data and the network attention weights is also examined to validate the rationale behind incorporating
the spatiotemporal attention mechanism. Finally, the actual measurement data from multiple wells are utilized to analyze the
performance of the training set and test set separately. The results indicate that the predictive accuracy and generalization
ability of the proposed STAGRU method are superior to the single-parameter fitting method, multiparameter fitting method,
Xu-White model method, GRU network, and 2DCNN-GRU hybrid network. This demonstrates the feasibility of the transverse
wave velocity prediction method based on the spatiotemporal attention mechanism in the study of rock physics modeling for
tight sandstone reservoirs.

1. Introduction
Transverse wave velocity is an important parameter
for evaluating the physical properties and structures
of underground media in seismic exploration. It plays
an indispensable role as fundamental information in
prestack seismic inversion, fluid  identification,  and AVO
analysis [1–4]. However, due to the high cost of
exploration or limited acquisition techniques, actual
seismic data often  lack transverse wave velocity infor‐
mation, especially in many areas and older wells [5].
Therefore,  it is extremely important to achieve high-pre‐
cision and low-cost prediction of transverse wave velocity
using other well logging data.

Researchers both domestically and internationally have
conducted in-depth discussions on transverse wave velocity
prediction, mainly using two methods: the empirical
formula method [6–8] and the rock physics model method
[9–13]. However, empirical formulas vary depending on
the region and lithology, resulting in limited accuracy and
insufficient generalization. The rock physics model method
is complex, involves multiple parameters, and has low
computational efficiency, and in complex reservoirs, some
parameters are difficult to obtain accurately, which limits
the application of rock physics models [14].

Deep learning has had a significant impact in vari‐
ous fields such as speech recognition, natural language
processing, and facial recognition, by establishing complex
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nonlinear relationships between input and output data [15–
17]. With the rapid development of deep learning in recent
years, more and more experts have applied convolutional
neural networks (CNNs) and gated recurrent unit (GRU)
to the field of geophysics, achieving promising research
results in fault recognition, lithology classification, reservoir
parameter inversion, and other geological problems [18–
23]. In the modeling of transverse wave velocity, researchers
mainly use recurrent neural networks (RNN) and CNN
to establish the nonlinear mapping between input and
output. Considering the powerful spatial feature extraction
capabilities of CNN, using CNN to predict transverse wave
velocity [24] improves the prediction accuracy. Well logging
data exhibit regularity in the depth direction, and compared
with CNN, RNN is more suitable for handling conventional
well logging data. Some researchers [25, 26] have pro‐
posed methods using Long Short-Term Memory (LSTM)
networks to address the lack of transverse wave velocity
data. This method fully considers the temporal characteris‐
tics of conventional well logging data and has achieved good
prediction results in carbonate and sandstone reservoirs.
Compared with LSTM networks, GRU can reduce the
number of network parameters and has been widely used
for predicting transverse wave velocity and porosity [20,
27, 28]. However, the aforementioned methods only focus
on the spatial or temporal characteristics of conventional
well logging data, neglecting the impact of spatiotempo‐
ral features on transverse wave velocity. To comprehen‐
sively consider the influence of spatiotemporal features of
conventional well logging data on transverse wave velocity,
some researchers have proposed fusion networks composed
of CNN and LSTM or GRU [29–31]. Although these
methods improve the performance of the network, they
do not highlight the importance of spatiotemporal features
on transverse wave velocity. Therefore, there is a high
requirement for the weight distribution of the extracted
spatiotemporal features from the network.

In recent years, attention-based neural networks have
been applied in various fields such as machine transla‐
tion [32], text classification [33], power load forecasting
[34], and Earth sciences. These researchers believe that
attention mechanisms can improve the network’s sensitiv‐
ity to important features. Kavianpour et al. [35] devel‐
oped an attention-based CNN-BILSTM fusion network for
earthquake prediction and achieved good prediction results.
Mousavi [36] (2020) developed an attention-based deep
learning model for simultaneous earthquake detection and
phase picking, which can detect multiple earthquakes and
accurately pick phases like human analysts. To improve the
accuracy of earthquake prediction, Banna et al. [37] (2021)
incorporated attention mechanisms into a bidirectional
LSTM structure. Bai [38] proposed an attention-based
LSTM-FCN network model that improves the accuracy of
earthquake event detection and localization. Shan et al.
[39] provided a fusion network based on CNN-BILSTM for
predicting well logging data to reduce drilling costs.

The above literature indicates that deep learning
networks have been widely applied in earthquake
phase recognition, lithology identification, and reservoir

parameter inversion. However, attention-based neural
networks are rarely used for transverse wave velocity
prediction. Additionally, due to the correlation between
transverse wave velocity and the spatiotemporal charac‐
teristics of conventional well logging data, a spatiotem‐
poral attention-based GRU fusion network (STAGRU) is
proposed. This network mainly includes GRU layers, spatial
attention layer, temporal attention layer, and fully connec‐
ted layers. In this study, the tight sandstone reservoir
in the Junggar Basin is taken as the research object.
Based on the STAGRU fusion network, the training and
prediction process of transverse wave velocity is estab‐
lished, and the weight distribution of the attention layers
is analyzed. Finally, computations were conducted for
single-parameter fitting, multiparameter fitting, and the
Xu-White model method, followed by training for the
STAGRU, GRU network, and 2DCNN-GRU hybrid network
models. Subsequently, optimization was performed on the
parameters of the STAGRU network to obtain predictive
results. The effectiveness of using the STAGRU network for
transverse wave velocity prediction is verified.

2. Methodology and Techniques
2.1. Gated Recurrent Unit. The GRU is a variant of the RNN
similar to the LSTM, proposed by Kyunghyun Cho (2014)
[40]. On the one hand, it overcomes the issues of vanishing
or exploding gradients in traditional RNNs and resolves
the problem of long computation time in LSTMs [41]. On
the other hand, GRU has fewer training parameters, faster
convergence speed, and the ability to handle nonlinear and
time series problems [42]. The GRU hidden layer has two
gates: the reset gate (rt) and the update gate (zt; Figure 1),
making the model simple and less prone to overfitting. The
reset gate and update gate perform retention and forgetting
functions based on the current input at time step t. When
the reset gate (rt) is close to 1, it means that more informa‐
tion is retained. When the update gate (zt) is close to 1, it
means that more information is forgotten. Given the input
data xt at time step t, the reset gate (rt) and update gate (zt)
can be represented as:

(1)rt = σ Wr ⋅ ℎt − 1,xt + br
(2)zt = σ Wz ⋅ ℎt − 1,xt + bz

In the equations, Wr and Wz represent the weight
matrices for the reset gate and update gate, respectively.br and bz are the biases. ℎt − 1 represents the output of the
hidden state at time step t−1. The “σ” symbol denotes the
logistic sigmoid function, which maps the output to the
range of [0, 1]. The “[]” indicates the concatenation of two
matrices.

The new state includes the information controlled by the
reset gate and is combined with the update gate to obtain
the final output ℎt:
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(3)ℎt = tanh Wℎ rt ∗ ℎt − 1,xt + bℎ
(4)ℎt = 1 − zt ∗ ℎt − 1 + zt ∗ ℎ̄t

In the equation, Wℎ and bℎ represent the weight matrix
and bias of the new state “ℎt”. “tanh” denotes the hyperbolic
tangent activation function. “∗” represents matrix multipli‐
cation. ℎt represents the output of the current hidden state.

2.2. Temporal and Spatial Attention Mechanism. The well
logging data exhibits certain regularities in sedimen‐
tary formations. By incorporating the temporal attention
mechanism into the GRU network, the sensitivity of
important temporal features to the shear wave velocity is
enhanced. The time features are inputted into the temporal
attention layer, and different weights are assigned to these
features to obtain the output of the temporal attention layer.
The hidden state Hn = H1,n,H2,n⋯Ht,n  represents the
t-dimensional vector of the nth spatial feature. The temporal
attention weights can be represented as follows:

(5)βǹ = softmax WβHn + bβ
(6)Xǹ = βǹ⊙ Hn = β1,nH1,nβ2,nH2,n⋯βt,nHt,n

where βǹ = β1,n, β2,n⋯βt,n  represents the weights of
the temporal attention layer. Wβ and bβ denote the weight
matrix and bias, respectively. Softmax is the normalization

function, and “⊙” denotes the hadamard product. Xǹ
represents the weighted result.

Due to the correlation between the shear wave velocity
and the spatial features of conventional well logs, the spatial
attention mechanism is incorporated into the GRU network
to enhance the sensitivity of important spatial features to
the shear wave velocity. The spatial features of the conven‐
tional well logs are fed into the spatial attention layer, and
different weights are assigned to these features to obtain
the output of the spatial attention layer. The hidden stateℎt = ℎt, 1,ℎt, 2⋯ℎt,m  represents the m-dimensional feature
vector at time step t. The spatial attention weights can be
represented as follows:

(7)αt̀ = Softmax Wαℎt + bα
(8)Xt̀ = αt̀ ⊙ ℎt = αt, 1ℎt, 1,αt, 2ℎt, 2⋯αt,mℎt,m

where αt̀ = αt, 1,αt, 2⋯αt,m  represents the weights of the
spatial attention layer, Wα and bα are the weight matrix and
bias, respectively. Xt̀  represents the weighted result.

2.3. The Structure of the STAGRU Fusion Network. A
STAGRU is proposed to address the correlation between
shear wave velocity and the spatiotemporal features of
conventional well logging data (as shown in Figure 2). The
STAGRU fusion network consists of an input layer, two
GRU layers, a temporal attention layer, a spatial attention
layer, and a fully connected layer. The GRU layers are
responsible for extracting the spatiotemporal features from

Figure 1: Structure of the GRU network.
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the conventional well logging data, while the temporal and
spatial attention layers enhance the network’s sensitivity
to important spatiotemporal features. The fully connected
layer improves the nonlinearity of the proposed network.

2.4. Training and Prediction Process of the STAGRU Fusion
Network. The training and prediction process of the
proposed STAGRU fusion network can be divided into the
following steps:

(1) Data preprocessing: Due to the significant differen‐
ces among well logging data, the StandardScaler function
is applied to standardize the data using the standard
deviation. The entire dataset is scaled to have zero mean
and unit variance, ensuring that the processed dataset
follows a normal distribution, as shown in Equation (9).

(9)X ì = Xi − XmXσ
where Xi represents the well logging data, Xm, Xσ denote

the mean and standard deviation of the well logging data,
and X ì  represents the standardized value.

(2) Building the STAGRU Fusion Network: The training
set of well logging data is used as the input to the STAGRU
Fusion Network, and the target output is the predicted
shear wave velocity. After setting the hyperparameters of
the network, the network undergoes optimization through
iterative training.

(3) Training of the STAGRU Fusion Network: The mean
squared error (MSE) is used as the loss function for
the network. The STAGRU network undergoes multiple
iterations of training to find the optimal parameters, and
the network with the lowest loss error is selected.

(4) Prediction of Shear Wave Velocity: The test set of well
logging data is inputted into the trained STAGRU Fusion
Network to predict the shear wave velocity.

(5) Network Evaluation: The mean absolute error (MAE)
and coefficient of determination (R2) are used as evalua‐
tion metrics to assess the prediction performance of the
network. The calculation methods are as follows:

(10)MAE = 1n∑i = 1

n yi − yi
(11)R2 = ∑i = 1

n yi − y 2

∑i = 1
n yi − y 2

where yi represents the actual value, yrepresents the
average of the actual values, yi represents the predicted
value, and n is the number of samples.

3. Experiment and Analysis
3.1. Data Preparation. The experiments for this study were
conducted on an Intel(R) Core(TM) i5-8250U CPU @
1.60 GHz 1.80 GHz, with an NVIDIA GeForce 940 MX
environment. Python 3.9 was used as the compilation
environment, and TensorFlow, version 2.11.0, served as

the deep learning platform. The data in this paper were
sourced from the Qiugu Formation reservoir in a specific
area, specifically selecting five wells. The dataset includes six
well logging parameters: longitudinal wave velocity (VP),
density (DEN), natural gamma (GR), neutron porosity
(DEN), resistivity (RT), and spontaneous potential (SP). The
reservoir is primarily composed of sandstone and shale. It is
characterized by deep burial, low porosity, low permeability,
and a complex pore structure, making it a typical unconven‐
tional tight oil and gas reservoir. This paper selected well
log parameters measured at a depth of 5420–5480 m from
four wells as the training dataset to train the model. Well
log parameters measured at a depth of 5520–5590 m from
well Y, which was not included in the training, were chosen
as the test dataset to evaluate the model’s performance. In
order to improve the accuracy of the rock physics model
and prestack seismic inversion of well and seismic data
sets, a GRU fusion network based on the spatiotemporal
attention mechanism was used for predicting shear wave
velocity.

3.2. Feature Selection for Data. Choosing appropriate well
logging parameters can improve the predictive perform‐
ance of the model. Well logging parameters can reflect
the reservoir’s storage capacity, lithology, permeability, and
other characteristics. There exists a certain correlation
between different well logging parameters detected in the
same formation. Each well logging parameter responds
to the geological features from different perspectives and
mechanisms. Well logging parameters are measurements
of different physical properties of the same rock. Differ‐
ent physical properties can reflect the same petrophysi‐
cal parameter of the rock (such as porosity, which can
be interpreted simultaneously using acoustic, density, and
neutron measurements). Therefore, there is a certain
correlation between shear wave velocity and other well
logging parameters. This is the spatial characteristic among
well logging curves. In theory, the predictive accuracy of
using deep learning to solve regression problems depends
on the correlation between the input and output. Stud‐
ies have shown that there are nonlinear features between
logging parameters and reservoir petrophysical parameters.
Figure 3 shows the scatter plot of shear wave velocity (VS)
with conventional logging data. The correlations from high
to low are as follows: compressional wave velocity (VP),
neutron porosity (CNL), gamma ray (GR), density (DEN),
resistivity logarithm (RT), and spontaneous potential (SP).
Their respective coefficient of determination (R2) values are
0.930, 0.851, 0.647, 0.337, 0.289, and 0.024. Among these
well logging parameters, the logarithm of resistivity and
spontaneous potential has a relatively low correlation with
transverse wave velocity. On the other hand, the remaining
well logging parameters, namely, longitudinal wave velocity
(VP), neutron porosity (CNL), natural gamma (GR), and
density (DEN), exhibit correlations greater than 0.3 with
transverse wave velocity. Therefore, in this study, VP, CNL,
GR, and DEN are selected as the well logging parame‐
ters to predict transverse wave velocity. The correlation
analysis (Figure 4) of the selected well logging parameters
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indicates that there are both certain connections and
significant differences among them. This suggests that well
logging parameters contain diverse and rich information,
which serves as the basis for predicting shear waves using
well logging parameters. As the formation deposition is
gradual, the adjacent data points in well logging curves
exhibit correlation, indicating temporal characteristics. The
autocorrelation function is used to analyze the autocorrela‐
tion of conventional well log curves. Figure 5 represents
the autocorrelation coefficients of well log curves, where the
x-axis represents the lag, which represents the displacement
of the well log curve, and the autocorrelation decreases with
increasing lag. The y-axis represents a series of correlation
coefficients corresponding to different lag. From the figure,
it can be seen that when the lag is 20, the autocorrelation
coefficients in descending order are transverse wave velocity
(VS), longitudinal wave velocity (VP), neutron porosity
(CNL), natural gamma (GR), and density (DEN). Among
them, VS, VP, and CNL exhibit autocorrelation coefficients
greater than 0.6. To better illustrate the autocorrelation
characteristics of well logging curves, on the basis of Figure
5, the relationship between autocorrelation and lag distance
of conventional well logging parameters is plotted, with a
maximum lag distance of 40 (Figure 6). From this figure, it
can be observed that the autocorrelation coefficient reaches
above 0.2 at a lag distance of 15. The above analysis
indicates that the temporal and spatial features of the
conventional logging data have a certain correlation with
shear wave velocity.

3.3. The Interpretability of Attention Weights. To validate
the effectiveness of the attention mechanism in enhanc‐
ing the network’s sensitivity to important spatiotemporal
features, two networks were constructed: one with the
inclusion of the spatiotemporal attention mechanism and
one without. This allowed for an analysis of the weights in
the spatiotemporal attention layer.

Figure 7 displays the spatial feature weight distribution
with and without the spatial attention layer. It can be
observed that when the spatial attention layer is added,

the weight distribution from high to low is VP, CNL,
GR, and DEN, which is consistent with the distribution
of the correlation coefficients between shear wave velocity
and other logging data in Figure 3. The emergence of
this consistency can be explained as follows: the spatial
attention layer learns the relationships between logging
data, especially the correlation with shear wave velocity, to
determine the importance of different features in predicting
shear wave velocity. If a certain feature is highly correla‐
ted with shear wave velocity, the spatial attention layer
assigns a higher weight to that feature to ensure that the
model captures this information effectively. Conversely,
without the inclusion of the spatial attention layer, the
model cannot effectively extract the spatial features among
different logging data. In the shear wave velocity predic‐
tion of the STAGRU fusion network, the spatial attention
layer assigns the highest weight to VP, reaching 0.45. This
implies that VP has the most significant influence on
shear wave velocity. The reason for this phenomenon is
that longitudinal wave velocity and shear wave velocity
reflect different elastic information in rocks, and they are
positively correlated. Particularly in sedimentary forma‐
tions, the correlation coefficient between the two can exceed
0.9 due to the complexity of the strata and variations in
strata properties. Therefore, the introduction of the spatial
attention mechanism helps capture this physical correlation,
thereby enhancing the prediction performance of shear
wave velocity. In summary, the above analysis further
validates the rationale for adding the spatial attention
mechanism in this study because it enables more accu‐
rate capture of the physical relationships between shear
wave velocity and other logging data. This contributes to
improving the model’s performance and reliability.

Figure 8 shows the weight distribution of temporal
features with and without the temporal attention layer.
Fifteen sampling points were selected from the conventional
well logging data as samples, and the transverse wave
velocity in the middle of the sample length was chosen as
the label. It can be observed that the temporal attention
layer assigns different weights to the temporal features

Figure 2: Architecture of the STAGRU Fusion Network.
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of the well logging data. In the transverse wave velocity
prediction of the STAGRU fusion network, the sample data
at the label position are assigned the highest weight by
the temporal attention layer, reaching 0.204. This indicates
that it has the greatest impact on the transverse wave
velocity. As the distance increases from the label position,
the overall trend of the attention weights is decreasing,
which is consistent with the autocorrelation distribution
of the conventional well logging data shown in Figure 5.

The reason for this phenomenon is the gradual variation in
mineral composition in the sedimentary formation, which
results in a certain level of autocorrelation in the well
logging data along the depth direction. This validates the
rationale for incorporating the time attention mechanism in
this study.

3.4. Network Comparison Analysis. To validate the
performance of the proposed STAGRU fusion network in

Figure 3: Scatter plot of conventional well data and shear wave velocity. (a) VP–VS; (b) DEN–VS; (c) GR–VS; (d) CNL–VS; (e) log
(RT)–VS; (f) SP–VS; R2 is the correlation coefficient between the two variables.

Figure 4: Cross-correlation analysis of conventional well data.

6 Lithosphere

Downloaded from http://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/doi/10.2113/2023/lithosphere_2023_227/6014056/lithosphere_2023_227.pdf
by guest
on 20 January 2024



this study, network structures for STAGRU, 2DCNN-GRU,
and GRU are constructed as shown in Table 1. All networks
utilize the Adaptive Moment Estimation (Adam) as the
optimization algorithm, which combines the advantages of
AdaGrad and RMSProp algorithms. Adam adapts different
learning rates for different parameters automatically and
can converge well even in unstable objective functions.
It can address the issue of rapidly decreasing gradients
and demonstrates strong advantages in handling large-scale
data and parameter optimization. In addition, Dropout

layers are incorporated to randomly drop neurons, reducing
overfitting and enhancing the generalization capability of
the network. Furthermore, Early Stopping is employed
during the training process to prevent overfitting and
improve the model’s generalization ability.

To further evaluate the accuracy of the STAGRU fusion
network in predicting shear wave velocity, single-parameter
fitting, multiparameter fitting, and rock physics methods are
employed to calculate the shear wave velocity. The results
are then compared and analyzed against the predictions

Figure 5: Autocorrelation coefficients of conventional well data.

Figure 6: Relationship between autocorrelation and lag distance of conventional well data.
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of the STAGRU, 2DCNN-GRU, and GRU methods. Based
on the correlation analysis in section 3.2 and following the
principles of linear regression, a single-parameter fitting is
performed between shear wave velocity and compressional
wave velocity, resulting in Equation 12. Subsequently, a

multiparameter fitting is conducted between shear wave
velocity and compressional wave velocity, density, natural
gamma, and neutron porosity, resulting in Equation 13.
For the rock physics method, the improved Xu-White
model [12] is used. This method utilizes a particle swarm

Figure 7: The distribution of spatial feature weights with and without spatial attention layer.

Figure 8: The weight distribution of temporal features with and without the time attention layer.
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algorithm to estimate the porosity ratio based on the
measured compressional wave velocity. From the porosity
ratio, the shear wave velocity can be estimated.

(12)yVS = 1.609xVP + 12.498

(13)
yVS = 1.461xVP − 0.589xDEN + 0.005xGR

+0.271xCNL + 18.632

The well logging data from four wells in a certain area
were used to train the STAGRU, 2DCNN-GRU, and GRU
networks. Figure 9 displays the loss curves for the three
network types on the validation and training sets. It can be
observed that as the number of training iterations increases,
the loss errors continuously decrease and eventually reach a
stable constant value. This indicates that the networks have
reached their optimal states. However, the loss error of the
STAGRU fusion network is lower than that of the GRU
network and 2DCNN-GRU hybrid network, indicating
that the STAGRU fusion network is better at capturing
the spatiotemporal features and the correlation between
conventional well logging data and transverse wave velocity.
This suggests that the STAGRU fusion network has an
improved sensitivity to important spatiotemporal features.

The red curves in Figure 10, from left to right, repre‐
sent the prediction results of the single-parameter fit‐
ting method, multiparameter fitting method, rock physics
modeling method, GRU network, 2DCNN-GRU hybrid
network, and STAGRU fusion network on the training
set. The MSE, MAE, and correlation coefficient R2 for
these five to six methods are shown in Table 2. It can be
observed that the predicted transverse wave velocities using
deep learning methods closely match the true values, with
smaller MSE and MAE compared with the fitting method
and rock physics modeling method. This indicates that deep
learning has certain advantages in transverse wave velocity
prediction, especially in the depth range of 5425–5435 m.
Furthermore, the prediction performance of the STAGRU
fusion network is better than that of the GRU network and
2DCNN-GRU hybrid network, particularly evident in the

depth range of 5455–5475 m, where STAGRU can handle
abrupt changes more effectively. This demonstrates that the
STAGRU fusion network exhibits slightly higher predictive
performance than the GRU network.

To further validate the predictive accuracy and gener‐
alization of the proposed network, the logging data of
well Y, which was not involved in the training process,
were inputted into the trained model for testing. The
prediction results of the single-parameter fitting method,
multiparameter fitting method, Xu-White model, GRU,
2DCNN-GRU, and STAGRU were analyzed, as shown in
Figure 11. In mudstone sandstone formations, at depths
of 5535–5555 and 5520–5545 m in well Y, the predicted
values of the single-parameter fitting method, multiparame‐
ter fitting method, Xu-White model, GRU network, and
2DCNN-GRU hybrid network show significant discrepan‐
cies compared with the measured values. However, the
predicted values of the STAGRU network exhibit smaller
differences from the measured values. This observation
indicates that the proposed network has better predictive
performance compared with the other five methods. Table
3 presents the comparative results of the six methods
using MSE, MAE, and coefficient of determination (R2)
as quantitative evaluation metrics. It can be observed that
in Y well, the STAGRU fusion network has the lowest
MAE and the highest R2. The evaluation results indicate
that the STAGRU fusion network exhibits higher prediction
accuracy and generalization capability.

3.5. Optimization of Network Parameters. The key to
improving the accuracy of the model estimation lies in
adjusting the hyperparameters. In order to obtain the
optimal hyperparameters, parameters are systematically
changed to test and evaluate the model’s performance. As
the underground formations exhibit certain sedimentation
patterns in the vertical depth direction, and there is a
certain correlation between sequential sampling points, it
indicates that the sample length of the input data to the
network affects the prediction of shear wave velocity in deep
learning. To select the optimal sample length and achieve
higher accuracy for the STAGRU fusion network, while

Table 1: STAGRU, 2DCNN-GRU, and GRU network architectures.

Network name Network structure

Kernel size
of 2DConv

layers

Parameters of
the gated

recurrent unit

Parameters of
spatial and
temporal

attention layers
Parameters of the

dense layer
Trainable

parameters Other parameters

STAGRU GRU + Dense + SATT
+ GRU + Dense +

TATT + Dropout +
Dense

0 18 + 32 4 + 15 18 + 32 +1 8167 Return_ sequen‐
ces=true

2DCNN-GRU Conv + GRU + GRU +
Dense

(15 × 3) 16 + 32 0 1 25281 Padding=’same’
Return_ sequen‐

ces=true
GRU GRU + GRU + Dense 0 4 + 16 0 1 6769 Return_ sequen‐

ces=true

SATT, spatial attention layer. TATT, temporal attention layer. Dropout, 0.25.
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keeping the GRU parameters at 18 and 32, and the input for
the spatial attention layer at 4, experiments were conducted

with sample lengths set to 5, 20, and 40. The structure of
the STAGRU fusion network obtained in this experiment

Figure 9: The logarithmic loss error curves for the STAGRU network compared with the 2DCNN-GRU and GRU networks (the term “val”
represents the validation set).

Figure 10: Prediction results of single-parameter fitting method, multiparameter fitting method, Xu-White model method, GRU,
2DCNN-GRU, and STAGRU networks on the training set.
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is shown in Table 4. The prediction and evaluation results
of the STAGRU fusion network in this experiment are
presented in Figure 12 and Table 5, respectively. From the
figure, it can be observed that the prediction performance
of STAGRU varies with different sample lengths. When the
sample length is set to 20, the network achieves the best
prediction performance, with a corresponding R2 coefficient

Table 2: Comparison of prediction results of single-parameter
fitting method, multiparameter fitting method, Xu-White model
method, GRU, 2DCNN-GRU, and STAGRU networks on the
training set.

Method MSE MAE R2

Training

time (s)

Single-parameter fitting 4.811 2.078 0.930
Multiparameter fitting 4.454 2.003 0.935
Xu - White model 3.412 1.603 0.949
GRU 2.369 1.240 0.974 12.03
2DCNN-GRU 2.297 1.207 0.976 9.81
STAGRU 1.546 1.021 0.981 10.55

of 0.884. This further confirms the excellent performance of
the STAGRU fusion network.

4. Conclusion
Due to the complex pore structure of the mudstone
reservoir in the Junggar Basin, conventional networks have

Table 3: Comparison of prediction results of single-parameter
fitting method, multiparameter fitting method, Xu-White model
method, GRU, 2DCNN-GRU, and STAGRU networks on the test
set.

Method MSE MAE R2

Testing

time (s)

Single-parameter fitting 4.965 4.675 0.618
Multiparameter fitting 4.548 4.244 0.691
Xu - White model 3.612 3.099 0.812
GRU 2.943 1.376 0.853 0.37
2DCNN-GRU 2.248 1.199 0.870 0.24
STAGRU 1.874 1.172 0.879 0.39

Figure 11: Prediction results of single-parameter fitting method, multiparameter fitting method, Xu-White model method, GRU,
2DCNN-GRU, and STAGRU networks on the test set.
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limited sensitivity to important spatiotemporal features.
This study proposes a STAGRU. The results demonstrate
that the weight distribution of the spatiotemporal atten‐
tion layer is consistent with the autocorrelation of conven‐
tional well logging data and the correlation between well
logging data and shear wave velocity. This verifies that
the proposed network can improve the sensitivity of the
network to important spatiotemporal features and validates
the rationality of adding the spatiotemporal attention

Table 5: R2 based on STAGRU fusion network experiment.

Sample length R2

5 0.875
20 0.884
40 0.869

mechanism. Furthermore, the test results indicate that
in the mudstone reservoir, the STAGRU fusion network
achieves an R2 value that is 3.6% higher than that of the
GRU network and 1.6% higher than that of the 2DCNN-
GRU hybrid network. This suggests that the proposed
network exhibits superior predictive accuracy compared
with the single-parameter fitting method, multiparameter
fitting method, Xu-White model, GRU neural network, and
CNN-GRU hybrid networks.

It should be noted that while the method proposed in
this paper can accurately predict shear wave velocity for
the Qigu Formation reservoir in this specific area, further
research is needed if this method is to be applied to well log
data from reservoirs outside of the Qigu Formation.
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