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Background: Aging is a significant risk factor for many neurodegenerative diseases 
and neurological tumors. Previous studies indicate that the frailty index, facial aging, 
telomere length (TL), and epigenetic aging clock acceleration are commonly used 
biological aging proxy indicators. This study aims to comprehensively explore 
potential relationships between biological aging and neurodegenerative diseases 
and neurological tumors by integrating various biological aging proxy indicators, 
employing Mendelian randomization (MR) analysis.

Methods: Two-sample bidirectional MR analyses were conducted using 
genome-wide association study (GWAS) data. Summary statistics for various 
neurodegenerative diseases and neurological tumors, along with biological 
aging proxy indicators, were obtained from extensive meta-analyses of GWAS. 
Genetic single-nucleotide polymorphisms (SNPs) associated with the exposures 
were used as instrumental variables, assessing causal relationships between 
three neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease, 
amyotrophic lateral sclerosis), two benign neurological tumors (vestibular 
schwannoma and meningioma), one malignant neurological tumor (glioma), and 
four biological aging indicators (frailty index, facial aging, TL, and epigenetic aging 
clock acceleration). Sensitivity analyses were also performed.

Results: Our analysis revealed that genetically predicted longer TL reduces the 
risk of Alzheimer’s disease but increases the risk of vestibular schwannoma and 
glioma (All Glioma, GBM, non-GBM). In addition, there is a suggestive causal 
relationship between some diseases (PD and GBM) and DNA methylation GrimAge 
acceleration. Causal relationships between biological aging proxy indicators and 
other neurodegenerative diseases and neurological tumors were not observed.

Conclusion: Building upon prior investigations into the causal relationships 
between telomeres and neurodegenerative diseases and neurological tumors, 
our study validates these findings using larger GWAS data and demonstrates, for 
the first time, that Parkinson’s disease and GBM may promote epigenetic age 
acceleration. Our research provides new insights and evidence into the causal 
relationships between biological aging and the risk of neurodegenerative diseases 
and neurological tumors.
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Introduction

As the global aging process continues to intensify, it is projected 
that the global elderly population will exceed 2 billion by 2050. Aging 
is associated with a variety of age-related health issues, among which 
the risks of neurodegenerative diseases and neurological tumors are 
particularly prominent, posing a significant threat to healthy life 
expectancy and quality of life. In older age groups, having a disease-
free brain is a rare occurrence. Neurodegenerative diseases such as 
Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic 
lateral sclerosis (ALS) are closely linked to aging, with their incidence 
sharply increasing with age (Hou et  al., 2019). For instance, the 
incidence of AD almost doubles every 5 years after the age of 65, and 
by the ninth decade of life, approximately one in three adults meets 
the criteria for dementia (Alzheimer’s Association, 2015). Similarly, 
the incidence of PD steadily rises with age on a global scale (Bloem 
et al., 2021). Furthermore, the prevalence of ALS peaks around the age 
of 80 (Mehta et al., 2018). In addition to neurodegenerative diseases, 
in the realm of neurological tumors, particularly glioblastoma (GBM), 
age has been identified as a clear risk factor for both disease onset and 
prognosis (Thakkar et  al., 2014). The incidence of GBM sharply 
increases after the age of 54, reaching its peak between the ages of 74 
and 85 (Ostrom et al., 2017). However, chronological age alone cannot 
accurately gauge the extent of biological aging or predict the risks 
associated with these diseases. Therefore, the assessment of an 
individual’s biological age becomes paramount, as different individuals 
may exhibit variations in biological age at the same chronological age. 
When biological age surpasses chronological age, the body enters a 
state of accelerated aging, resulting in elevated disease risks and 
reduced quality of life (Jylhävä et al., 2017).

Over the years, researchers have been actively seeking reliable 
biomarkers to assess an individual’s biological age (Jylhävä et  al., 
2017). Among these, telomere length (TL) is a well-known biological 
aging marker closely associated with neurodegenerative diseases and 
neurological tumors (Hou et al., 2019; Saunders et al., 2022). Recently, 
Blanca et al. successfully demonstrated a causal relationship between 
shortened TL and an increased risk of AD using Mendelian 
randomization (MR) (Rodríguez-Fernández et al., 2022a). However, 
the relationship between TL and other neurodegenerative diseases 
such as PD and ALS remains unclear. Rodríguez-Fernández and 
colleagues found that, apart from its association with AD, there is no 
causal relationship between the length of TL and the risk of other 
neurodegenerative diseases. Similarly, Chen and colleagues also did 
not find a causal relationship between TL and the onset of PD (Chen 
and Zhan, 2021; Rodríguez-Fernández et al., 2022b). Additionally, 
there is evidence indicating a significant genetic association between 
leukocyte TL (LTL) increase and glioma risk (Saunders et al., 2022). 
These findings appear contradictory to the notion that aging increases 
the risk of neurodegenerative diseases and neurological tumors. 
Furthermore, these studies have not validated the reverse causal 
relationship between aging and neurodegenerative diseases or 

neurological tumors. The true nature of the relationship between these 
factors remains a subject of considerable controversy. This prompts us 
to further investigate the intricate relationship between biological 
aging and the risk of neurodegenerative diseases and 
neurological tumors.

Therefore, this study aims to comprehensively explore the 
potential relationships between biological aging and neurodegenerative 
diseases as well as neurological tumors by integrating multiple 
biological age proxy indicators (Yu et al., 2020; Duan et al., 2022; Chen 
et al., 2023). These indicators include molecular biomarkers such as 
TL and DNA methylation epigenetic age acceleration and phenotypic 
biomarkers such as frailty index and facial visual aging. Notably, 
we have selected the latest generation of epigenetic clock acceleration, 
GrimAge Acceleration, as one of the biological age proxy indicators. 
Epigenetic age acceleration, where an individual’s biological age 
exceeds their chronological age, has been associated with increased 
mortality and the risk of age-related diseases, including cancer (Yu 
et  al., 2020). Furthermore, GrimAge utilizes a DNA methylation 
pattern at specific CpG sites to predict biological age and is considered 
one of the most robust methods for assessing biological age (Duan 
et  al., 2022). Distinguishing itself from other Epigenetic Clocks, 
GrimAge stands out for its predictive capabilities of health outcomes 
and lifespan. GrimAge incorporates data from 1,030 CpGs associated 
with smoking pack-years and seven plasma proteins (cystatin C, 
leptin, tissue inhibitor of metalloproteinases 1, adrenomedullin, β-2 
microglobulin, growth differentiation factor 15, and plasminogen 
activator inhibitor 1) (Lu et al., 2019). In various disease contexts, 
epigenetic age has been found to be greater than chronological age, 
while in long-lived populations, it tends to be lower than chronological 
age, providing strong evidence for the reflection of biological age by 
epigenetic age (Jylhävä et al., 2017; Yu et al., 2020; Tang et al., 2022). 
Through this multidimensional research approach, we aim to gain a 
deeper understanding of the relationship between biological age and 
the risk of neurodegenerative diseases as well as brain tumors, 
providing a scientific basis for future intervention strategies.

MR is an increasingly popular and effective causal inference 
method in recent years (Weith and Beyer, 2023). It employs genetic 
variation (single-nucleotide polymorphisms, SNPs) as instrumental 
variables (IVs) to infer causal relationships between exposures and 
outcomes, effectively circumventing confounding biases present in 
traditional epidemiological studies (Birney, 2022). MR analysis 
reduces confounding and reverse causality due to the segregation and 
independent assortment of genes passed from parents to offspring. In 
the absence of horizontal pleiotropy (i.e., genetic variants being 
independently associated with the putative exposure and the putative 
outcome) and population stratification, MR can provide clear 
estimates of disease risk (Bowden and Holmes, 2019).

In this study, we adopted a two-sample and bidirectional MR 
analysis aiming to assess the causal relationships between three 
neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease, 
amyotrophic lateral sclerosis), two benign neurological tumors 
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(vestibular schwannoma and meningioma), and one malignant 
neurological tumor (glioma) with four biological age proxies (frailty 
index, facial aging, TL, and epigenetic aging clock acceleration). 
Previous research has conducted some MR analyses on the 
associations between AD, PD, ALS, glioma, meningioma, and TL 
(Chen and Zhan, 2021; Saunders et al., 2022; Rodríguez-Fernández 
et al., 2022a,b; Yu et al., 2023), as well as AD and frailty index using 
MR analysis (Liu et al., 2022). However, some of the findings from 
these studies are in partial contradiction to the notion that aging is a 
crucial risk factor for neurodegenerative diseases and the development 
of neurological tumors. Notably, to date, there has been no MR causal 
inference analysis conducted on neurodegenerative diseases, benign 
and malignant neurological tumors, in relation to frailty index and 
epigenetic aging clock acceleration. Therefore, this study, for the first 
time, incorporates a variety of biological aging proxy indicators, with 
special attention to the epigenetic aging clock acceleration. We also 
employ larger sample GWAS data in the hope of ultimately elucidating 
the direction and magnitude of the causal relationships between 
biological aging and the risk of neurodegenerative diseases and 
neurological tumors, providing new insights and understanding to 
this field of research.

Methods

Data sources

Neurodegenerative disease
For the investigation of AD, we  utilized recently published 

summary statistics data from the GWAS Catalog (Schwartzentruber 
et  al., 2021). This comprehensive meta-analysis data pertains to a 
large-scale GWAS conducted on European populations, incorporating 
data from the UK Biobank (53,042 cases and 355,900 controls), the 
AD GWAS meta-analysis by Kunkle et al. (21,982 cases and 41,944 
controls), the GR@ACE project (4,120 cases and 3,289 controls), and 
the FinnGen biobank (3,697 cases and 131,941 controls), among 
others. These datasets ultimately unveiled 13 risk loci (p-value 
<5 × 10–8), including 10 loci previously reported in studies. Genome-
wide association study (GWAS) summary statistics data for PD 
patients were obtained from the International Parkinson’s Disease 
Genomics Consortium,1 encompassing 33,674 cases and 449,056 
controls of European descent (Nalls et al., 2019). Large-scale European 
ancestry ALS GWAS summary data, including 12,577 ALS patients 
and 23,475 controls, were acquired from a recent study (van Rheenen 
et al., 2016). All patients were diagnosed by specialized neurologists 
following the (revised) El Escorial criteria.

Benign neurological tumor
To obtain GWAS summary statistics data for vestibular 

schwannoma, we retrieved data from Wouter et al., who conducted a 
GWAS using 911 sporadic vestibular schwannoma cases from the 
Type 2 Neurofibromatosis Gene Testing Service in Northwest England 
and 5,500 control samples from the UK Biobank resource (Sadler 
et al., 2023). Summary statistics data for meningioma were obtained 

1 https://pdgenetics.org/

from the UK Biobank, comprising 307 cases and 456,041 controls of 
European ancestry. The data were analyzed using the fastGWA-
GLMM method with adjustments for relevant variables (Jiang 
et al., 2021).

Malignant neurological tumor
The glioma GWAS data were sourced from a recent meta-analysis 

of 12,488 glioma cases and 18,169 control samples of European 
ancestry available on the European Genome-Phenome Archive 
(EGA). Gliomas encompass various subtypes, some of which are 
defined by their malignant grade (e.g., pilocytic astrocytoma - World 
Health Organization [WHO] grade I, diffuse “low-grade” glioma - 
WHO grade II, anaplastic glioma - WHO grade III, glioblastoma 
multiforme [GBM] - WHO grade IV). In this study, gliomas were 
categorized into two subtypes: GBM (n = 6,183) and non-GBM 
(n = 5,820) (Melin et al., 2017).

Molecular aging biomarkers
We utilized the open GWAS2 database, which is the largest 

repository of genetic variation to date. This database comprises a 
sizable population-based cohort collected by the UK Biobank 
between 2006 and 2010, with participants aged between 40 and 
69 years. These individuals underwent comprehensive profiling 
through questionnaires, physical examinations, plasma biomarkers, 
whole-genome analyses, and other investigations. Codd et al. (2022) 
conducted an analysis of 489,092 peripheral blood leukocyte DNA 
samples obtained from the UK Biobank, reporting measurements 
and initial characterizations of LTL for 472,174 UK Biobank 
participants. The GWAS summary statistics for genetic association 
estimates of epigenetic age acceleration measures, specifically 
GrimAge, were derived from a recent meta-analysis of biological 
aging, encompassing 34,467 participants of European ancestry. 
Among the participants included in the analysis from 28 European 
ancestry studies, 57.3% were female. Detailed descriptions of the 
methods employed can be found in McCartney et al.’s publication 
(McCartney et al., 2021).

Phenotypic aging biomarkers
A questionnaire-based survey was conducted to investigate 

non-subjective perception of facial aging and explore the 
relationship between participants’ biological age and their 
subjectively perceived age. A total of 8,630 participants reported 
appearing older than their actual age, 103,300 participants reported 
appearing their actual age, and 312,062 participants reported 
appearing younger. These observations were made by independent 
third parties unaware of the participants’ actual ages. Participants 
were coded as 1 for appearing younger, 0 for appearing older, and 
0.5 for appearing their actual age. Subsequently, mixed-effects 
linear models were employed, considering covariates such as age, 
gender, and study participation center, to transform perceived age 
(FA) into an ordered categorical variable. Log odds ratios (OR) 
were derived from linear scale statistical data using a Taylor 
expansion series, where an OR > 1 indicates a greater chance of 
appearing younger (Jiang et al., 2021). The study also associated 

2 https://gwas.mrcieu.ac.uk/
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frailty index (FI) and genetic variants, sourced from a GWAS meta-
analysis of 164,610 UK Biobank participants and 10,616 TwinGene 
participants. The frailty index is based on an accumulation of 
deficits model, where each individual’s FI is calculated as the 
number of deficits they possess divided by a total of 49 possible 
deficits. Results revealed that the average deficit proportion for UK 
Biobank participants was 0.129 ± 0.075, while TwinGene 
participants exhibited an average deficit proportion of 0.121 ± 0.080 
(Atkins et al., 2021).

MR design

We conducted a two-sample bidirectional MR study based on 
extensive GWAS research. Specifically, we incorporated four biological 
aging proxy indicators, including molecular biomarkers (such as TL 
and DNA methylation epigenetic age) and phenotypic biomarkers 
(such as frailty index and facial visual aging), to investigate the causal 
relationship between chronological aging and age-related 
neurodegenerative diseases (including AD, PD, and ALS) as well as 
benign and malignant neurological tumors (vestibular schwannoma, 
meningioma, and glioblastoma).

Reliable MR analysis requires adherence to three core 
assumptions: (1) genetic variants are strongly associated with the 
exposure factor; (2) genetic variants are independent of any potential 
confounding factors; (3) genetic variants are independent of the 
outcome and affect the outcome solely through the exposure factor. 
Additionally, certain other assumptions need to be met, including the 
absence of linear relationships and statistical interactions (Birney, 
2022). Furthermore, we  selected single-nucleotide polymorphism 
(SNP) sites that demonstrated a genome-wide significance level (p-
value <5 × 10−8). However, due to the limited sample sizes in the 
GWAS summary statistics for meningioma and vestibular 
schwannoma, we relaxed the genome-wide significance levels for both 
to identify an adequate number of SNPs for causal relationship 
inference (p-value <5 × 10−6). If there is linkage disequilibrium (LD) 
present in the single nucleotide polymorphisms (SNPs) of the genetic 
instrumental variable, it could lead to misleading results. To mitigate 
this impact, we  employed the clustering procedure within the 
two-sample MR package, clustering SNPs based on their LD 
relationships within a given genomic region. In this clustering process, 
we utilized a threshold of r2 < 0.001 and a window size of 10,000 kb to 
identify independent SNPs. Additionally, we calculated the phenotype 
variance explained by the genetic instrumental variables (R2) and the 
F-statistics of these variable regression analyses to assess the reliability 
of these genetic instrumental variable SNPs. The formulas for 
calculating R2 and F-statistics are as follows: 
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2
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where MAF denotes the minor allele frequency for the SNP, BETA 
represents the magnitude of the SNP’s impact on the phenotype, SE 
represents the standard error of the SNP’s impact on the phenotype, 
N denotes the sample size of the GWAS, and K represents the number 
of SNPs selected for MR analysis after filtering. SNPs with strong 
instrumentation were identified as having an F-statistic > 10 (Lawlor 
et al., 2008).

Statistical analysis

We initiated our analysis by assessing the causality of each SNP 
through the application of the Wald ratio. In instances where more 
than one SNP could potentially be  employed as an instrumental 
variable, we utilized the inverse variance weighted (IVW) method to 
conduct a meta-analysis of Wald estimates. The meta-analysis of Wald 
estimates for each individual SNP was computed using the IVW 
method in the following formulas: � � �� � �� �X Y Xk k Y k Yk k

2 2 2
/  with 

�
�

MR
k YX

k

�
� �
1

2 2
 where Xk represents the association of SNPk 

with the exposure, and Yk corresponds to the association of SNPk with 
the outcome, both accompanied by their respective standard errors. 
IVW is recognized as the most robust method with the highest 
statistical power available, although it assumes the effectiveness of all 
instrumental covariates and may deviate when the mean multifactor 
effect deviates from zero. Furthermore, we complemented our analysis 
with the use of MR-Egger and weighted median methods alongside 
IVW (Atkins et  al., 2021). The weighted median method yields 
consistent causal estimates under the assumption that at least 50% of 
SNPs are effective. In cases of substantial heterogeneity, we applied a 
random effects model.

Furthermore, we  executed MR-Egger intercept analysis 
(Bowden et al., 2015) and MR-PRESSO (Verbanck et al., 2018) tests 
to scrutinize the potential presence of horizontal pleiotropy and 
outlier SNPs in our study. A MR-Egger intercept value of p 
exceeding 0.05 signifies the absence of horizontal pleiotropic 
effects. In cases where we detected outliers, we reported the MR 
causal estimate recalculated using the MR-PRESSO method as our 
primary outcome; otherwise, we relied on the IVW method. To 
ensure the resilience of our MR analysis, we harnessed Cochran Q 
statistics to gauge heterogeneity among SNPs (Hemani et al., 2018). 
To pinpoint possibly influential SNPs, we  conducted a “leave-
one-out” sensitivity analysis, systematically excluding one SNP at 
a time and performing an IVW-random method on the remaining 
SNPs to assess the potential impact of outlying variants on our 
estimates (Supplementary Figures S1–S65). Forest and scatter plots 
were generated for further scrutiny of heterogeneity. To rectify the 
bias from multiple comparisons, we used a Benjamini–Hochberg 
false discovery rate (FDR). A causal relationship was concluded if 
the direction and estimates of the causal effects of the IVW and 
weighted median methods were consistent and the p value with the 
FDR was less than 0.05 after correction for heterogeneity and 
horizontal polymorphism. A p < 0.05 but with an FDR >0.05 was 
interpreted as a suggestive causal relationship. Our analysis was 
conducted utilizing the “Two-Sample MR” and “MR-PRESSO” 
packages within R 4.2.3 software.

Results

The sources, sample sizes, and population information for the 
GWAS summary statistics data used in our study are presented in 
Table 1. Following the selection of instrumental variables, the number 
of SNPs used for two-sample bidirectional MR analyses ranged from 
7 to 144, with the explained variance (R2) ranging from 0.19 to 22.8% 
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(Supplementary Tables S3–S14). Additionally, after calculating the 
F-statistics, values ranged from 36.05 to 712.83, indicating sufficient 
instrument strength and mitigating the risk of weak instrument bias 
(F-statistics >10) (Lawlor et al., 2008).

Neurodegenerative disease

Alzheimer’s disease
AD to biological aging: we  did not find evidence of a causal 

impact of genetically predicted AD on biological aging 
(Supplementary Table S1).

Biological aging to AD: in reverse causal inference analysis, 
we  excluded the ineffective genetic instrument rs429358 through 
leave-one-out analysis (Supplementary Figure S1A). Consistently 
across three MR analysis methods, genetically predicted longer TL 
was associated with a decreased risk of AD [IVW: OR = 0.890, 95% 
CI = 0.804 ~ 0.985, p-value (corrected) = 0.038; weighted median: 
OR = 0.857, 95% CI = 0.748 ~ 0.982, p-value (corrected) = 0.042; 
MR-Egger: OR = 0.802, 95% CI = 0.669 ~ 0.961, p-value 
(corrected) = 0.029] (Figure 1). Furthermore, we conducted tests for 
pleiotropy and MR-PRESSO analysis, which indicated that this result 
was not influenced by horizontal pleiotropy 
(Supplementary Tables S1, S2). Although heterogeneity tests showed 

TABLE 1 Data sources used in the Mendelian randomization for the current study.

Phenotype Source PMID Total or cases/controls Ancestry

Neurodegenerative diseases

Alzheimer’s disease GWAS Catalog 33,589,840 75,024/397,844 European

Parkinson’s disease

International 

Parkinson’s Disease 

Genomics 

Consortium

31,701,892 33,674/ 449,056 European

Amyotrophic lateral sclerosis Project MinE 27,455,348 12,577/ 23,475 European

Benign brain tumor
Vestibular schwannomas GWAS Catalog 36,546,557 911/5,500 European

Meningioma GWAS Catalog 34,737,426 307 /456,041 European

Malignant brain tumor

All-glioma European genome-

phenome archive 

(EGA)

28,346,443

12,488/18,169

EuropeanGBM 6,183/18,169

Non-GBM 5,820/18,169

Biological aging 

proxy indicators

Molecular 

biomarkers

Telomere length MRC-IEU 37,117,760 472,174 European

Epigenetic aging clock
DNA methylation 

Hannum age
GWAS catalog 34,187,551 34,449 European

Phenotypic 

biomarkers

Frailty index MRC-IEU 34,431,594 175,226 European

Facial aging UK Biobank 31,768,069 423,999 European

FIGURE 1

Significant results and forest plots from IVW, weighted-median, MR-Egger regression, and outlier-corrected MR-PRESSO.
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some degree of heterogeneity in the results (heterogeneity test: 
p < 0.05), it did not affect our causal inference regarding the 
relationship between the two (Supplementary Table S2). Additionally, 
our study did not find that other biological aging proxy indicators had 
an impact on the risk of AD (Supplementary Table S1).

Parkinson’s disease
PD to biological aging: although MR analysis using the IVW 

method did not provide definitive evidence that an increased genetic 
risk for PD leads to epigenetic aging acceleration (DNA methylation 
GrimAge acceleration) (IVW: OR = 1.117, 95% CI = 0.979 ~ 1.274, 
p = 0.101), the other two analysis methods both indicated a causal 
relationship between them. All three methods consistently showed a 
direction of causality suggesting an increased risk (OR > 1) (weighted 
median: OR = 1.214, 95% CI = 1.023 ~ 1.440, p = 0.026; MR-Egger: 
OR = 1.770, 95% CI = 1.210 ~ 2.587, p = 0.009) (Figure 1). Importantly, 
MR-PRESSO analysis results indicated that this association was not 
influenced by horizontal pleiotropy (MR-PRESSO test: p > 0.05; 
Supplementary Table S1), and there was no apparent heterogeneity or 
confounding effects (heterogeneity test: p > 0.05; 
Supplementary Table S2). However, after further adjustment using 
Benjamini–Hochberg false discovery rate (FDR), we found that the 
corrected p-values were all >0.05 (Supplementary Table S1). In 
summary, our results suggest a suggestive causal relationship between 
PD and DNA methylation GrimAge acceleration. An increase in PD 
risk may promote DNA methylation acceleration. However, we did 
not find evidence that an increased risk for PD has a significant impact 
on other biological aging proxy indicators.

Biological aging to PD: in reverse MR analysis, we did not find 
that genetically predicted biological aging proxy indicators 
significantly affect the risk of PD (Supplementary Table S1).

Amyotrophic lateral sclerosis
There is no evidence of a causal relationship between ALS and 

biological aging in the current results of this study 
(Supplementary Table S1).

Benign neurological tumor

Vestibular schwannomas
Vestibular schwannomas to biological aging: we did not find that 

genetically predicted risk of vestibular schwannomas significantly 
affect biological aging (Supplementary Table S1).

Biological aging to vestibular schwannomas: by employing three 
different MR analysis methods, including IVW, Weighted Median, and 
MR-Egger, we consistently observed a significant positive association 
between genetically predicted longer TL and an increased risk of 
vestibular schwannoma [IVW: OR = 2.514, 95% CI = 1.525 ~ 4.412, 
p-value (corrected) = 0.001; weighted median: OR = 3.562, 95% 
CI = 1.607 ~ 7.893, p-value (corrected) = 0.004; MR-Egger: OR = 3.955, 
95% CI = 1.700 ~ 9.197, p-value (corrected) = 0.004] (Figure  1). It’s 
noteworthy that our results were further validated through 
MR-PRESSO and heterogeneity tests, demonstrating that this causal 
relationship is not influenced by horizontal pleiotropy (P > 0.05; 
Supplementary Tables S1, S2) and is not disrupted by heterogeneity 
confounding factors (heterogeneity test: p > 0.05; 
Supplementary Table S2). Furthermore, our study did not find any 
significant causal relationships between other genetically predicted 

biological aging proxy indicators and the risk of vestibular 
schwannoma (Supplementary Table S1).

Meningioma
In the current findings of this study, there is no evidence to 

suggest causal relationship between meningioma and biological aging 
(Supplementary Table S1).

Malignant neurological tumor

All glioma
All glioma to biological aging: we did not find that genetically 

predicted risk of glioma significantly affects biological aging 
(Supplementary Table S1).

Biological aging to all glioma: consistent with previous research 
findings (Saunders et  al., 2022), we observed a positive association 
between genetically predicted longer TL and the risk of glioma. 
We  employed various causal inference methods to validate this 
association, including IVW, Weighted Median, and MR-Egger analysis. 
The results of these analyses all indicate a significant causal relationship 
between TL and glioma risk [IVW: OR = 2.405, 95% CI = 1.785 ~ 3.241, 
p-value (corrected) = 6.475E-08; weighted median: OR = 3.562, 95% 
CI = 1.607 ~ 7.893, p-value (corrected) = 2.656E-09; MR-Egger: 
OR = 3.955, 95% CI = 1.700 ~ 9.197, p-value (corrected) = 7.543E-08] 
(Figure 1). It is worth noting that we conducted tests for horizontal 
pleiotropy and heterogeneity, which revealed some degree of influence 
on this causal inference due to pleiotropy (pleiotropy test: p = 0.001) and 
heterogeneity (heterogeneity test: p < 0.001; Supplementary Table S2). 
However, after correction using the MR-PRESSO Outlier Corrected 
method, the impact of horizontal pleiotropy was eliminated, and the 
results still demonstrated a significant causal relationship between TL 
and glioma risk [MR-PRESSO (outlier-corrected): OR = 1.638, 95% 
CI = 1.348 ~ 1.992, p-value (corrected) = 4.882E-06] (Figure 1). Other 
biological aging proxy indicators with All Glioma yielded negative 
results (Supplementary Table S1).

GBM
GBM to biological aging: we found that there is a suggestive casual 

relationship between increased risk of GBM and epigenetic age 
acceleration (DNA methylation GrimAge acceleration) (IVW: 
OR = 1.126, 95% CI = 1.007 ~ 1.260, p-value = 0.037, p-value 
(corrected) = 0.216). The other two MR analysis methods yielded 
consistent causal effect directions with IVW (Figure 1), and they were 
not affected by horizontal pleiotropy (pleiotropy test: p > 0.05) and 
heterogeneity (heterogeneity test: p > 0.05; Supplementary Table S2).

Biological aging to GBM: similar to the results observed in All 
Glioma, we  also found a significant causal relationship between 
genetically predicted TL and the risk of GBM (glioblastoma) [IVW: 
OR = 2.465, 95% CI = 1.687 ~ 3.602, p-value (corrected) = 8.250E-06; 
weighted median: OR = 1.957, 95% CI = 1.350 ~ 2.838, p-value 
(corrected) = 0.002; MR-Egger: OR = 3.673, 95% CI = 2.864 ~ 4.710, 
p-value (corrected) = 2.745E-07] (Figure 1). Similarly, we conducted 
tests for horizontal pleiotropy and heterogeneity, which indicated 
some heterogeneity interference with the current causal inference 
(heterogeneity test: p < 0.05), but no influence from horizontal 
pleiotropy (Supplementary Table S2). MR-PRESSO results also 
confirmed the absence of horizontal pleiotropy impact (Figure 1). 
Apart from these two findings above, bidirectional MR analysis results 
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of other biological aging proxy indicators with GBM were negative 
(Supplementary Table S1).

Non-GBM
Non-GBM to biological aging: we did not find that genetically 

predicted risk of Non-GBM significantly affects biological aging 
(Supplementary Table S1).

Biological aging to non-GBM: longer telomeres also increase the 
risk of Non-GBM (non-Glioblastoma) [IVW: OR = 2.044, 95% 
CI = 1.590 ~ 2.629, p-value (corrected) = 1.001E-07; Weighted Median: 
OR = 2.131, 95% CI = 1.368 ~ 3.320, p-value (corrected) = 2.000E-03; 
MR-Egger: OR = 2.562, 95% CI = 1.646 ~ 3.989, p-value 
(corrected) = 1.751E-04] (Figure  1). It is worth noting that 
we conducted tests for horizontal pleiotropy and heterogeneity, and 
the results indicated that this causal relationship inference was 
influenced by heterogeneity (heterogeneity test: p < 0.001) but not 
affected by horizontal pleiotropy (Supplementary Table S2). 
Bidirectional MR analysis results of other biological aging proxy 
indicators with Non-GBM were negative (Supplementary Table S1).

Discussion

In this bidirectional MR study examining the association between 
biological aging and neurodegenerative diseases and neurological 
tumors, we  found that TL influences the risk of AD, Vestibular 
Schwannoma, All Glioma, GBM, and Non-GBM. Notably, telomere 
shortening, typically considered a hallmark of biological aging, was 
only found to increase the risk of AD while reducing the risk of the 
latter four conditions. It is worth mentioning that we observed there 
is a suggestive causal relationship between some diseases (PD and 
GBM) and DNA methylation GrimAge acceleration, suggesting that 
these two diseases might, to some extent, accelerate biological aging. 
Ultimately, for the two key characteristics of biological aging, namely 
frailty index and facial aging, we did not find any evidence of a positive 
or negative causal relationship with the neurodegenerative diseases 
and neurological tumors considered in this study.

Our MR estimates regarding the causal inference between TL and 
the risk of AD align with the findings of Blanca et al.’s MR study 
(Rodríguez-Fernández et al., 2022b). Utilizing a larger sample size 
from GWAS studies for MR analysis, we corroborated that shorter 
telomeres are associated with an increased risk of AD, further 
underscoring the significance of TL in AD pathology. Surprisingly, 
aside from TL, other physiological aging proxy measures, including 
frailty index, facial aging, and DNA methylation GrimAge 
acceleration, did not exhibit causal associations with the risk of 
AD. This outcome prompts significant discussions and reflections. 
Firstly, it is essential to recognize that different physiological aging 
proxy measures may reflect aging processes at various biological levels. 
TL is commonly regarded as a cellular-level marker of aging, and its 
shortening may be linked to biological processes such as decreased 
cellular function, increased inflammation, and apoptosis, which might 
play crucial roles in the pathogenesis of AD (Rodríguez-Fernández 
et al., 2022a). Conversely, phenotypic measures like the frailty index 
and facial aging are more likely to reflect the overall decline in physical 
health and function, influenced by multiple factors, including lifestyle, 
nutrition, environment, and genetics (Atkins et al., 2021). Thus, while 
these indicators play crucial roles in the overall manifestation of aging, 

their direct causal relationship with AD might be weaker or more 
complex. Secondly, DNA methylation GrimAge acceleration, as an 
epigenetic aging clock, has been closely associated with overall 
mortality and age-related health conditions (Duan et  al., 2022). 
However, its causal relationship with the risk of AD remains 
inconclusive. Some studies suggest there is currently no evidence of 
an association between epigenetic aging and dementia/mild cognitive 
impairment, while others provide evidence of an association, 
particularly concerning GrimAge acceleration (Zhou et al., 2022).

In prior research, TL has similarly been demonstrated to have no 
causal association with other neurodegenerative diseases (PD and 
ALS) (Rodríguez-Fernández et al., 2022b). Furthermore, although 
frailty index and facial aging are both important proxies of 
physiological aging, and frailty may impact the clinical presentation 
and progression of neurodegenerative diseases, the relationship 
between these factors and PD remains unclear in most current studies. 
Only a few studies have found that PD patients may be more prone to 
frailty or that frailty is associated with motor and non-motor features 
of PD (Belvisi et al., 2022; Borda et al., 2022). There is almost no 
research on the relationship between frailty index and ALS, with only 
a few studies focusing on the frailty status of ALS patients (Larson and 
Wilbur, 2020). In addition to the findings mentioned above, it is 
noteworthy that we have, for the first time, discovered that PD may 
accelerate DNA methylation GrimAge. Previous research has 
predominantly focused on understanding how aging impacts PD, with 
some studies illustrating a connection between DNAm-age 
acceleration and the age of PD onset (Tang et al., 2022). However, 
there has been limited investigation into the influence of PD on 
DNAm age (Salvioli et al., 2023). A case–control analysis revealed that 
PD patients exhibit a higher DNAm age based on different epigenetic 
clocks (Horvath and Ritz, 2015; Paul et  al., 2021). Some of these 
associations are also correlated with a more rapid decline in cognitive 
abilities and the progression of motor symptoms in patients (Paul 
et al., 2021). Nevertheless, another longitudinal study of PD patients 
did not observe such a correlation (Tang et al., 2022). Due to the 
constraints of traditional observational studies and ethical 
considerations in clinical research, exploring the impact of 
neurodegenerative diseases on aging has been nearly impractical. 
We  employed the MR method, marking the first instance, to 
demonstrate that PD may contribute to the acceleration of GrimAge.

In exploring the causal associations between physiological aging 
proxies and benign neurological tumors, we have, for the first time, 
employed MR analysis to reveal that genetically predicted longer TL 
is associated with an elevated risk of vestibular schwannoma. 
Furthermore, our results have been validated through sensitivity 
analyses, including tests for heterogeneity and horizontal pleiotropy, 
confirming the robustness of our findings. To the best of our 
knowledge, no prior studies have investigated the relationship between 
TL and vestibular schwannoma. However, it should be noted that the 
GWAS study sample size for vestibular schwannoma used in our 
analysis is relatively small, and we plan to validate our results in the 
future using larger GWAS summary statistics datasets. Additionally, 
we did not find any causal relationship between physiological aging 
and benign neurological tumors (vestibular schwannoma 
and meningioma).

Finally, our results are consistent with previous MR studies, 
confirming that genetically predicted longer TL is associated with an 
increased risk of glioma (All-Glioma, GBM, Non-GBM) (Saunders 
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et al., 2022). Additionally, for the first time, we utilized MR analysis to 
confirm that an elevated genetic risk of GBM is associated with 
accelerated DNA methylation GrimAge. Although a prior study by 
Liao et al. demonstrated that epigenetic age is generally accelerated in 
glioma patients and is an important independent predictor of survival, 
they did not establish a causal relationship between the two (Liao 
et  al., 2018). In our analysis, we  not only used GWAS summary 
statistics for glioma with the largest available sample size, but we also 
examined the causal relationship between glioma subtypes 
(All-Glioma, GBM, non-GBM) and DNA methylation GrimAge 
acceleration separately. Ultimately, our findings clarify that GBM, the 
most malignant subtype of glioma, promotes epigenetic aging.

In this study, various neurodegenerative and neurological tumor 
diseases included are typically found to be more prevalent in the elderly 
population. However, whether this association is truly linked to aging 
remains largely unclear (Thakkar et al., 2014; Alzheimer’s Association, 
2015; Mehta et al., 2018; Hou et al., 2019; Bloem et al., 2021). MR 
methods have a strong capacity for uncovering potential causal 
relationships, and in this study, we utilized the bidirectional two-sample 
MR approach along with a larger sample size of GWAS data to unveil 
causal relationships among PD, glioblastoma multiforme (GBM), 
epigenetic aging, and TL for the first time, laying a theoretical 
foundation for further research on the relationship between aging and 
neurodegenerative diseases and neurological tumors. However, there 
are some limitations in this study that should be noted, including the 
absence of gender or age stratification in the GWAS data and the lack of 
genetic data, as we were restricted to using whole-genome association 
data from individuals of European ancestry. In addition, the GWAS 
meta-analysis sample size for meningiomas and vestibular 
schwannomas is limited. We  relaxed the genome-wide significance 
thresholds for both to identify a sufficient number of SNPs for causal 
inference (p-value <5 × 10−6). This adjustment may, to some extent, 
impact the inference of causal relationships. Ideally, our future objective 
is to expand the scope of analysis, including as many diverse populations 
as possible, and to further analyze using larger GWAS datasets.
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