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force using Runge-Kutta Method to solve the differential equations of
drag force. This model was adapted with the Drag Thermosphere Model
(DTM78, 94), the Aluminum 2024 space debris in certain size (1&10
cm) were used in this study, which is frequently employed in the
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with increasing perigee altitudes. It was also found that the elliptical
shape of the debris orbit would change gradually into a circular shape,
then its kinetic energy would be transformed into heat and hence the
debris might be destroyed in the dense atmosphere.
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1. INTRODUCTION

Johannes Kepler (1571-1630), studied the
mass of observational data on the planet’s
positions collected by Tycho Brahe (1546-
1601), formulated the three laws of planetary
motion forever associated with his name. They
know by Kepler’s laws which are, in fact, a
description of a special solution to the
gravitational problem of n bodies [1]. Isaac
Newton (1642-1727) was first realized and
treated the problem systematically. Newton’s
laws of motion laid the foundation of the
science of dynamics. They may be stated in the
following form:

» Everybody continues in its state of rest
or of uniform motion in a straight line except
insofar as it is compelled to change that state by
an external impressed force.

» The rate of change of momentum of the
body is proportional to the impressed force and
takes place in the direction in which the force
acts, i.e. [2].

d(mv)

F« ac (a)

Thus, if the mass is constant,

dv

F=m—
dt (b)

Where F is the force, V is the velocity, and
dv

dt js the acceleration.

Newton evolved the law of gravitation
between two particles as a result of his study of
astronomy. His law of gravitation may be
written as,

(I (g pal) Gl & alaall e wi ML

Mm

r2

F=G

1. Lifetime and Atmospheric Drag
Theory and Experimental Methods

When the orbit perigee height is below
1000 km, the atmospheric drag effect becomes
increasingly important [3]. Drag is a non-
conservative force and will continuously take
energy away from the orbit. Thus, the orbit semi
major axis (a) and the period (T) are gradually
decreasing the effect of drag [4]. The orbital
velocity (v) is increasing. Atmospheric drag
produces azimuthally deceleration that first
reduces orbital ellipticity, then causes the debris
particle to slowly spiral inwards towards the
earth unit that rapidly rising density causes it to
precipitously lose altitude and self-distract. The
drag force is given by [5, 6].

1
F=——CpAp, V?
2m D pa

)

Where Cothe aerodynamic is drag
coefficient, A is the average cross-section area

of the debris and #= is the air density. This
force can be resolved into rectangular
component, T is the tangential component, S is
the radial component, and W is the normal
component. Figure (1) shows these components
[1,7].
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Fig.1: The components S, T, W [1]

Lagrange planetary differential equation of
motion are used to determine the perturbed six
elements under the effects of various disturbing
function R, this function was originally

expressed in terms of the elements@&. ! €@, %
[1,8].

da_ 2 oR'
dt na oe (2a)

de  J1-¢? Q_Q)LR* Vi-e? oR"

dt  na’ de na’e Ow (2b)

A method due to Gauss enables this work
to be short-circuited, obtaining the differential
equations for the elements in terms of three
mutually perpendicular components of the
disturbing acceleration (S, T and W). To
introduce S, T and W into the right-hand sides
of the above equations we require expressions

R’
for 9o interms of S, T and W, where O is any
element, it’s found that:

oR™ _r s
oa a (3a)

*

OR . 1 a
=-aScos f +rsin f( +JT
oe 1—62 r (3b)

where f is the true anomaly, substituting
these expressions into equations (2) we obtain,

da_ 2 (Sesinf+ij
dt  ny1-—e? rJ (4a)
Y
de _Ji-e [Ssin f +T(cos E +cos f)]
dt na (4b)
Where E is the eccentric anomaly, p =a (1-
_cosf+e
l+ecos f

e%) and

The drag force is in opposite direction to
the debris or satellite motion, so that F=-T and
normal component tends to zero (i.e. S=W=0),
by substituting equation (1) into equations (4),
the equations in terms of atmospheric drag are
obtained.

da _i CDpa V2

(1+ e? +2ecos f)%

d  m n(l_ez)g (52)

de _-ACyp, v? (1—e2)% cos f +1
1
¢ m na (L+e? +2ecos f o (5b)

Where n is the mean motion, which equal
[4)
to \a"/)  where # is the gravitational constant.
In order to obtain more reliable formulas,
equations (5) can be transferred from the time
dependent (t) to true anomaly ( f ) using the two
body relationships.

afl-e?)
~1+ecos f

r’f =h=4pal-e*) n%a’=yu

3
d_ f-et)
df n(L+ecosf)

And

2 2 2,2
Vier 4’ f =1 az (L+e? +2ecos f)
-e ' (6)

Therefore equation (5) becomes.

5 (1+ e? + 2ecos f)g

(L+ecos f) (7a)

da_-A
df m

Cop, @

1
%z_—mACDpa a(l—ez)(lJrez + 26008 f)z (cos f +e)

(1+ecos f) (7b)

To solve the equations in {a} and {e} it is
useful to change the independent variable again,
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this time to the eccentric anomaly, using the
relation.

cosE —e
cosf =—— —
l—ecosE
B J1l—e? sin E
sin f =——M — —
1—ecos

When these are done, we obtain [8].

3
g% _ = ACDpa a2 (1+ ecos E)i
m 1—ecosE)z (8a)
1
E:7—ACD . a7(1+ecos E)i (1—e?)cos E
dE m

(1-ecosE)z (8b)

From the above equations, we are
determining the change in orbital parameters,
and then the lifetime for space debris. The
apogee and perigee distances  are

[ad+e)Jand [al—€)] respectively. When
the changes in these over one revolution are
computed using the derived relations.

1

_ 2
% = TACDpa a@l+ e)%(l+ cos E)
(l—ecosE)? (ga)
1
dHp -A

— 7CDpa az(l_e)m(l_ecosE)
dE m 1
(1—ecosE)? (gb)

Runge-Kutta Method were used to solve
the differential equations (9a & 9b), the formula
for the Euler method is [9, 10],

Yo =Yn t+ hf (Xni yn) (10)

Consider the use of a step like equation
(10) to take a “trial” step to the midpoint of the
interval. Then use the value of both x and y at
that midpoint to compute the “real” step across
the whole interval, in equations [9].

kl :hf (Xn7yn)

1 1
k, = hf (x, +§h, Yo +§k1)
yn+1 = yn + k2 +O(h3)

The above equations are called the second
order Runge-Kutta or midpoint method. By far
the most often used is the fourth order Runge-
Kutta method. This method consists of the
following four parameters.

k, =hf(x,,y,)

k, = hf (x, +2, Y, +—=)
k; = hf (%, +E, Y, +—
k, =hf(x, +h,y, +k;)

The difference formula is given by.

I(1 k2 k3 k4 5
= +—=4+-—=4+=24+-—24+0(h
yn+1 yn 6 3 3 6 ( )

where h is the step size.
3. Results and Discussions

A computer program has been developed in
this work to simulate the lifetime of space
debris in orbit under the influence of
atmosphere drag force. The numerical
integration solved to equations (8), (9) by using
Runge-Kutta method. The atmospheric model
used is the DTM78,94 (drag thermosphere
model) [11], that depends on solar and
geomagnetic activities. The solar activity is
represented by the solar flux index F10.7 at
maximum activity 225. The geomagnetic
activity is represented by the Kp Global index
of values (0-9), the maximum value was taken
(Kp=9).

In this work two spherical shape space
debris made of aluminum (2024) density (2.785
gm/cm®), diameters (1, 10 cm) [12,13] were
selected for investigation. The selection criteria
depend on the abundance of this type of
aluminum in most spacecraft structures. The
input parameters are shown in table (1).

Table 1. Aluminum debris (diameter =1, 10 cm) of reduction in semi major axis of the orbit parameters

Apogee altitude(km)

1200

1000

800

600

400

200

Perigee altitude(km)

500

500

500

400

200

150
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Semi major axis(km)

7228

7128

7028

6878

6678

6553

Eccentricity

0.0484

0.035

0.0213

0.0145

0.0149

0.0038

Area/mass
(cm?/gm)

0.0717
&0.717

0.0717
&0.717

0.0717
&0.717

0.0717
&0.717

0.0717
&0.717

0.0717
&0.717

The outputs are shown in figures (2), (3),
(4), (5). The change in semi major axis (a) were
plotted against time (days) for different values
of apogee and perigee altitudes. These results
are applicable for space debris of size (1, 10
cm). It can be seen from these figures that the
semi major axis values reduce to minimum until
de-orbited. The calculated lifetime depends on
apogee and perigee altitudes. The longest
lifetime is 55 years at altitudes (1200-500 km)
with diameter (10 cm). The shortest lifetime is 3
days at altitudes (200-150 km) with diameter
(10 cm). Similarly, the lifetime of space debris
of (1 cm) diameter is estimated. The longest
lifetime is 11 years and the corresponding
shortest is 0.5 day.

Altitude=400-

a (km)

1 Altitude=200-

0 T T T T T I T T T T I T T T T T

0 2 4 6 8101214161820 222426 28 30 32 34 36 38 40 42 44 46 48 50
Time (day)

Fig.3: The behavior of semi major axis(a) with
time of debris (diameter=10 cm).
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Fig.2: The behavior of semi major axis (a) with
time of debris (diameter=10 cm).
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Fig.4: The behavior of semi major axis (a) with
time of debris (diameter=1 cm).
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Fig.5: The behavior of semi major axis (a) with
time of debris (diameter=1 cm).
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Fig.7: The behavior of eccentricity (e) with time
of debris (diameter=10 cm).

The eccentricity (e) of the orbit was
changed due to atmospheric drag force from
elliptic to circular orbit until de-orbited in
atmosphere. This behavior is illustrated in
figures (6), (7), (8), (9). It can be seen from
these figures that the eccentricity of the orbit
decays slowly until de-orbited in the
atmosphere.
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Fig.6: The behavior of eccentricity (e) with time
of debris (diameter=10 cm).
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Fig.8: The behavior of eccentricity (e) with time
of debris (diameter=1 cm).
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Fig.9: The behavior of eccentricity (e) with time
of debris (diameter=1 cm).
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Fig.11: The behavior of height (hp) with time of
debris (diameter=10 cm).

The apogee (ha) and perigee (hp) altitudes
variations under atmospheric drag effects are
shown in figures (10), (11), (12), (13) for (10
cm) diameters of space debris. The
corresponding values of (1 cm) diameter space
debris are shown in figures (14), (15), (16),
(17). It can be estimated from these figures that
the lifetime of the space debris depends on (1)
apogee and perigee altitudes (2) area to mass
ratio A/m.

600 =

500 = Altitude=1200-

Altituge=1200-
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L
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200 =

100
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0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000
Time (day)

Fig.10: The behavior of height (hp) with time of
debris (diameter=10 cm).
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Fig.12: The behavior of height (hp) with time of
debris (diameter=10 cm).
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500 =

Altitude=1200-

Apogee Altitude (km)

b Altitude=1200-

O L L0 0 Al e R R R R
0 2 4 6 810121416 182022242628 30 3234 36 38 40 42 44 46 48 50
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Fig.13: The behavior of height (hp) with time of
debris (diameter=10 cm).

Altitude=1200-

Perigee Altitude (km)
=
8
|

Altitude=1200-

O T T 1T T T T " T T " T "T "1

Fig.15: The behavior of height (hp) with time of
debris (diameter=1 cm).
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Fig.14: The behavior of height (hp) with time of
debris (diameter=1 cm).
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Fig.16: The behavior of height (ha) with time of
debris (diameter=1 cm).
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Fig.17: The behavior of height (ha) with time of
debris (diameter=1 cm).

1. Conclusions

This work focuses on simulation of orbital
dynamics of space debris of size range (1and 10
cm) of aluminum type and their reentry
dynamics from the apogee-perigee altitudes
1200 to 200 km. This work is distinguished by
the selection of aluminum in specific sizes with
different altitudes. The lifetime of the debris in
its orbit under the effects of gravitational force
and atmospheric drag forces were evaluated.
The lifetime depends on apogee and perigee
altitudes. The longest lifetime is 55 years at
altitudes (1200-500 km) with diameter (10 cm).
The shortest lifetime is 3 days at altitudes (200-
150 km) with diameter (10 cm). Similarly, the
lifetime of space debris of (1 cm) diameter is
estimated. The longest lifetime is 11 years and
the corresponding shortest is 0.5 day. It has
been found that lifetime depends on the area to
mass ratio (A/m), apogee-perigee altitudes, the
shape of the object (i.e. the drag coefficient
Cq=2 for spherical object), the semi major axis,
the eccentricity of the orbit and the atmospheric
density of the upper atmosphere. The results can
be used in any reentry space debris study such
as reentry space debris by Laser.
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