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Biomedical entity linking task is the task of mapping mention(s) that occur in a

particular textual context to a unique concept or entity in a knowledge base,

e.g., the Unified Medical Language System (UMLS). One of the most challenging

aspects of the entity linking task is the ambiguity of mentions, i.e., (1) mentions

whose surface forms are very similar, butwhichmap to di�erent entities in di�erent

contexts, and (2) entities that can be expressed using diverse types of mentions.

Recent studies have used BERT-based encoders to encode mentions and entities

into distinguishable representations such that their similarity can be measured

using distance metrics. However, most real-world biomedical datasets su�er from

severe imbalance, i.e., some classes havemany instances while others appear only

once or are completely absent from the training data. A common way to address

this issue is to down-sample the dataset, i.e., to reduce the number instances of

the majority classes to make the dataset more balanced. In the context of entity

linking, down-sampling reduces the ability of the model to comprehensively learn

the representations of mentions in di�erent contexts, which is very important.

To tackle this issue, we propose a metric-based learning method that treats a

given entity and its mentions as a whole, regardless of the number of mentions

in the training set. Specifically, our method uses a triplet loss-based function in

conjunction with a clustering technique to learn the representation of mentions

and entities. Through evaluations on two challenging biomedical datasets, i.e.,

MedMentions and BC5CDR, we show that our proposedmethod is able to address

the issue of imbalanced data and to perform competitively with other state-of-

the-art models. Moreover, our method significantly reduces computational cost

in both training and inference steps. Our source code is publicly available here.

KEYWORDS

metric learning, imbalanced data, biomedical entity linking, entity normalization, triplet
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1 Introduction

Entity linking, also known as named entity normalization, aims to disambiguate the

meaning of entities occurring in free text. In the biomedical domain, the task involves

mapping biomedical entities (e.g., diseases, genes, drugs, and chemicals) to concepts (or

entities) in a standardized ontology or a biomedical knowledge base [e.g., the UnifiedMedical

Language System (UMLS) Bodenreider, 2004]. This is an essential step formany downstream

tasks, including relation extraction (Xu et al., 2016; Li et al., 2017), information retrieval,

question answering (Kim et al., 2019), and knowledge base construction (Wawrzik et al.,

2023).

The task of biomedical entity linking presents a number of challenges, the first of which

concerns the ambiguity and diversity of biomedical entities. For example, although “battens

disease” and “juvenile cerebroretinal degenerations” have highly different surface forms,
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they both refer to the same disease entity that causes vision

loss, motor dysfunction and dementia. Meanwhile, “testosterone

injection”may refer either to a therapeutic or preventive procedure,

or a clinical drug, meaning that, depending on its specific textual

context, it should be mapped to one of two different concepts. Such

phenomena mean that automatic entity linking models may fail to

correctly disambiguate entities if they cannot sufficiently interpret

the context in which the entities occur.

Recent studies have addressed the problem using metric

learning methods (Liu et al., 2020; Agarwal et al., 2021; Bhowmik

et al., 2021). These methods firstly learn representations of

mentions and their contexts, as well as representations of entities,

in a latent space. They then use a similarity metric to select

the entity with the highest similarity score to the mention. The

performance of these methods heavily depends on the model

architecture and sampling strategy employed. Experimental results

show more complex models achieve the best performance, since

they can learn better mention and entity representation (Agarwal

et al., 2021). Other studies based on generative models also show

promising results, e.g., GENRE (Cao et al., 2020) and (Yuan et al.,

2022). However, these state-of-the-art (SOTA) models require a

large amount of computational resources for training and require

significant time to perform inference. In this study, we employ

the former approach, using a dual-encoder architecture to learn

representations of mentions and entities. This architecture reduces

computational cost during the training phase and allows indexing

for later retrieval, which reduces inference time compared to cross-

encoder architectures.

A further challenge of biomedical entity linking relates to

the problem of data imbalance, i.e., some concepts have many

mentions in the training data, while other concepts only have

a handful of mentions. Although data imbalance is often severe

in real-world entity linking datasets, especially in the biomedical

domain, no specialized algorithms have been designed to deal

with it. A common solution to the data imbalance issue is

to down-sample the dominant classes to make the number of

samples across different classes more well-balanced (Dubey et al.,

2014). However, down-sampling may result in information loss.

For example, synonyms or variants of entities, which constitute

important evidence for entity linking, may be removed during

down-sampling.

To alleviate the data imbalance issue, we propose a new

loss function based on triplet loss (Schroff et al., 2015),

namely prototype-based triplet loss, which concurrently learns the

representations of all mentions that refer to the same entity (class)

via the centroid of its cluster. We further boost the performance

of the model by using soft-radius neighbor clustering inspired by

Bentley (1975) to detect latent clusters inside a class, since mentions

in a class do not always come from a single distribution.

We evaluate our proposedmethods on two biomedical datasets,

i.e., MedMentions (Mohan and Li, 2019) and BC5CDR (Li

et al., 2016). Our experimental results indicate that by using the

prototype-based triplet loss, our system is able to outperform

the use of traditional triplet loss, both with and without the

application of the down-sampling. Moreover, combining the

proposed triplet loss with soft-radius neighbor clustering results in

performance that is competitive with other SOTAmethods on both

experimental datasets.

2 Background and related work

2.1 Metric learning

Metric learning is a sub-field of supervised machine learning,

which aims to learn to distinguish samples based on the distance

between them (Davis et al., 2007; Hoffer and Ailon, 2015).

Specifically, in a representation space, there should only be a small

distance between the vectors of two samples that belong to the

same class. Conversely, the distance between the vectors of two

samples belonging to different classes should be larger. In recent

years, metric learning has been shown to be effective in a number of

computer vision tasks, such as image retrieval (Zhong et al., 2021),

object recognition (Sohn, 2016), and face recognition (Cao et al.,

2013), and also for natural language processing tasks, such as text

classification (Wohlwend et al., 2019) and entity linking (Liu et al.,

2020).

The performance of metric learning methods is dependent

on three factors, i.e., model architecture, objective function,

and sample selection. Model architectures can be classified

into interaction-based and representation-based approaches.

The interaction-based approach (Wan et al., 2015) builds

local interactions between two samples and learns hierarchical

interaction patterns tomatch them.Meanwhile, the representation-

based approach (Dong and Shen, 2018) consists of two

components: (1) an encoder, which transforms samples into

embeddings and (2) a distance function, which computes the

similarity between pairs of embeddings from the encoder.

Normally, metric learning is reliant on an effective objective

function. As a result, various objective functions have been

proposed, such as contrastive loss (Chopra et al., 2005) and triplet

loss (Schroff et al., 2015). However, these loss functions have a

specific limitation, i.e., they struggle to ensure that all samples

from the same class will be pulled together in a common region

within the representation space (Sohn, 2016). To address this

limitation, Wen et al. (2019) proposed center loss, which adds a

new regularization term to the softmax loss to pull samples to the

corresponding class center.

Another important element of metric learning is the sampling

strategy, i.e., the method of selecting samples for use in the training

process. The sampling strategy can affect both the success and

the training speed of deep metric learning. Schroff et al. (2015)

used semi-hardmining, which selects triplets with negative samples

that are nearly as close to an anchor as positive ones. Bucher

et al. (2016) employed hard negative mining, which seeks hard

triplets by choosing the most similar negative samples to an anchor.

Meanwhile, Kumar et al. (2017) proposed smart mining, based on

nearest neighbor samples to an anchor. In this paper, we follow

Bucher et al. (2016) by using hard negative mining.

2.2 Imbalanced data

Imbalanced data occurs when the distribution of examples

across classes in a dataset is biased or skewed. The distribution may

vary from slightly biased to severe imbalance. Using imbalanced

data in machine learning will cause the learning process to be
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biased toward the majority classes and to generalize poorly toward

minority classes (Johnson and Khoshgoftaar, 2019).

Approaches to handle imbalanced data can be divided into

two groups, i.e., data-level and algorithm-level. In terms of

data-level approaches, a common method is to down-sample or

decrease the number of samples in majority classes by randomly

removing some of the samples (Pouyanfar et al., 2018). At the

same time, the number of samples in the minority classes is

increased or over-sampled, by duplicating samples or using data

augmentation methods (Xie et al., 2019). These methods aim to

even the contribution of each class to the learning process, and to

eliminate the bias of the model toward particular classes. Regarding

algorithm-level approaches, a common method is to weight losses,

i.e., the loss weight of each sample is calculated according to the

ratio of its class compared to other classes (Fernando and Tsokos,

2022). Another solution is to use models or objective functions that

are insensitive to the imbalanced data (Huang et al., 2022).

2.3 Biomedical entity linking

Previous approaches to biomedical entity linking may be split

into two groups, i.e., generative models and metric learning-based

models. GENRE (Cao et al., 2020) is a representative example of a

generative model, which firstly uses a sequence-to-sequence model

to generate candidates, and then applies a classifier to re-rank the

candidates. This method has a number of limitations. Firstly, it

requires a large amount of annotated data for training. Secondly,

when an entity has several synonyms, the use of a simple one-to-

one mapping between mentions and entities is likely to result in

sub-optimal performance. To address this issue, Yuan et al. (2022)

proposed a two-step method using a transformer architecture.

Specifically, as a pre-training step, they used a knowledge base (KB)

to generate synonyms of entities in the input sequence to reduce

the amount of training data needed. As a fine-tuning step, they used

prompt tokens on the decoder side. Nevertheless, the training of all

generative entity linking methods requires a significant amount of

time and resources.

Most biomedical entity linking systems that take a metric

learning approach carry out two steps, i.e., (1) learning

representations of mentions and entities, and (2) ranking

entity candidates using similarity scores. Fakhraei and Ambite

(2018) proposed NSEEN, a Siamese network that maps mentions

and entities to a feature space and uses the cosine metric to

measure similarity between then. Agarwal et al. (2021) used two

separate cross-encoders to learn the affinities between mentions

and entities. They then employed a KNN-based clustering method

to group mentions with high probabilities of referring to the same

entity into clusters. Similarly to generative models, this method is

costly in terms of computational cost and time, in both the training

and inference phases.

3 Methods

Given a list of documents D ∈ D, we denote Md =

{md
1 ,m

d
2 , ...,m

d
n} as the set of n mentions in document d and a

Knowledge Base (KB) of entities E = {e1, e2, ...en}. The purpose

of entity linking task is to map each mention md
i in document d

to an entity ej in KB E . We break down the task into two stages,

namely candidate retrieval and candidate re-ranking, as depicted

in Figure 1. The first stage involves generating a list of entity

candidates based on the cosine similarity between representations

of mentions and entities. The second stage consists of re-ranking

the list of possible entities using a dual-encoder architecture that

scores the dissimilarity between mentions and entity candidates

based on the Euclidean distance between their corresponding

representations.We use prototype-based triplet loss and soft-radius

neighbor clustering to concurrently update mention and entity

representations. The final output is the candidate entity with the

smallest dissimilarity score to the mention. The following sections

provide detailed descriptions of the two stages.

3.1 Candidate retrieval

In a knowledge base KB, each entity is represented by a set

of synonyms. Due to ambiguity, some synonyms may represent

multiple entities. To handle these ambiguous synonyms, we create

a dictionary of synonyms S = {s1 :{e1, e2}, s2 :{e1, e3}, ...}, where si is

a synonym string and ej is an entity represented by the synonym.

3.1.1 Candidate representation
We represent mentions and synonyms in two ways, i.e., using

both sparse and dense representation.

Sparse representation: We use tf-idf to obtain sparse

representations of synonyms and mentions. Specifically, we use

two tf-idf settings to generate two sets of candidates. The first

setting involves calculating tf-idf based on character n-grams, in

which n ∈ {2..5}. In the second setting, tf-idf is calculated at the

word level with 1-grams. Words are tokenized by splitting on any

non-alphanumeric characters, and stop words are removed before

tokenizing. For both settings, all text is converted into lower case.

Dense representation: We use a deep transformer encoder

(Vaswani et al., 2017) to obtain dense representations of

synonyms andmentions. Specifically, we use the BERT architecture

(Devlin et al., 2019) and initialize the weights from pre-trained

SapBERT (Liu et al., 2020). In particular, we employ this

model: cambridgeltl/SapBERT-from-PubMedBERT-fulltext from

HuggingFace. Following the setting used by the authors, the output

of the [CLS] token is used as the representation of the input. We

only use the mention and synonym strings as input; this input is

converted into lower case prior to feeding it into the model.

3.1.2 Retrieval of candidates
All of the synonyms in the KB are scored according to their

cosine similarity to a given mention, and then sorted in descending

order. To obtain a list of candidates, we iterate over the sorted

synonyms and append their entities to the list until we have k

entity candidates.
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FIGURE 1

An overview of our framework. The system consists of two stages: Candidate Retrieval and Candidate Re-Ranking. Our proposed methods of

prototype-based triplet loss and soft-radius neighbors clustering are applied at the candidate re-ranking stage. During this stage, the representations

of anchor mentions and other mentions in their clusters as well as representations of candidate entities are updated concurrently by the

prototype-based triplet loss. Euclidean Distance is used to measure the dissimilarity between a query mention and entity candidates. The final output

entity is chosen by selecting the candidate that has the smallest dissimilarity score to the input mention.

3.2 Candidate re-ranking

In this section, we describe the dual-encoder architecture used

to re-rank candidates, along with our proposed prototype-based

triplet loss function and the soft-radius neighbor clustering.

3.2.1 Model architecture
Our model architecture is inspired by Reimers and Gurevych

(2019), but instead of using two symmetric BERT-based encoders,

we use two separate ones: the mention encoder is used to encode

mentions and their contexts, while the entity encoder is used to

encode entities. We use pre-trained SapBERT (Liu et al., 2020) for

both encoders and fine-tune the model using the prototype-based

objective loss function.

Mention encoder: The mention encoder takes as input a

sequence of tokens consisting of a mention and its context. The

input sequence is formatted using BERT special tokens as follows:

[CLS] [cl] [START] [m] [END] [cr] [SEP]

where:

cl corresponds to tokens in the left context of the

mention,

cr corresponds to tokens in the right context of

the mention,

m corresponds to tokens in the mention,

[START], [END] are special tokens that indicate the position of

mention in its context

The representation of a mention is obtained by taking average

of the output embeddings of the [START] and [END] tokens.

Entity encoder: Similarly, we compose the input sequence for

the entity encoder as follows:

[CLS] [type] [SEP] [syn1] [SEP] [syn2] [SEP]

where:

type is the entity semantic type extracted from the KB

synk corresponds to the tokens in a synonym of the entity

We use the entity type and the list of its synonyms as the

entity description. To join synonyms, we employ the special token

[SEP]. The representation of an entity is obtained from the output

embedding of the [CLS] token.

3.2.2 Prototype-based triplet loss
Triplet loss (Schroff et al., 2015) has been widely used as a loss

function in metric learning. Given three sets of data points in the

data set xai , x
p
i , x

n
i and their corresponding labels ya, yp, yn such that

ya = yp and ya 6= yn. Usually, x
a are called anchor points, xp and

xn are positive and negative points, respectively. The formula for

triplet loss is:

[

‖fθ (x
a
i )− fθ (x

p
i )‖

2
2 − ‖fθ (x

a
i )− fθ (x

n
i )‖

2
2 + α

]

+
(1)

where fθ is an embedding function and α is a margin that is

enforced between positive and negative pairs. The embedding of
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each data point is represented as fθ (x) ∈ R
d. The objective of this

loss function is to learn the embedding function fθ that results in

the anchor xai being embedded to be closer to all other positive

points x
p
i than it is to any negative points xni in a d−dimensional

Euclidean space.

When applying triplet loss to the entity linking task, we re-write

the loss as follows:

[

‖fm(mi)− fe(e
p
i )‖

2
2 − ‖fm(mi)− fe(e

n
i )‖

2
2 + α

]

+
(2)

where fm is the embedding function for mentions and fe is the

embedding function for entities. Unlike other classification tasks,

in which positive points can be chosen randomly or intentionally

from the same dataset with anchor points, entity linking tasks

require that the entity associated with amention is unique, meaning

that the positive entity e
p
i of an anchor mi must be fixed during

training. This makes the trainedmodel very sensitive to imbalanced

datasets. Randomly down-sampling to k samples for each class

may remove useful information from the dataset. Moreover, in

the standard triplet loss, the representation of each data point is

learnt independently, without considering information about the

distribution of mentions within a class. As a result, embeddings

of mentions within a particular class tend to be located far away

from each other in the feature space, which can cause the model to

become stuck at poor local optima during training. To address these

issues, we propose a new triplet loss function based on prototype.

Given a list of entities and its set of mentions in each document:

C = {e1 = {m1,m2,m3}, e2 = {m3,m4}, e3 = {m5}, ...}, the

prototype-based triplet loss is defined as:

[
∥

∥

∥

1

N

∑

fm(m
d
i )− fe(e

p
i )

∥

∥

∥

2
−

∥

∥

∥

1

N

∑

fm(m
d
i )− fe(e

n
i )

∥

∥

∥

2
+α

]

+
(3)

i ∈ [1..N],mi ∈ Md, E(mi) = e

in which, 1
N

∑

fm(m
d
i ) is the prototype of the cluster, md is a

mention in document d.

In Equation (3), we assume that mentions referring to the

same entity in a document are in the same cluster. As a result,

the prototype is calculated by obtaining the average of all mention

embeddings in the cluster. We use Euclidean distance as the

distance metric to measure dissimilarity between mentions and

entities. Using our proposed loss function, the distribution of

all mentions in a cluster will be considered during training.

Consequently, their embeddings are updated concurrently via the

prototype such that they are close to their positive entity embedding

and far away from the negative entity embedding. This makes

the learning process more stable and effective, compared to the

standard triplet loss. When using the standard triplet loss, the

number of iterations in the training phase is equal to the number

of mentions appearing in a document. However, by using the

proposed loss, the number of iterations is reduced to the number

of entities in a document, thus decreasing the number of training

batches. Moreover, the proposed loss also makes use of all mentions

in the data without down-sampling them, which addresses the issue

of imbalanced data.

The means of selecting negative points for the triplet loss

function has been shown to impact significantly on model

performance in many studies (Xuan et al., 2020). To reduce the

potentially huge number of possible negatives from the KB entities,

we select negative points from a set of potential candidates. We use

online hardest negative sampling technique (Chen et al., 2017) to

choose the nearest negative candidate to mention mi in the feature

space, according to the current state of the model.

3.2.3 Soft-radius neighbors clustering
Within a document, different mentions that refer to the

same entity may have diverse surface forms. This causes their

corresponding embeddings to be located far apart from each other

in the feature space, which is likely to reduce the effectiveness of

our proposal. As illustrated in Figure 2A, without clustering, the

prototype representation, i.e., the centroid of the whole class, is

already close to a positive entity and far away from a negative one in

the feature space. As a result, the loss might be zero, which causes

the model to learn nothing. To address this limitation, we use a

clustering algorithm based on radius neighbors (Bentley, 1975) to

detect latent cluster in a class.

To detect the cluster of a given data point, we can simply use k-

nearest neighbors, or kNN. However, when applying kNN in our

scenario, there is a specific limitation. Since we have to fix the

number of neighbors, i.e., k, we might include outlier data points

(when a class has less than k instances) or exclude some data points

(when a class has more than k instances). To alleviate the situation,

we use radius neighbor clustering (Bentley, 1975) to locate all data

points within a specific radius of a given data point.

Specifically, our soft-radius neighbor (SRN) clustering works

as follows. Given a threshold radius λ and an anchor mention

m in document d, we iterate over all other mentions that refer

to the same entity as m in d and compute their distance to

m. If the distance is smaller than the threshold λ, then the

mention will be included in the cluster of m. Figure 2B illustrates

that using this clustering, latent clusters can be detected within

a class, which makes the representation learning process more

accurate. As mentions will move in the same direction as the

centroid during training, mentions in a cluster should be close

to its centroid instead of being far away. It should be noted that

distances between data points within a cluster tend to decrease

during training because they keep moving increasingly close to

its positive entity. To facilitate this behavior, we use a learnable

parameter radius threshold λ, instead of a fixed one, which is

the reason for the name soft-radius. The learned radius is the

mean radius of all clusters in the training data. Additionally,

we add the radius parameter to a fixed epsilon ǫ as a standard

deviation to increase the coverage. The algorithm is shown

in Algorithm 1.

4 Experiments and results

We conducted a series of experiments using the

MedMentions (Mohan and Li, 2019) and BC5CDR (Li et al.,

2016) datasets to evaluate the effectiveness of our proposed

methods in addressing the imbalanced data issue in biomedical
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FIGURE 2

Our proposed method to detect latent clusters in a class. (A) Shows a case without clustering, in which the centroid of the whole class is already

close to a positive entity and far away from a negative entity in the feature space. As a result, the loss might be zero, meaning that the model will

learn nothing. (B) Shows that, by applying soft-radius neighbor clustering, the model obtains more accurate information about the distribution in the

cluster and all the mentions in the clusters pull in the right direction toward the positive entity.

Require: S = {mi ∈ Md | E(mi) = e}, λ, ǫ

1: C← ∅

2: r← 0

3: Randomly sample mi from S

4: for each mk ∈ S do

5: d← ||mi −mk||2

6: if d ≤ λ+ ǫ then

7: append mk to C

8: if d > r then

9: r← d

10: end if

11: end if

12: end for

13: L← (λ− r)2

14: Update λ

Algorithm 1. Form cluster and learning a radius λ.

entity linking. We also compare our approach with our own

baseline settings and other SOTA entity linking methods. We

subsequently analyse the performance of our method by providing

some examples to demonstrate the linking ability of our approach

in comparison to the baselines. We also analyse prediction errors

to show limitations of the proposed methods.

4.1 Datasets

MedMentions is a publicly available dataset that contains 4,392

titles and abstracts sourced from PubMed (Mohan and Li, 2019).

TABLE 1 Statistics of annotations in the MedMentions and BC5CDR

datasets.

MedMentions BC5CDR

Train Dev Test Train Dev Test

Mentions 120 K 40 K 40 K 10 K 10 K 10 K

Entities 19 K 9 K 8 K 1.3 K 1.3 K 1.3 K

% seen 100 57.5 57.5 100 78.2 77.3

% seen indicates the percentage of entities seen in the train set.

Mentions in the dataset are annotated and linked to entities in the

2017AA full version of UMLS. As recommended by the creators of

the dataset, we use the ST21PV subset, which uses a restricted set

of 21 entity types. There are ∼200,000 mentions in total, which are

split into training (train), development (dev), and testing (test) sets.

The dev and test sets contain a considerable number of entities that

are unseen in the train set.

BC5CDR BioCreative V CDR (Li et al., 2016) is a challenge

concerning chemical-induced disease (CID) relation extraction.

The dataset contains 1,500 PubMed articles in which mentions are

annotated and linked to MeSH.1 Mentions belong to one of two

different entity types, i.e., disease and chemical, which makes it less

challenging than MedMentions.

Table 1 reports statistics for each dataset, i.e., the total number

of annotated mentions, the number of unique entities to which

these mentions are mapped, and percentages of entities that are

seen in the train set. The statistics reveal that MedMentions

1 https://www.ncbi.nlm.nih.gov/mesh
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FIGURE 3

Distributions of the mentions per entity in (A) MedMentions and (B) BC5CDR. The x axis indicates the number of mentions per entity; for ease of

readability, we only consider entities with 50 mentions or less. The y axis indicates the number of entities (i.e., concept classes).

is a more challenging dataset than BC5CDR because a smaller

percentage of the entities in the dev and test sets are seen

during training.

As mentioned above, most real-world problems suffer from

imbalanced data, especially in the biomedical domain. This is

reinforced by Figure 3, which depicts the distribution of the

number of mentions per entity in both datasets. It can be

observed that a large number of entities have only 2 or 3

mentions, while a considerable proportion have between 4 and 10

mentions. There is a small number of entities that have more than

20 mentions.

4.2 Preprocessing

4.2.1 Dataset
Each document in MedMentions and BC5CDR datasets is

pre-processed as follows:

1. AB3P (Sohn et al., 2008) is applied to detect abbreviations in

text, which are replaced with their corresponding full forms.

2. The text resulting from Step 1 is converted to lower case.

3. Documents are split into sentences using CoreNLP (Manning

et al., 2014)
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4. Sentences without any mentions are removed; the retained

sentences containing mentions are converted into the IOB2

tag format. For MedMentions, we remove any overlapping

mentions.

4.2.2 Knowledge base
UMLS: We downloaded the full release of the 2017AA

version of UMLS. We subsequently extracted all English synonyms

of entities and their concept identifiers (CUIs) from the

MRCONSO.RRF file. Each synonym is converted into lower case

and added to a dictionary where the key is the entity CUI and

the value is a list of distinct entity synonyms. As a result, the

dictionary has ∼3.4 M entities and 7.4 M synonym strings. For the

entity type used in the entity encoder (Section 3.2.1), we extract the

information from the MRSTY.RRF file.

MeSH: We use supplementary names and descriptor names as

the synonyms of entities; other processing steps are the same as

those described above for UMLS. The resulting dictionary contains

350 K entities with more than 950 K synonyms.

4.3 Settings

4.3.1 Candidate retrieval
For the dense representation approach, we set the maximum

input sequence length for BERT model to 50. Any longer sequence

is truncated to 50 characters. For the sparse representation

approach, there is no limitation on input length. To get the final

k candidates, we merge two candidate lists obtained from two

settings of tf-idf. We also remove any duplicate candidates from the

final list.

In the retrieval phase, we use Faiss (Johnson et al., 2019) to

store and index the vector representations of all the synonyms

in the KB. We use an exhaustive search to find exact k nearest

entity candidates.

4.3.2 Candidate re-ranking
To evaluate the effect of the prototype-based loss and the soft-

radius neighbor (SRN) clustering, we use standard triplet loss as

one of our baselines. Regarding the ability to handle imbalanced

data, we use data-level approaches as our baseline. In particular, we

choose down-sampling instead of over-sampling as over-sampling

will significantly increase the amount of data, hence increasing the

computational cost in the training phase. This goes against the

purpose of our work which reduces the computational cost while

retaining competitive performance. The detail of our baselines is as

follows:

1. Triplet loss with all samples: We trained the dual encoder using

the standard triplet loss on all data samples.

2. Triplet loss with down-sampling: This is similar to the first

setting, except that we apply down-sampling to reduce the

imbalance in the dataset. The down-sampling is applied at the

document level, by randomly choosing one sample per class in

each document.

3. Prototype-based triplet loss: This is also similar to the first

setting, apart from the use of prototype-based triplet loss.

4. Prototype-based triplet loss with SRN: The same as setting 3,

but with the addition of SRN clustering.

To assess whether the performance of each setting in the

aforementioned steps exhibits statistical superiority over the others,

we employ theMcNemar’s test (Dror et al., 2018) with a significance

level set at 0.05.

4.4 Implementation details

We implemented our systems using the Pytorch (Paszke et al.,

2019) framework. All experiments were run on a NVIDIA A100

GPU. For the candidate re-ranking step, the maximum sequence

length of BERT is set to 128, and any longer input sequence is

truncated to 128. The model was trained using Adam optimizer

(Kingma and Ba, 2015), with a learning rate of 10−5 and a

batch size of 32. The margin α in our loss function is set to

1.2 for MedMentions and 1.6 for BC5CDR. The threshold radius

parameter λ is initialized to 11.0 and the epsilon ǫ is set to 1.0.

The learning rate to update λ is set to 0.005 for MedMentions and

0.01 for BC5CDR. We train three epochs for MedMentions and six

epochs for BC5CDR. Apart from the number of epochs, we use the

same hyperparameters for both datasets.

We use top 1 accuracy (Acc@1) as our evaluation

metric, following previous work on biomedical entity linking

tasks (Agarwal et al., 2021; Bhowmik et al., 2021; Wawrzik et al.,

2023). We define Acc@1 as being correct if the ground truth entity

is predicted by our model in the top 1 prediction, otherwise it

is incorrect.

4.5 Results

4.5.1 Candidate retrieval
The results of this step are important, since they will affect the

candidate re-ranking step. Specifically, a high recall in this step

will allow the re-ranking model to achieve better performance.

Table 2 reports the average recall considering different numbers

of candidates (k), i.e., whether or not the gold entity is included

in top k candidates for a given mention. As illustrated in the

table, dense representations generally resulted in higher recall

than sparse representations, with the exception of recall@2 and

recall@4 in MedMentions. In common with previous work, we

use 64 candidates as input to the re-ranking model. In this case,

the recall for MedMentions was above 87% and above 95% for

BC5CDR. Results from the statistical significance test suggest that

when k is set to 64, the recall is significantly better than those

by the others k in both MedMentions and BC5CDR datasets. We

however note that recall@64 by dense representation is significantly

better than that by sparse representation on BC5CDR but not

on MedMentions.

4.5.2 Candidate re-ranking
Table 3 compares entity linking performance on the

development sets of MedMentions and BC5CDR using the two

candidate retrieval approaches, and reveals different trends. On

BC5CDR, the re-ranking model achieved the best accuracy when
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TABLE 2 Candidate retrieval recall on MedMentions and BC5CDR dataset.

Recall@k
MedMentions BC5CDR

SR DR SR DR

1 46.3 47.0 87.0 88.7

2 66.5 61.4 90.1 92.6

4 73.3 73.0 91.3 95.0

8 77.7 80.2 92.5 96.3

16 80.7 83.1 93.7 97.5

32 83.4 85.4 94.1 98.0

64 87.1 87.2∗ 95.2 98.5∗

“SR” stands for sparse representation and “DR” stands for dense representation. ∗Indicates

statistical significance compared to the others (with p-value < 0.05). The bold values indicate

the result of the best performing system.

TABLE 3 Acc@1 produced by four settings on the development set of

MedMentions and BC5CDR.

Models Candidate
retrieval

MedMentions BC5CDR

Triplet loss + All

samples

SR 70.7 85.8

DR 70.3 87.8

Triplet loss +

Down-sampling

SR 71.6 86.1

DR 71.3 88.1

Prototype-based

Triplet loss

SR 71.5 86.2

DR 71.4 88.2

Prototype-based

Triplet loss + SRN

SR 71.9∗ 87.0

DR 71.7 88.9∗

Emboldened numbers indicate the best performing system, while underlined ones indicate

the second best. “SR” stands for sparse representation. “DR” stands for dense representation.
∗Indicates statistical significance compared to the others (with p-value < 0.05).

using dense representation across all four settings. In contrast, on

MedMentions, use of the sparse representations resulted in the best

accuracy across all four settings. We hypothesize that this situation

was caused by the performance gap of recall@64 between the

sparse and dense representations, as shown in Table 2. In the case

of BC5CDR, recall@64 with the dense representations was 3 points

higher than when sparse representations were used. However, in

the case of MedMentions, the gap between the two representations

is only 0.8 points. As a result, and in contrast to BC5CDR, the

overall performance on MedMentions was not improved by using

dense representation.

In general, the prototype-based triplet loss with SRN setting

outperforms the second best baseline setting by 0.3 accuracy points

on MedMentions and 0.7 points on BC5CDR. We can see that

imbalanced dataset affects the performance of model in the basic

setting (i.e., Triplet Loss + All samples). The use of down-sampling

boosts the accuracy on both datasets. Using the prototype-based

triplet loss produced mixed results: the accuracy was improved

for BC5CDR, but not for MedMentions. However, combining this

loss with SRN clustering resulted in the best performance for

both datasets. Results from the statistical tests indicate that such

performance was significantly better than the others.

TABLE 4 Performance (Acc@1) of our method in comparison with SOTA

models on the test sets of MedMentions and BC5CDR.

Models MedMentions BC5CDR

SapBERT (Liu et al., 2020)∗ 44.2 89.9+

Angell et al. (2021) 74.1 91.4

Agarwal et al. (2021) 72.3 –

KRISSBERT (Zhang et al.,

2022)

70.6 93.8+

Prototype-based Triplet Loss

+ SRN (Ours)

72.8 93.5

Emboldened results indicate the best performing system, while underlined results denote the

second best system. ∗The results were sourced from Zhang et al. (2022). +We averaged the

performance for disease and chemical entities. The bold values indicate the result of the best

performing system.

Without the use of down-sampling, the model using the

standard triplet loss suffered from over-fitting in the first two

epochs on MedMentions. However, as mentioned previously,

down-sampling can cause information loss, which generally

impacts upon the model performance, especially in representation

learning. Furthermore, for biomedical entity linking, it is crucial

that the model can learn representations of mentions that occur

in different contexts as well as those having different surface

forms. The combination of prototype-based triplet loss with SRN

clustering preserves this information for the use by the model.

Consequently, it is able to learn representations of more synonyms

of an entity while keeping the contribution of each class balanced

in the training process. This explains why this setting was able to

outperform the Acc@1 of the baseline setting, as shown in Table 3.

We applied the setting that performed best on development set

(i.e., prototype-based triplet loss with SRN clustering) to the test

set and compare the results to those obtained by SOTA methods

in Table 4. In this table, results are cited from the corresponding

papers. To make the comparison fair, we note two points: (1) in

the case of Angell et al. (2021), we reported the results without

entity gold types, and (2) in the case of SapBERT (Liu et al.,

2020), we collected the numbers from Zhang et al. (2022). It can

be seen that our model outperforms most previously proposed

methods on both BC5CDR and MedMentions. Compared to

KRISSBERT (Zhang et al., 2022), our approach resulted in better

accuracy onMedMentions but slightly lower accuracy on BC5CDR.

In contrast, compared to the clustering-based method developed

by Angell et al. (2021), ourmethod performs better on BC5CDR but

exhibits lower performance on MedMentions. Overall, our method

achieves the second best performance system across both datasets,

indicating greater stability than other SOTA methods.

Similarly to Angell et al. (2021), we also report the performance

of our method on seen and unseen entities in Table 5. As

expected, our proposed model did not perform as well as Angell

et al. (2021)’s system on both seen and unseen entities of

MedMentions, especially on unseen ones. However, our system

outperformed theirs on entities of BC5CDR with a large margin on

unseen entities.

We additionally report the training and inference time of our

method on MedMentions compared to SOTA methods in Table 6.

It can be observed that our method exhibits significantly reduced

training and inference times in comparison to other methods,
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TABLE 5 Linking accuracy on seen and unseen entities.

Model
MedMentions BC5CDR

Seen Unseen Seen Unseen

Angell et al. (2021) 77.3 62.9 94.9 73.8

Ours 76.5 58.1 96.1 80.1

The bold values indicate the result of the best performing system.

TABLE 6 Training time, inference time, and accuracy of our method

compared to two SOTA method.

Training Time
(hours)

Inference Time
(hours)

Acc@1

Angell et al.

(2021)

72 kNN Graph 4 74.1

Agarwal et al.

(2021)

32.1 Independent 1.5 72.3

Prototype-based

Triplet loss + SRN

10 Independent 0.5 72.8

while maintaining a competitive accuracy. The training time is

reduced according to the lower number of training batches. As

explained in Section 3.2.3, all mentions within a cluster are fed

to the model concurrently rather than individually. The lower

inference time of our model is due to our use of a dual encoder,

which separately encodes representation of mentions and entities.

This means that entity candidates are only encoded once and are

saved for later retrieval.

5 Discussion

5.1 Impact of imbalanced data

To better understand the impact of imbalanced data on our

approach to entity linking, we analyse some seen mentions from

minority classes in the test set. Note that seen means only that the

ground truth entity to which the mention is linked also appears in

the training data; the actual surface form of the mention in the

test set may not occur in the training set. The types of example

mentions shown in Table 7 are fairly representative of biomedical

text, in which different mentions of entities can be diverse in

terms of their surface forms, as well as being ambiguous. The

results show that, despite the fact that the mentions shown are

linked to entities seen in the training data, the re-ranker model

using triplet loss without down-sampling (TLA) exhibits lower

performance than other baseline models. This can be explained by

the model’s bias toward the majority class entities, whose synonyms

appear many times in the training data. Although the application

of down-sampling (TLD) results in better performance than TLA,

the removal of samples by this technique means that the model

is unable to adequately learn the representation of mentions in

different contexts or different surface forms of mentions. This

explains why the use of down-sampling (TLD) resulted in some

incorrect predictions (see Examples 2 and 3). In contrast, the use

of prototype-based loss and SRN (PTL+SRN) helped the model to

make correct predictions in all cases.

5.2 Visualizing representations

To test our hypothesis that mention representations learned

from traditional triplet loss may not appear close to their ground

truth entities, especially in imbalanced datasets, Figure 4 visualizes

some mention representations and their corresponding ground

truth entities produced by the dual encoder in two settings, i.e.,

Triplet Loss + All samples (left) and Prototype-based Triplet Loss

+ SRN (right). We used Multi-dimentional Scaling (Torgerson,

1952) to map high dimensional representations into 2D ones.

In the figure, stars correspond to entity representations, while

dots correspond to mention representations. Mentions referring

to the same entity have the same color. In most cases, entity

representations are located far away from their corresponding

mention representations. However, mention representations on the

right figure (Prototype-based Triplet Loss + SRN) are clustered

better than those on the left one (Triplet Loss + All samples).

Specifically, in the left figure, mentions of the yellow, green,

black, and cyan entities are far away from each other and often

occur close to other entities. Meanwhile, in the right figure, all

mentions occur in a relatively close proximity to their ground

truth entities and there is a better degree of separation from other

entities. This illustrates that the Prototype-based Triplet Loss +

SRN model is able to learn better representations compared to the

baseline, which helps to explain its superior performance shown

in Table 3.

5.3 Limitations

There are two potential limitations of our proposed Prototype-

based Triplet Loss + SRN model. Firstly, while the representations

of mentions in a cluster are updated concurrently to be closer to

their ground truth entity, the model also pushes mentions far away

from hard negative entities of an anchor. This may affect mentions

of other entities by inadvertently pushing them closer to their hard

negative ones. Therefore, it is important to select suitable negative

samples as well as anchor mentions.We believe that this issue could

be alleviated by intentionally choosing an anchor close to the center

of a cluster instead of choosing it randomly. We will investigate this

further as future work.

Secondly, since we only focus on the second stage of

entity linking, i.e., candidate ranking, the retrieval of candidates

was performed using only fairly simple approaches based on

statistic and pre-trained neural networks. Although high recall of

candidates was achieved for BC5CDR, there remains considerable

room for improvement for MedMentions. Accordingly, follow-

up work could explore the use of dual encoder architecture

to generate candidates (Gillick et al., 2019; Agarwal and Bikel,

2020).

6 Conclusion

In this article, we have introduced a metric learning-based

approach using BERT-based dual encoders to address the problem

of imbalanced data in biomedical entity linking. Specifically,

we propose a loss function named prototype-based triplet loss,
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TABLE 7 Examples of entity linking results output by the four di�erent settings of the re-ranker.

No. Mentions
Candidates

Re-ranker Predict
Entity ID Synonyms

1 ... experience with abnormal ocular

motility in patients treated with

subtenon carboplatin chemotherapy.

D015835 Internuclear ophthalmoplegias eye movement disorder TLA D004409

D004409 Medication-induced dyskinesia TLD D015835

D002925 Ciliary motility disorders dyskinesia PTL D015835

... ... PTL + SRN D015835

2 ... the patient’s sinus bradycardia and

the drug interaction between metoprolol

and terbinafine.

D004409 Medication-induced dyskinesia TLA D054138

D054138 Sinus arrest, cardiac TLD D054138

D012804 Sick sinus node syndrome PTL D012804

... ... PTL + SRN D012804

3 ... early postoperative delirium

incidence risk factors were then assessed

through three different multiple

regression models.

D020250 Postoperative nausea and vomiting TLA D003693

D003693 Delirium, subacute TLD D020250

D011183 Emeses, postoperative; complications, postoperative PTL D011183

... ... PTL + SRN D011183

4 ... because of aplastic crisis with

septicemia and marked abnormalities in

liver function and died of hemorrhagic

bronchopneumonia.

D006468 Hemopneumothorax TLA D001996

D001996 Bronchial pneumonia TLD D001996

D011002 Pleuropneumonias, contagious; tuberculosis sanitorias PTL D006468

... ... PTL + SRN D001996

TLA, Triplet Loss + All samples; TLD, Triplet Loss + Down-sampling; PTL, Prototype-based Triplet Loss; PTL+SRN, Prototype-based Triplet Loss + SRN. The emboldened IDs and synonyms

in the lists of candidates correspond to the ground truth entities.

FIGURE 4

Multi-dimensional scaling representation of examples and their corresponding entities in two experiments. Mentions referring to the same entity

have the same color.

combined with soft-radius neighbor clustering, to learn the

representations of mentions and entities. Our proposed method

can partially resolve the issue of imbalanced data, because it

considers each class in a document as a whole, regardless of

the number of instances in the class. Experimental results on

two biomedical datasets demonstrate that our method is able
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to significantly reduce computational cost in the training and

inference phases, compared to other SOTA methods, while also

maintaining competitive accuracy with these methods. We believe

that ourmethodmay also be useful for application in other domains

that have imbalanced datasets.
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