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Abstract

Stress detection is an active area of research with important implications for personal, occupational, and social health.
Most modern approaches use features computed from multiple sensor modalities, i.e., grouping different types of
data from multiple sources for processing. These include electrocardiogram, electrodermal activity, electromyogram,
skin temperature, respiration, accelerometer data, etc. Also, traditional machine learning algorithms (decision tree,
discriminant analysis, support vector machine, etc.) or fully-connected neural networks are mostly used. Using these
methods requires large amounts of data. Researchers are considering different approaches to personalization or
generalization of models relative to subjects, namely subject-independent and subject-dependent (initially personal or
adapted) models. The aim of the presented work is to develop a method for detecting stress based on heart rate variability
data, taking into account the process of personalization of neural networks. The use of a convolutional neural network
is proposed. The dependence of accuracy on the length of the input signal is studied. The dependence of accuracy on
the data dimensionality reduction layer (one-dimensional convolutional layer, maximizing and averaging pooling) used
in the network is also considered. The importance of personalizing models is demonstrated to significantly increase the
accuracy of models of specific subjects. It is shown that the proposed method, based on 60 intervals between heartbeats,
makes it possible to binary determine whether a person is under stress. Personalization allowed increasing the accuracy
from 91.8 % to 98.9 + 2.6 %. The F1-score value increased from 0.907 to 0.983 + 0.038. The proposed personalized
networks can be used in systems for monitoring the functional state of a person. They can also be used as part of a system
that grants or restricts access to private resources based on whether a person is currently at rest.
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AHHOTALUA

Beenenne. OGHapyXeHHE CTpecca SIBISETCSI aKTHBHOM 00JIAaCThIO MCCIICOBAHUN C BXKHBIMHU MOCIEACTBUSIMUA IS
JIMYHOTO, TIPO(ECCHOHAIBHOTO M COLHAIIBHOTO 3/J0POBbsI YeTI0BEKa. HOIBIIMHCTBO COBPEMEHHBIX ITOAXO0/I0OB UCIIONIB3YIOT
NpPU3HAKH, BBIYHCICHHBIC HA OCHOBE HECKOJBKUX CEHCOPHBIX MOJAJILHOCTEH, T. €. IPYNIIUPYIOT Al 00padoTKu
Pa3JIMYHbIC TUIIbI JaHHBIX, l'[OJ'Iy‘-IeHHble U3 HECKOJIbBKUX MCTOYHUKOB. K Hum OTHOCATCA JJICKTpOKapauorpaMmma,
KOXKHO-TaJIbBaHMYECKasl Peakius, 3ICKTPOMUOIpaMMa, TeMIlepaTypa KOXXH, AbIXaHHE, JaHHbIE aKCEIepPOMETPOB
u ap. [Ipu 5ToM damie ucmoap3yoTcs TPAAUIHOHHBIC AJITOPUTMBI MAIIMHHOTO O0y4YeHHUsI, TAKUE KaK pPEIIafolne
JIepEBbs, TUCKPUMUHAHTHBIN aHAJIN3, METOJ OTIOPHBIX BEKTOPOB M IPYTHE, a TAKKE MMOTHOCBI3HbIC HEHPOHHBIE CETH.
Hcnonp3oBanue 3THX METOIOB TPeOyeT OONMBIINX 00REMOB JIaHHBIX. MccllenoBaTen paccMaTprUBaOT OTIINYAIOIINECS
TIOIXOMBI K TIEPCOHATIM3AIMY W OOIIHOCTH MOJENIei OTHOCHTENIBHO CyOBEKTOB, @ IMEHHO CyOBhEKTO-HE3aBHCHMBIC 1
CyOBeKTO-3aBHCHMBIC (M3HAYAIEHO NEPCOHAIBHbIEC MM aJlalTHPOBAHHbIE) MOeH. Llenbio npencraBieHHoi paboTh
SIBJISIETCS] pa3paboTka MeToa AETEKTHPOBAHUS CTPEcca Ha OCHOBE JaHHBIX BapHaOEIbHOCTH CEPICYHOTO PUTMA C
Y4ETOM Ipoliecca MepcoHaanu3alud HeMpoHHbIX ceTeid. MeToa. [[yist pelieHrs nocTaBICHHON 3a/1a4K MPEI0KESHO
MPUMEHEHUE CBEPTOYHON HEMPOHHOM ceTH. MccnenoBana 3aBUCUMOCTb TOYHOCTH JETEKTUPOBAHHS OT AJMHBI BXOJHOTO
curHasia. PaccMoTpena 3aBHCHMOCTh TOYHOCTH OT HCIIOJIB3yEMOTO B CETH CJIOSl YMEHBIICHHUS Pa3MEPHOCTH JAHHBIX
(omHOMEPHBIH CBEPTOUHBIH CII0H, MAKCUMHU3HPYIOIIUI U YCpeAHAIOmuUi myminHrH). [IponeMoHcTprpoBaHa BaXKHOCTD
TIEPCOHANN3AIIH MOJEJICH, TS 3HAUUTEIBHOTO YBEIIMYCHUS TOYHOCTH ACTEKTUPOBAHUS ISl KOHKPETHBIX CyOBEKTOB.
OcHoBHBIE pe3yabTaThl. [loka3zaHo, YTO mpeuiaracMblii METO Ha OCHOBAaHUHU 60 MHTEPBAIOB MEXKIY yAapaMH
cepila 1Mo3BoJsieT OMHAPHO ONPEEeIIUTh, HAXOIUTCS JIN YEJIOBEK B COCTOSHUM cTpecca. [lepcoHanmsarus cBepTOIHbIX
HEHPOHHBIX CETeW MO3BOJIMIIA TIOBBICUTh TOUHOCTH ¢ 91,8 10 98,9 &+ 2.6 %. 3nauenue F1-mepsl nosicuiiock ¢ 0,907
10 0,983 + 0,038. Odcyxnenue. IIpernoxxeHHble NEPCOHATU3NPOBAHHBIE CETH MOTYT IPUMEHATHCSA B CHCTEMax
MOHHUTOPHHTA QYHKIHOHATIHHOTO COCTOSIHUS YeIoBeKa. Takke MOTYT ObITh UCIIOJIBb30BaHbl KAK YacTh CHCTEMBI,
MIPEAOCTABIISIONICH UM OTPaHUYMBAIOLIECH TOCTYI K IPUBATHBIM PECypcaM Ha OCHOBAHHHU TOTO, HAXOAUTCS JIH YETOBEK
B COCTOSTHHH TIOKOSI B JAHHBII MOMEHT.

KiioueBble cjioBa
JIETEKTHPOBAaHME CTPECcca, CBEPTOUHbIC HEHPOHHBIE CETH, MAIIMHHOE 00y4YeHue, BapuabelbHOCTh CEPIEYHOTO PUTMA,
CyOBEKTO-3aBUCHMBIC MOJICITH
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Introduction

Stress is the body’s response to perceived physical or
psychological threats [1] and it is defined as the transition
from a calm state to an excited state, triggering a set of
physiological responses [2]. Moreover, stress detection is
important for many health problems, such as depression,
anxiety, heart attacks and strokes [3]. Stress also affects a
person’s decision-making ability, attention span, learning
and problem-solving ability [4]. Therefore, stress detection
is an important task.

Various classical machine learning methods as well as
neural networks are used in various studies to solve this
problem. Also, various input data for stress detection are used
from various data sensors, such as electrocardiogram (ECG),
electrodermal activity (EDA), etc. This study proposes to
use a convolutional neural network which receives a set of
RR intervals (Heart Rate Variability (HRV)) as input data.
In [5], the authors successfully applied personalization to

EDA data. Based on that research, this paper examines
the process of personalization of convolutional neural
networks with HRV input data. Thus, the aim of the work
is to develop a method for stress detection based on HRV
data, taking into account the process of personalization
of neural networks, as well as the implementation of this
method. The proposed approach is competitive with other
modern methods. The code used in the work is available!.

Related works

Summary of review related works is presented in
Table 1. Wearable Stress and Affect Detection (WESAD)
is a commonly used dataset in related works (14 of 20) but
also some studies use their own data. Among the works
reviewed, ECG [2, 3, 6-13], EDA [2-6, 9, 11, 14-19] and

I Available at: https://github.com/Nightbot1448/human_
stress_detection (accessed: 10.01.2023).
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Table 1. Summary of reviewed related works

Paper | Year Dataset Subjects Data Model Accuracy, % Window, s
[2] 2018 | WESAD 15 ECG, EDA, BVP, Temp, | kNN, DT, RF, LDA, 92.83 0.25, 5,60
Resp, EMG, ACC AB
[3] 2020 | WESAD 15 ECG, EDA, BVP, Temp, | kNN, SVM, AB, FCN 95.21 1
Resp, EMG, ACC
[4] 2020 | WESAD 15 EDA kNN, SVM, RF 91.6 —
[5] 2021 | WESAD 15 EDA CNN 92.85 60
[6] 2022 | WESAD 15 ECG, EDA, BVP, Temp, | CNN using GAF 94.8 —
Resp, EMG, ACC
[7] 2016 | Other 42 ECG C4.5 tree 79 180
[8] 2021 | Other 20 ECG CNN 83.5 10
[9] | 2021 | WESAD 15 gg; gﬁé” i\clg’ Temp. | o\ 97.75 +2.55 60
[9] 2021 | WESAD 15 ECG CNN 91.75+9.73 60
[10] | 2019 | AffectiveROAD, 9,17 ECG FCN 90.19 10, 60
Other
[11] | 2021 | WESAD 15 ECG, EDA, BVP, Temp, | LR 85.71 60
Resp, EMG, ACC
[12] | 2021 | Other 27 ECG kNN, SVM, FCN, RF, 83 30
GB
[13] | 2019 | Other 20 ECG CNN 82.7 10
[14] | 2020 | Other 20,3 HR, EDA CNN 82.5,93.8 —
[15] | 2021 | WESAD 15 EDA sTree 95.8 4
[16] | 2018 | Other 58 HR, EDA, Resp FCN 89.7 90
[17] | 2020 | WESAD 15 EDA, BVP, ACC, Temp | RF, DT, LR 96.68 £ 3.2 0.25
[18] | 2020 | Other 41 BVP kNN, LDA, FCN 82 60
[19] | 2021 | WESAD 15 EDA kNN, SVM, FCN, RF 87.5 60
[20] | 2022 | WESAD 15 BVP FCN 99.04 300
[21] | 2019 | WESAD 15 Temp, BVP, HR LDA, QDA, RF 87.4+104 15, 30, 60,
90, 120

Blood Volume Pulse (BVP) [2, 3, 6,9, 11, 17, 18, 20, 21]
were most often used as data sources. Also other sources,
such as respiration info (Resp) [2, 3, 6, 9, 11, 16], skin
temperature (Temp) [2, 3, 6, 9, 11, 17, 21], electromyogram
(EMG) [2, 3, 6, 9, 11], accelerometers info (ACC) [2, 3, 6,
9, 11] used in some research. It should be noted that in most
cases many data sources are used when applying feature
engineering [2, 3, 6, 18, 21]. Time and frequency domain of
ECG, BVP and EDA are widely used in studies [2—4, 6, 7,
9, 10, 15, 16]. Some studies [2, 4, 5, 7, 8, 10, 12, 18-20]
extract features from only one data source. And also there
are few studies that use raw data (sometimes with applying
filters but without feature extraction) [5, 9, 13, 17].
Accuracy metrics reported ranged between 79 % [7]
and 99.04 % [20]. Half of the studies used neural networks.
Convolutional Neural Networks (CNN) were used in 6
papers [5, 6, 8, 9, 13, 14], Fully Connected Networks
(FCN) also were used in 7 studies [3, 10, 12, 16, 18-20].
Also different studies used machine learning methods.
Random Forest (RF) was used in [2, 4, 17, 21]. Support
Vector Machines (SVM) were utilized in experiments [3,
4, 12, 19]. Linear Discriminant analysis (LDA) was used
in [2, 18, 21]. AdaBoost classifier (AB) was utilized in

[2, 3]. K-nearest neighbor’s classifier (kNN) was used
in [2—4, 12, 18, 19]. Tree-based classifiers (like Decision
Tree (DT)) were utilized in [2, 3, 7 (C4.5 tree [22]), 15,
17]. Also Logistic Regression (LR) was used in [11,
17]. Indikawati and Winiarti [17] are the only ones who
directly used the signal without feature extractions with
the classical machine learning methods. Work [23] used
convolutional and long short-term memory [24] neural
networks for encoding signal with sequent passing to
clustering algorithms.

Materials and Methods

Data and preprocessing. Many studies conducted
in the field of stress detection use data collected by
researchers independently. This study uses the WESAD
dataset [2], which has also been used in many studies in
recent years [3, 5, 8, 14, 17, 20, 21]. It is a public dataset
containing ECG. RR intervals were calculated from the
ECG using the heartpy python library!. Data with stress

I Available at: https://python-heart-rate-analysis-toolkit.
readthedocs.io/en/latest/ (accessed: 10.01.2023).
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and resting state labels were taken from the dataset. The
amusement state was omitted. Next, the RR interval is the
interval between neighboring heart beats. The interval is
the set of RR intervals used as input data.

Model. The convolutional neural network [14]
has shown sufficiently high accuracy. Therefore, a 1D
convolutional network architecture was chosen. The
network architecture is a sequential use of the ConvX
block (Fig. 1, a) and the dimension reduction layer. The
ConvX block consists of a one-dimensional convolutional
layer with kernel size 3, a batch normalization layer,
and a ReLU activation layer. The network architecture
for the interval length (input data) equal to 60 is shown
in Fig. 1, b. One-dimensional convolution (kernel =
stride = 2), max pooling (kernel = 2) and averaging pooling
(kernel = 2) were considered as dimensionality reduction
blocks. The number of input layers for convolution layers
or ConvX blocks is given in parentheses. The first ConvX
block parameter (in) means that there may or may not
be a layer in the input data containing the difference
between consecutive RR intervals (numerical derivative).
The architecture depends in part on the maximum interval
length. The goal was to form an architecture where after
each ConvX block a dimensionality reduction layer could
be added (except the first and last). Thus, this architecture
made it possible to obtain the required data dimension
due to convolutional layers and dimensionality reduction
layers (without using fully connected layers). The results
of various modifications are presented in the following
sections.

Results

This section presents a comparison of different
modifications:

— using different interval (input data) lengths,
— choosing layers to reduce dimensionality,
— using numerical derivation.

This section also presents the impact of model
personalization for subjects.

Modifications. All modifications of the convolutional
neural network proposed in the research process were
implemented within this study using the PyTorch
framework!. In all experiments, the CrossEntropy loss
function was used, the ASGD optimizer (with default
parameters) was used, the number of epochs was 50, and
the batch size was 8.

The first study was the choice of interval size. Normal
resting heart rates range from 60 to 100 bpm [28].
Therefore, the number of RR intervals is not equivalent to
the number of seconds, but they can be mapped. 60 seconds
is a widely used interval in review studies. It was decided
to consider no more than 60 RR intervals with a step of
15. More than 60 RR intervals were not considered due
to too long initialization. The slide of intervals was 5 RR
intervals. Fig. 2 shows accuracy for different modifications
of models depending on input interval length. It can be seen
that for the lengths 15, 30, 45 there is a direct dependence
of the accuracy. In the case of input interval length equal to

I Available at: https://pytorch.org/ (accessed: 13.01.2023).
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Fig. 1. Neural Network: ConvX block (a); architecture (b)

60, the accuracy for models without numerical derivative
is increased. For models with numerical derivation, for
the same input interval length, the accuracy decreases
regardless of the method of dimensionality reduction.
However, the accuracy for the interval length 60 with a
max pooling layer is greater (92.16 %) than the accuracy
of the other modifications.

As mentioned earlier, one-dimensional convolution
layers, max and averaging poolings were considered as
dimension reduction methods. Using convolution as a layer
for dimension reduction shows the lowest accuracy (Fig. 2).
If a numerical derivative was present in the input data,
the network with the averaging pooling determined stress
with higher accuracy in all cases except when the interval
length was 15. If the numerical derivative was not used,
then modifications with averaging and max pooling showed
greater accuracy depending on the interval length. However
the modification with the max pooling showed the highest
accuracy (92.16 %) with interval length equal to 60.

The inclusion of an additional layer containing the
difference of two consecutive RR intervals to the input data
was considered. This value can be treated as a numerical
derivative. This difference shows the dynamics of changes
in RR intervals, which can be perceived as the rate of
change in heart rate. For intervals of length 15, 30, and 45,
the accuracy of the networks, whose input was additionally
fed by the derivative, is higher than for the corresponding
one but without this addition.

In the case of an interval length of 60, the accuracy of
modifications without the numerical derivative is slightly
higher than that with it. The largest difference between
modifications with and without the numerical derivative

92
=90
X
§ - Conv
§ - AvgPool
< 88 ~ MaxPool
Conv (der)
; -+ AvgPool (der)
36 o v ‘ -+ MaxPool (der)
20 40 60
Signal len

Fig. 2. Modifications accuracy
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Table 2. The metrics values of the modifications. The first three columns describe the modification type. The following ones are
metrics values for this modification

lselr%;gl I(;I:rrir:;rtiii]ael Rte;;;e Accuracy, % aclzilra;c(;f(‘i’ 0, Precision Recall F1-score ROC AUC
45 - avg 91.1 91.2 0.881 0.917 0.898 0.912
45 - conv 90.3 90.2 0.883 0.892 0.888 0.902
45 - max 90.5 90.0 0.915 0.859 0.886 0.900
45 + avg 92.0 91.7 0.915 0.896 0.905 0.917
45 + conv 91.5 91.0 0.925 0.874 0.899 0.910
45 + max 91.8 91.4 0.919 0.886 0.902 0.914
60 - avg 91.8 91.2 0.932 0.872 0.901 0.912
60 - conv 91.4 90.8 0.93 0.866 0.897 0.908
60 - max 92.2 91.8 0.922 0.893 0.907 0.918
60 + avg 91.7 91.2 0.924 0.878 0.900 0.912
60 + conv 91.2 90.8 0.908 0.883 0.895 0.908
60 + max 91.4 91.2 0.905 0.894 0.900 0.912

is 1.2 % (modifications with the max pooling or with the
convolutional layer, interval length 45).

Comparison of proposed modifications. This section
presents a comparison of the metrics of the various
proposed modifications (Table 2) when tested using all
data (without skipping subjects).

The modification with interval length of 60, max
pooling, and without numerical derivative has the highest
accuracy, balanced accuracy, F1-score and ROC AUC (Area
Under Receiver Operating Characteristic Curve) score. The
modification with interval length 60, averaging pooling,
and without numerical derivative has the highest precision
score. The modification with interval length of 45, without

the numerical derivative, and with the averaging pooling
has the highest recall. Almost all modifications with signal
length 60 differ from the best one by no more than 0.01
on Fl-score. Thus, all modifications with signal length 60
were considered for personalization. For all modifications,
the maximum accuracy was achieved after the 30th epoch.
But 95 % of maximum accuracy had been achieved in
the first 10 epochs because accuracy of some subjects
reached near 100 %. And in the process of further training
the accuracy of the rest of the subjects increased.

Models personalization. As stated earlier, each type
of these models may have advantages and disadvantages.
Subject-dependent models require a large amount of data.

Table 3. The accuracy of each subject’s personalization, %. The first value in column header is the dimensionality reduction method

used. The second is the use (Derivative) or omission (Default) of the numerical derivative

Subject Avg, Derivative Max, Derivative Conv, Derivative Avg, Default Max, Default Conv, Default
2 95.4 95.4 100.0 95.4 98.5 100.0
3 100.0 100.0 100.0 100.0 100.0 100.0
4 100.0 98.6 100.0 100.0 100.0 100.0
5 100.0 100.0 100.0 100.0 100.0 100.0
6 100.0 95.2 100.0 98.8 98.8 100.0
7 100.0 100.0 100.0 100.0 100.0 98.8
8 100.0 100.0 100.0 100.0 100.0 100.0
9 90.9 89.8 76.1 84.1 83.0 85.2
10 96.7 92.6 96.7 98.4 94.2 100.0
11 100.0 100.0 100.0 100.0 100.0 100.0
13 100.0 99.1 100.0 100.0 100.0 100.0
14 100.0 100.0 100.0 100.0 100.0 100.0
15 100.0 100.0 100.0 100.0 100.0 98.0
16 100.0 100.0 100.0 100.0 100.0 100.0
17 100.0 100.0 99.0 100.0 98.0 100.0
mean 98.87 98.05 98.12 98.45 98.16 98.8
std 2.61 3.27 6.14 4.16 4.48 3.8
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Table 4. The accuracy of the best model before and after personalization. Other metrics of best model after personalization

Subject ‘?e Cff)lrlzl?% Accura};)y after, Accurao;)y delta, a?c?ll;nc(;:% " Precision Recall Fl-score ROC AUC
2 68.2 95.4 27.3 93.2 1.0 0.864 0.927 0.932
3 743 100.0 25.7 100 1.0 1.0 1.0 1.0
4 100.0 100.0 0.0 100 1.0 1.0 1.0 1.0
5 56.6 100.0 43.4 100 1.0 1.0 1.0 1.0
6 100.0 100.0 0.0 100 1.0 1.0 1.0 1.0
7 60.7 100.0 39.3 100 1.0 1.0 1.0 1.0
8 90.0 100.0 10.0 100 1.0 1.0 1.0 1.0
9 54.6 90.9 36.4 88.6 0.926 0.806 0.862 0.886
10 43.0 96.7 53.7 95.8 1.0 0.917 0.957 0.958
11 973 100.0 2.7 100 1.0 1.0 1.0 1.0
13 100.0 100.0 0.0 100 1.0 1.0 1.0 1.0
14 97.2 100.0 2.7 100 1.0 1.0 1.0 1.0
15 91.8 100.0 8.2 1.0 1.0 1.0 1.0 1.0
16 100.0 100.0 0.0 100 1.0 1.0 1.0 1.0
17 76.0 100.0 24.0 100 1.0 1.0 1.0 1.0

General models are not taking into account the uniqueness
of the subjects. So personalization may be a good solution.
Another solution may be subjects grouping by similar
patterns of intervals or, in a simpler version, with similar
biological traits — gender, age, ethnicity, etc.

As stated previously, a personalization process was
performed for all modifications with an interval length of
60. Table 3 presents accuracy after personalization for the
modifications. The leave-one-subject-out (LOSO) approach
[29] was used for personalization. For each subject, the
following actions were performed:

— exclusion of the subject’s training data from the total
training dataset;

— CNN training;

— testing with the test data of the excluded subject;

— personalization of NN on the subject’s training data;

— testing on subject test data.

In the process of personalization, the weights were
adjusted not only for the predictor (the last convolutional
layer in the network), but also for all other layers. Loss
function, optimizer, count of epochs and size of batch was
same with model modifications experiments (subsection

Table 5. Accuracy of the proposed convolutional neural network and analogs on the WESAD dataset

Paper Method Data Accuracy, %
[2] LDA All Chest 92.83
[2] LDA ECG 85.44
[3] MLP All 95.21
[4] kNN EDA 91.60
[5] CNN EDA 90.00
[6] CNN using GAF All 94.80
[9] CNN All 97.75+£2.55
[9] CNN ECG 91.75+£9.73
[11] Logistic regression-based classifier HR 76.38
[15] sTree EDA 95.80
[17] (Subjects only) RF Wrist 96.68 £3.2
[19] SVM EDA 87.50
[20] MLP BVP 99.04
[21] LDA Skin Temp, BVP, HR 87.4+10.4
Ours CNN ECG 91.80
Ours (personalized) CNN ECG 98.87 £2.61
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“Modifications”). However, the highest accuracy for most
subjects was obtained within 10 epochs. Sizes of subject
datasets (amount of intervals) are in range [264, 487]
(mean: 373.13, std: 63.20) for training sets and in range
[66, 121] (mean: 92.67, std: 15.80) for test sets.

Based on Table 3, it can be concluded that the
personalized models of all modifications, on average,
give approximately the same result. The modification
with numerical derivative and averaging pooling shows
the highest accuracy (98.87 %) averaged over users.
The difference in accuracy before and after model
personalization is presented in Table 4. The table
also presents other metrics values of the models after
personalization.

Table 5 compares the accuracy of the proposed model
with analogues. Based on the table, it can be concluded
that the proposed network is competitive with analogs. It
can be seen that the accuracy in [20] is higher. However,
in that paper, various additional features were calculated as
preprocessing, which is additional resource consumption.
The proposed method avoids this action.

Conclusion

This research paper proposes a convolutional neural
network for human mental stress detection. The input data
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