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Earthquake-induced landslides are ubiquitous on slopes in terrestrial
environments, which can pose a serious threat to local communities and
infrastructures. Data-driven landslide assessments play a crucial role in
preventing future landslide occurrences and recurrences. We present a novel
granular computing approach that assesses landslide risk by combining fuzzy
information granulation and a stacked autoencoder algorithm. The stacked
autoencoder is trained using an end-to-end learning strategy to obtain a
central latent vector with reduced dimensionality. The multivariate landslide
dataset was used as both the input and output to train the stacked
autoencoder algorithm. Subsequently, in the central latent vector of the
stacked autoencoder, the Fuzzy C-means clustering algorithm was applied to
cluster the landslides into various groups with different risk levels, and the intervals
for each group were computed using the granular computing approach. An
empirical case study in Wenchuan County, Sichuan, China, was conducted. A
comparative analysis with other state-of-the-art approaches including Density-
based spatial clustering of applications with noise (DBSCAN), K-means clustering,
and Principal Component Analysis (PCA), is provided and discussed. The
experimental results demonstrate that the proposed approach using a stacked
autoencoder integrated with fuzzy information granulation provides superior
performance compared to those by other state-of-the-art approaches, and is
capable of studying deep patterns in earthquake-induced landslide datasets and
provides sufficient interpretation for field engineers.
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1 Introduction

Landslides are a major type of natural geohazard and are defined as the movement of a
mass of rock, debris, or Earth down a slope (Cruden, 1991; Gao and Meguid, 2018a; 2018b).
This can cause numerous casualties and economic losses in mountainous regions (Li et al.,
2023). Multiple factors can trigger landslides, including rainfall, earthquake shaking, water
level changes, storm waves, rapid stream erosion, and human factors. Among them,
earthquake-induced landslides are the most hazardous due to the rapid occurrence and
large size of slope failures (Shi et al., 2021).
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In practice, landslide risk assessment plays a crucial role in field
engineering (Rajabi et al., 2022). The general process involves
estimating the level of risk, deciding its appropriateness, and
exercising control measures to reduce risk by observing an
elevation in risk levels (Dai et al., 2002; Gao et al., 2020; Zhou
J. et al., 2021; Chowdhuri et al., 2022). Such procedures are typically
followed for landslide assessment and mitigation at regional or
catchment scales (Pokharel et al., 2021). The Geographic
Information System (GIS) environment in landslide susceptibility
map preparation is an effective method for identifying and
delineating landslide-prone areas to create a geospatial database
of landslide occurrence or ‘landslide inventory’ (Merghadi et al.,
2020). The geospatial properties of landslides can be compiled into a
comprehensive database using GIS (Karakas et al., 2021). These
properties include slope angle, slope aspect, soil type, precipitation,
lithology type, and geometric parameters (Gao et al., 2021; Kasama
et al., 2021; Zhou et al., 2022). All the properties in the database are
valuable for assessing slope stability and modeling the responses of
other slopes in the study area to predict future landslide occurrences
(Van Westen et al., 2006).

In recent years, data-driven models and frameworks have
achieved great success in landslide risk assessment using GIS-
based databases. For example, volumetric estimation, spatial
geometric computation, and maximum displacement prediction
are all considered part of the assessment tasks in engineering
practice (Zhou Q. et al., 2021). Althuwaynee et al. (2014)
integrated decision trees and logistic regression models to predict
the overall landslide risk using multivariate analysis. Huang et al.
(2018) applied a support vector machine (SVM) to forecast landslide
susceptibility using a GIS-based dataset. Xu et al. (2019) performed a
comparative analysis of seven benchmark data mining algorithms
and predicted the maximum landslide displacement in loess
landslides in Heifangtai, China. Gorsevski et al. (2016)
introduced an artificial neural network (ANN) to predict
landslide risks simultaneously using GIS-data and Lidar data. The
experimental results demonstrated that the ANN offered superior
prediction performance and was capable of learning the relationship
between geospatial properties and overall landslide risk.

For the time being, advanced analytical tools such as artificial
intelligence (AI) and deep-learning (DL) are also playing an
increasingly important role in evaluating landside risks in
practice. Zhao and Du (2016) initially proposed using
convolutional neural network (CNN) to analyze landslide risk
using remote sensing images. Paoletti et al. (2018) developed a 3-
D CNN to extract both spectral and spatial information in Lidar
images for risk assessment tasks. Yi et al. (2020) proposed a novel
landslide susceptibility mapping and risk assessment model using
multi-scale convolutional neural network (MCNN) in the image-
related tasks. Various levels of geological features from low to high
are studied by the algorithm to assess landslide risks. All above work
provided advanced insights in terms of landslide mapping and risk
assessment tasks.

Summarily, the majority of data-driven approaches that perform
landslide risk assessment adopt a supervised learning strategy to
train data mining or machine learning algorithms and then predict
risk labels for new instances (He and Kusiak, 2017; Li, 2022a). The
success of these approaches significantly depends on the availability
of high-quality datasets. To generate this type of dataset, time and

labor cost for field experts is inevitable. If the required dataset is
relatively small, the computational and labor costs can be controlled
at a reasonable level. However, some case studies may contain
excessive numbers of instances within the dataset, which is
challenging in practice. For instance, a single field expert may
require several weeks to offer risk labels for tens of thousands of
landslide instances. Therefore, it is important to develop a more
efficient approach to address this challenge.

Granular computing (GC) has recently become a popular data
science research direction, with considerable attention in both
industry and academia. The granular computing approach adopts
fuzzy rule-based modeling to derive granular descriptors for
interpreting a dataset that follows an unsupervised learning
strategy. Generally, two major advantages of using a granular
computing approach in practice exist. First, high flexibility in
coping with datasets with diverse geometries and enhancing the
representation of the information granules. Thus, the constructed
granules are more interpretable for understanding the essential
characteristics of the dataset. Second, information granules are
often constructed in a refined representation of the original data
structure, which intuitively reduces computation overhead. (Ouyang
and Zhang, 2022). In typical landslide risk assessment tasks,
conventional machine-learning approaches usually adopt
supervised-learning strategy which requires labeling the ground-
truth to guide the algorithm to learn data patterns. This step
becomes the foundation of a supervised-learning approach which
ensures the learning quality. Granular computing can be an effective
alternative option which utilizes an unsupervised-learning approach
to derive the patterns within the same dataset. In comparison, the
information granules can largely increase the efficiency of overall
computation cost while only sacrificing a limited amount of
information.

Based on the above discussion, this study proposes a
combinatory data-driven framework to perform landslide risk
assessment based on a stacked autoencoder (SAE) and fuzzy
information granules. First, the SAE was employed as an
information compressor that removed redundant information but
preserved valuable patterns within the landslide dataset. The
standard mean square error (MSE) loss was proposed as the loss
function for training the SAE algorithm. Second, when the loss
function of the SAE converged, the central latent representations of
the SAE were extracted for information granule construction. Three
training strategies are used to explore the optimal design of the SAE
architecture. The Fuzzy-C-means (FCM) algorithm was then
employed to select the prototypes for each subcluster. Finally,
fuzzy-rule-based information granules were constructed using
two risk measures, namely, Value-at-Risk (VaR) and
Conditional-Value-at-Risk (CVaR). The risk boundaries
indicating that the ranges for various levels of landslide risk were
computed, and interpretation with respect to each attribute was
provided. To evaluate the performance of the proposed framework,
comprehensive experiments were conducted using an actual
earthquake-induced landslide dataset collected from Wenchuan
County, Sichuan Province, China.

The main contributions of this study are summarized as follows:

1) This research introduced SAE to compress the landslide dataset
and reduced dimensionality effectively.
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2) Fuzzy information granules were computed over the latent
representations of the SAE and risk boundaries were computed
for various levels of landslide risk based on the constructed granules.

The remainder of this article is organized as follows. The
methodology for the SAE algorithm and granular computation
process is introduced in Section 2. An overview of the case study
area and earthquake-induced landslide dataset is presented in
Section 3. The computational results and comparative analyses

are presented in Section 4. Discussions are presented in Section
5, and conclusions are presented in Section 6.

2 Methodology

2.1 Stacked autoencoder

An autoencoder (AE) is a popular deep-learning architecture
that effectively compresses information. In a typical AE algorithm,
the input is a vector or signal, and the output reconstructs the input
via an intermediate layer with a reduced number of hidden nodes.
AE algorithms attempt to learn higher-level feature representations
in the reduced hidden nodes, which can make the reconstruction of
the original input feasible (Zabalza et al., 2016; Li, 2022b). The basic
scheme of the AE algorithm is shown in Figure 1.

As shown in Figure 1, the autoencoder has a symmetric structure
consisting of two components: an encoder and a decoder (Adem
et al., 2019). The encoder contracts a nonlinear mapping between
the input vector and central hidden layer nodes. For a given input
data vector X′, a compressed hidden layer representation H can be
computed using Eq. 1.

H � fE WE p X + bE( ) (1)

where, WE and bE represent the weight and bias of the encoder
network; fE() denotes the activation function of the network.
Contrastingly, the decoder maps the hidden representation back
to the output layer for reconstruction through a similar
transformation. Given the hidden-layer representation H, the
reconstructed output X′ can be obtained using Eq. 2.

X′ � fD WD p H + bD( ) (2)

where, WD and bD represent the weight and bias of the decoder
network; fD() is the activation function of the decoder network. In

FIGURE 1
Schematic diagram of an autoencoder.

FIGURE 2
Schematic diagram of SAE.
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this research, the reconstructed output vectorX′ always has the same
dimensionality as the input vector X while the reconstruction loss
can be easily computed by measuring the difference between the two
vectors.

The training process of the AE algorithm aimed to reproduce the
input data vector in the output layer. Hence, internal hidden nodes
can provide compressed information from the original dataset
(Khamparia et al., 2020). To ensure high-quality data
reconstruction, the values in the hidden nodes can be regarded as
new reduced features representing the original vector X. Thus, the
training of the AE continuously optimizes the parameters θ �
WE, bE ,WD, bD{ } to pursue high-quality data reconstruction. The
parameter θ above is not a single parameter but a general
representation of thousands of parameters within the AE
algorithms that includes the weights and biases of numerous
neurons along with their connections. The loss function used for
training the AE is based on the reconstruction error, which can be
expressed as

L X,X′( ) � 1
n
∑n

i�1 xi − x′
i( )2 (3)

where, xi and x′
i denote the ith elements in the input and

reconstructed vectors X and X′; and L() represents the error
computed by the reconstruction. In Eq. 3, the loss function
computes the mean-square-error loss which is equivalent to
regression loss and it measures the difference between the
input vector X and reconstructed vector X′. The smaller value
of the loss function indicates the higher performance of data
reconstruction. Once the values of the loss function converge to a
small range, the AE can achieve high-quality data compression
and reconstruction.

2.2 SAE and latent representations

An stacked autoencoder (SAE) is considered as an expansion of
the traditional AE algorithm. The SAE simply stacks several layers
between the input and output layers. This hierarchical structure
enables the features to be learned through progressive abstraction
levels (Liseune et al., 2020). A schematic of a SAW is shown in
Figure 2.

As shown in Figure 2A, the hidden layers within the SAE were
pre-trained in a greedy layer-by-layer manner. For example, a
typical SAE structure comprises three hidden layers. If the input
and output vectors have eight dimensions, the first hidden layer has
six dimensions. It can then be formulated as a vanilla AE algorithm
to pre-train the first hidden layer. Once the loss function converges
to a small range, the pretraining is stopped. Next, a pre-trained
hidden layer with six dimensions was used as both the input and
output layers for the next pre-training step. The second hidden layer
with four dimensions served as the hidden layer in the training
step. Here, the same pre-training strategy was adopted as in the first
step. In the final pre-training step, the last hidden layer with only
three dimensions served as the hidden layer, whereas the pre-trained
layer with four dimensions provided by the last step served as both
the input and output layers. The majority of the reconstruction loss
has been reduced in the pre-training steps while only a limited
proportion of the loss has been reduced in the final fine-tuning
step. Overall, multiple autoencoders were pre-trained in a bottom-
up manner, enabling the encoder to effectively learn the pattern
inside the dataset.

As illustrated in Figure 2B, after the pre-training of all hidden
layers, all layers were stacked into a hierarchical and symmetric
structure. The dense layers are the pre-trained hidden layers, as
shown in Figure 2A. Then, back-propagation was applied to fine-
tune all SAE network parameters. As the input and output were
identical in our study, the fine-tuning was a supervised learning
process.

2.3 Prototype selection

The well-trained SAE in this study served as an information
compressor for dimension reduction purposes. Using the trained

FIGURE 4
Plot illustrating the various confidence levels of a single
information granule.

FIGURE 3
Plot depicting an example of the FCM clustering algorithm.
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SAE structure, higher-level patterns inside the dataset can be
effectively compressed into a central latent vector, which
preserves important information from the original data space. As
illustrated in Figure 2B, the central “Bottleneck” layer is considered

the most compressed version of the information from the input data
vector. Thus, for every input vector, the values within the
“Bottleneck” layer are extracted and utilized to construct
information granules in this research.

TABLE 1 Wenchuan landslides data description.

Name Unit Min Max Mean Std Skewness Kurtosis

Area m2 22.95 43969.79 2097.24 4120.69 5.29 38.33

Elevation m.a.s.l 2388.00 3448.00 2883.21 241.15 0.03 −0.79

Fault distance m 2.44 11089.10 2295.83 2107.67 1.09 0.43

Relief amplitude m 26.00 316.00 164.45 49.57 −0.22 0.29

Runout distance m 40.94 808546.79 21557.31 63921.32 7.43 70.93

Slide volume m3 57.99 537129.23 17034.88 44600.79 6.75 59.66

Slope angle ° 3.01 56.05 34.90 9.75 −1.11 1.30

Vertical drop m 27.87 331912.34 9922.30 27098.63 6.98 63.35

am.a.s.l. means meters above sea level.

TABLE 2 Training strategies of Stacked Autoencoder.

Strategy Hidden layer Hidden nodes Activation function Loss function Epoch

I 1 6 ReLU or sigmoid MSE loss 150

II 3 6-4-6 ReLU or sigmoid MSE loss 150

III 5 6-4-3-4-6 ReLU or sigmoid MSE loss 150

FIGURE 5
Photographs showing the onsite investigation and remote sensing detection of earthquake-induced landslides in Wenchuan County.
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In this study, an information granule is defined as a data
descriptor of a certain region in the data space according to its
size and position (He and Kusiak, 2017; Ouyang et al., 2019a). To
localize the granules, the selection of a prototype (data cluster
center) is an essential step. An FCM (Ouyang et al., 2019c)
algorithm was developed to partition the latent representations of
the SAE into several data clusters. The prototype (cluster geometric
center) served as a representation of a group of data points within
the same constructed granular space. Here, the FCM is selected over
the most popular K-mean algorithm is due to the superior capacity
of FCM in selecting an actual data point as the prototype while
K-mean algorithm is incapable to perform the same task.

For a given dataset H � h1, h2, . . . ,hn{ } from the central hidden
layer of the pre-trained SAE, the FCM partitions n data points into c
clusters, where C � C1, C2, . . . ,Cc{ }. Based on the similarity scores,
the partition matrix U(H) can be obtained and expressed in Eq. 4 as
follows:

U H( ) �
μ11 / μ1N
..
.

1 ..
.

μc1 / μcN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

where, μij denotes the membership degree of data point hj to cluster
Ci. Here, the membership degree μij satisfies Eq. 5, 6:

∑c

i�1μij� 1,∀ j� 1, . . . ,n (5)
∑c

i�1∑n

j�1μij � n (6)

The FCM starts with the determination of the number of
clusters, followed by a random selection of the initial cluster
centers. Each data point was assigned a membership degree to
each cluster. Next, the cluster centers and corresponding
membership degrees are updated iteratively by minimizing the
objective function. The objective function of the FCM is
expressed in Eq. 7:

FIGURE 7
Bar charts depicting the distribution of reconstruction MSE error for all training strategies.

FIGURE 6
Plots showing the loss functions for all training strategies for SAE.
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Jc � ∑c
i�1
∑n
j�1
μmij hj − vi

 2 (7)

where, hj is the jth data point, vi is the ith cluster center, and n denotes
the total number of data points in cluster Ci. During the iterations, the
μmij and vi are updated using the rules in Eq. 8, 9 respectively:

μmij �
1

∑c
j�1

hj−vi‖ ‖
hj−vj‖ ‖( ) 2

m−1
(8)

vi �
∑n

j�1μ
m
ijhj∑n

j�1μ
m
ij

(9)

A visual interpretation of FCM clustering with the three sub-
clusters is shown in Figure 3. This demonstrates an example of a
dataset partitioned into three subclusters. The centers of each cluster
(red points) were selected as prototypes. Here, the gradient of color
shading indicates the value of membership similarity score with
respect to the assigned clusters. The brighter color indicates the
membership score is higher of a data point while a shallow color
indicates lower membership similarity score.

2.4 Optimization of information granule
structures

Once the prototypes were selected using the FCM algorithm, it
was essential to determine the size of the information granules.

According to the general rules of data description methods, a set of
information granules is the concentration of numeric prototypes
and their membership points, which are formed as data descriptors
(Li, 2022b). In this study, we considered generic and simple granule
formations based on the radius parameter and selected prototypes.
The generic rule-based information granules were depicted as in
Eq. 10.

Ri: IF hk is in the neighborhood of vi,THENyk

should be classified as groupCi

(10)

where, hk is the data point, vi is the prototype in the corresponding
cluster, and yk is the assigned cluster label for the data point hk.

Granule formation involves coverage and specificity indices that
directly influence the performance of the underlying data
description. The formation is based on two randomly selected
points: h+i and h−i for the upper and lower bound, respectively.
Coverage is a reflection of the capacity of an information granule to
cover data points between two points, which can be expressed in Eq.
11 and Eq. 12 as follows:

cov h+i( )� ∑
hk > vi && hk < h+i{ }

μik (11)

cov h−i( )� ∑
hk < vi && hk > h−i{ }

μik (12)

where, μik is the membership score of the data point hk with respect
to the ith subcluster; vi is the computed prototype for the ith sub-

FIGURE 8
Plots showing the comparison of specificity against coverage values against state-of-art approaches.
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cluster from the FCM algorithm; and h+i and h−i are randomly
initialized points indicating the upper and lower boundaries
presented above, respectively.

Specificity indicates the precision of the constructed information
granules. A higher specificity value indicated a smaller granule size.
The computation of specificity for the upper and lower bounds is
defined in Eq. 13 and Eq. 14, respectively, as follows:

sp h+i( )� 1− h+i − vi
 
hmax − vi‖ ‖ (13)

sp h−i( )� 1− vi − h−i
 
vi − hmin‖ ‖ (14)

where, ‖.‖ is the distance measure between the data points; vi is the
computed prototype from the FCM algorithm; h+i and h−i are
randomly initialized points indicating the upper and lower
bounds, respectively; h max and h min are the maximum and
minimum points, respectively, encountered within the generated
data subclusters for which the information granule is developed.

2.5 Evaluation of information granules

Generally, high-quality information granules are expected to
have both high coverage and specificity for describing data (Ouyang
et al., 2019b). However, in practice, these two functions are usually
in conflict and must be maximized simultaneously. Thus, the

product of these two functions was selected to search for the
optimal size of the information granules. The product of
coverage and specificity is Q and is expressed in Eq. 15 as follows:

Q�∫1

0
cov h( )sp h( )dh (15)

where, h is the data point used to define the granule boundaries. The
value of Q must be maximized to obtain the optimal solution for the
information granules, and the value of Q needs to be maximized.

Additionally, the representation capacity of the information
granules was considered in this study. Considering that granules
reflect the structure of the original dataset, the representation
capacity can be quantified using a reconstruction criterion. We
can reconstruct any data point hk into ĥk by Eq. 16.

ĥk �
∑n

j�1μ
m
ij vi∑n

j�1μ
m
ij

(16)

where, ĥk is the reconstructed value of hk; and μmij and vi can be
computed by (8) and (9), respectively. We can then compute the
reconstruction error V(c) using Eq. 17 as follows:

V c( ) � ∑n
k�1

ĥk − hk
 2 (17)

where, c is the number of clusters produced by the FCM, and
‖ĥk − hk‖2 denotes the Euclidean distance between hk and ĥk. The

FIGURE 9
Histograms showing the comparison of Q values against state-of-art approaches.
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smaller the value of V(c), the better the reconstruction capacity of
the information granule. In practice, V(1) is typically used as the
standard reference to measure the value of V(c) by computing
V(c)/V(1).

2.6 Granular boundaries

Information granules provide fuzzy rules to determine the
boundaries of the decision-making tasks. However, the
interpretability of these rules is vague. Two widely used risk
measures namely, VaR and CVaR were introduced to interpret
the boundaries with respect to all attributes or variables within
the original input dataset.

For a certain variable, all data points within the same
information granule follow a distribution with a cumulative
density function (CDF), F(X). Hence, given a confidence level p,
VaR and CVaR are defined as Eq. 18 and Eq. 19, respectively, (Shi
et al., 2021):

VaRp X( )�F−1
X p( ) (18)

CVaRp X( ) � VaRp X( ) + E X[ ] − E X ∧VaRp X( )[ ]
1 − p

(19)

where, VaR can be conceived as the inverse computation of the CDF
with respect to the confidence level p as expressed in Eq. 18, and
CVaR is the conditional expectation of the distribution when the
attributes of the data points exceed the VaR threshold. These can be
computed for each variable provided in the input dataset to offer
interpretable boundaries for the information granules. For example,
in a single information granule in 2-dimensional space, various
confidence levels for VaR are displayed in Figure 4.

3 Field investigation and data collection

In this study, data collected from multiple earthquake-induced
landslides inWenchuan County, Sichuan Province, China, were used to
perform a case study analysis using the proposed approach (Carabella
et al., 2022). The study area is located in the Longmen Mountains area
on the northwest edge of the Sichuan Basin. On 12 May 2008, the
Wenchuan earthquake, with a magnitude of 8.0 occurred in the
Longmenshan tectonic zone of Sichuan Province (Chigira et al.,
2010; Xie et al., 2020). This strong earthquake event in the
mountainous region triggered over 3000 landslides and chains of
related geohazard events, including rockfalls, debris flows, and
unstable slopes (Fan et al., 2019; Li et al., 2022).

TABLE 3 Measurement of information granules for three risk group.

Low risk group

SAE DBSCAN K-mean PCA Student’s t-test

Mean Std Mean Std Mean Std Mean Std p-value

Coverage 0.61 0.08 0.55 0.21 0.51 0.12 0.58 0.07 0.09

Specificity 0.87 0.1 0.83 0.12 0.77 0.13 0.66 0.22 0.18

Q 0.71 0.14 0.55 0.17 0.59 0.15 0.39 0.05 0.01

V(c)/V(1) 0.07 0.02 0.07 0.03 0.05 0.02 0.04 0.01 0.38

Medium risk group

SAE DBSCAN K-Mean PCA Student’s t-test

Mean Std Mean Std Mean Std Mean Std p-value

Coverage 0.68 0.11 0.59 0.07 0.52 0.13 0.61 0.12 0.04

Specificity 0.87 0.13 0.81 0.15 0.76 0.15 0.69 0.19 0.06

Q 0.74 0.08 0.57 0.05 0.63 0.18 0.35 0.02 0.01

V(c)/V(1) 0.11 0.05 0.1 0.06 0.08 0.03 0.09 0.04 0.09

High risk group

SAE DBSCAN K-Mean PCA Student’s t-test

Mean Std Mean Std Mean Std Mean Std p-value

Coverage 0.76 0.14 0.65 0.07 0.6 0.09 0.53 0.11 0.02

Specificity 0.89 0.11 0.83 0.14 0.76 0.16 0.68 0.19 0.14

Q 0.66 0.07 0.53 0.08 0.62 0.15 0.32 0.03 0.02

V(c)/V(1) 0.15 0.04 0.11 0.06 0.08 0.03 0.06 0.04 0.04
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This area was selected as our study area because it has the
highest seismic intensity (Modified Mercalli Intensity XI) and
coseismic landslide density (Chen et al., 2020). The Yingxiu-
Beichuan fault crosses the study area and is the leading cause of
Wenchuan earthquake event in 2008. The elevation of the study
area varies from 760 to 3200 a.s.l. and the topography consists of
rugged mountains and deeply incised valleys. Multiple slides
and debris flows were discovered along the Mingjiang River
Valley, which is a tributary of the Yangtze River, with an average
annual discharge of 452 m3/s. Summer precipitation is the
leading factor that triggers post-earthquake slides and debris
flows. Typical examples of slides and debris flows are shown in
Figure 5.

Since the Wenchuan earthquake, earthquake-stricken regions
have been intensively monitored by geologists using remote-
sensing techniques combined with field investigations. Remote
sensing techniques offer highly precise information for geohazard
monitoring and mitigation. Data acquisition, including full
coverage and high resolution, was accomplished by multiple
groups of geologists in the period between 2008 and 2018. The
GIS method was then utilized to integrate the landslide inventory
into the spatial dataset to discover the quantitative relationships
between landslide activity and triggering factors.

We selected 3000 landslides for our case studies, the majority of
which were deep-seated landslides. Based on an on-site

investigation, eight geohazard-related geometrical variables of
the earthquake-induced landslides are provided in Table 1.
These variables are considered critical to fuzzy-rule-based
models for geo-risk assessment, according to expert opinions.
The statistical properties of each variable are summarized in
Table 1.

According to Table 1, eight geomorphology-related
variables–slide area, elevation, slope fault distance, relief
amplitude, runout distance, slide volume, slope angle, and

FIGURE 10
Box plots illustrating the interpretation of information granules
for all risk groups.

FIGURE 11
Map depicting the geospatial distribution of the earthquake
induced landslides in Wenchuan County, China.
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vertical drop–were measured and included. It also provides a
unit of measurement. Additionally, the minimum value,
maximum value, mean, and standard deviation were
computed as first-order statistical properties. Furthermore,
second-order statistical properties such as skewness and
kurtosis were computed. Finally, according to expert
opinions, three types of labels (high, medium, and low risks)
were assigned to all landslide cases in the dataset.

4 Experimental results

4.1 Training of SAE

The proposed data-driven information granule-based
approach was applied to the risk assessment of over
3000 landslide case studies in Wenchuan County, Sichuan
Province, China. Among which, 2500 cases were utilized for
cross-validation, and the remaining 500 cases were used as the
independent test dataset. Eight geomorphology-related landslide
variables are included in the granule construction dataset. Three
training strategies were implemented to achieve high-quality
information compression results. The strategies used are
summarized in Table 2 below.

In Table 2, the first strategy (Strategy I) contains only one
hidden layer with six hidden nodes. This is a typical
autoencoder. Both the ReLU and sigmoid functions were
tested as the activation functions, and the one with the
smallest error was selected. The MSE loss was selected as the
loss function, and the Adam optimizer was selected as the
optimization algorithm to reduce the loss function. The
maximum number of training epochs was 150, and once the
loss function converged, early termination was implemented.
The second strategy (Strategy II) adopts a similar approach with

three symmetric hidden layers. The two outer hidden layers on
each side have 6 hidden nodes, and the central “Bottleneck” layer
contains only 4 hidden nodes. Layer-by-layer pre-training and
fine-tuning of the stacked architecture are both included, as
described in Section 2.2 Figure 2. The third training strategy
(Strategy III) adopted the same training approach as Strategy II
with five hidden layers in total. The central “Bottleneck” hidden
layer contains only 3 hidden nodes which aims to further reduce
the dimension of the original data vector. The loss functions for
the three training strategies during the epochs are shown in
Figure 6.

The data reconstruction loss (MSE loss) was also measured for
the three training strategies. The error between the input and the
reconstructed outputs was measured for the test dataset for
performance evaluation. A histogram illustrating the
distribution of the MSE loss are provided below in Figure 7.
Here, the loss distribution comes from the MSE loss by
inputing all validation dataset (the remaining 30%) into the
trained SAE algorithm. Thus, the loss distribution in Figure 7 is
the validation loss distribution of the SAE algorithm with respect
to three different training strategies.

As shown in Figure 7, in comparison, the loss distribution for
training strategy III converges close to zero. This indicates that
strategy III produces a higher-quality data reconstruction
outcome, and useful information is successfully encoded into
the central latent layer. We then extracted a central latent vector
with less dimensionality to construct robust information
granules for landslide risk classification.

4.2 Constructing information-granules

Information granules were constructed using the central
latent vector of the pretrained SAE algorithm. The latent

TABLE 4 Computed VaR and CVaR for the three risk groups obtained by information granules.

Risk
gorup

Variable Area Elevation Fault
distance

Relief
amplitude

Runout
distance

Slide
volume

Slope
angle

Vertical
drop

Unit km2 masl m m km 107 m3 ° km

High VaR.95 5.39 3152.48 106.16 54.60 4.88 8.73 28.90 1.29

VaR.05 4.26 1679.61 48.83 26.52 3.63 7.56 12.52 0.48

CVaR.95 5.62 3334.26 108.37 56.23 5.12 8.89 30.78 1.40

CVaR.05 4.15 1437.23 47.73 26.17 3.38 7.37 10.58 0.47

Medium VaR.95 5.38 3133.84 57.33 26.95 4.51 10.05 53.94 1.13

VaR.05 2.74 1656.30 33.24 8.59 2.31 7.03 22.63 0.40

CVaR.95 5.45 3548.67 106.79 28.08 4.88 10.49 56.25 1.18

CVaR.05 2.61 1437.23 32.61 8.30 2.03 6.74 22.19 0.38

Low VaR.95 2.50 3194.43 86.00 39.78 2.72 4.43 52.43 1.58

VaR.05 0.11 1674.95 1.26 7.81 0.10 0.06 1.19 0.92

CVaR.95 2.64 3390.19 94.51 43.47 2.81 4.71 58.78 1.66

CVaR.05 0.09 1488.51 0.63 3.41 0.08 0.02 0.55 0.85
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vectors not only reduce dimensionality but also preserve
important information in the original input dataset. To
validate the superiority of using the SAE latent vector, other
state-of-the-art data structures for information granule
construction, including density-based spatial clustering of
applications with noise (DBSCAN), k-mean clustering, and
principal component analysis (PCA), were selected for
comparative analysis.

For the predefined three levels of risk by the experts, a global
measurement of granular quality was performed. Figure 8
displays the coordinates of various coverage-specificity curves
for the test dataset. The area under the coverage-specificity curves
directly indicates the quality of the constructed information
granules. The proposed approach, using the latent vector of
the SAE as the source data structure, had the largest area for
the three risk groups. This demonstrates the superior
performance of the SAE latent vector as the source data
structure to construct information granules.

In Figure 9, we also compute another metric Q with respect to
the different numbers of clusters provided by the FCM. The average
Q values and 95% confidence intervals were visualized for all
possible cluster numbers. It is significant that for all three risk
levels, the proposed approach using the latent vector of the SAE as
the source data structure has higher Q values, and thus, better
granule quality. Additionally, for representation capacity,
V(c)/V(1) was computed for the three groups of landslides with
different risk levels. All numerical results, including the mean and
standard deviation of coverage, specificity, Q, and V(c)/V(1) are
summarized in Table 3 below. Pairwise Student’s t-tests were also
conducted to determine whether there was a significant group
difference in measurement metrics between the proposed SAE
algorithm and other state-of-the-art algorithms. Here, the t-test is
an independent sample test which the sample size differs from two
sides. If the p-value is less than 0.05, it indicates that the
corresponding measurement metric of SAE is significantly higher
than all others which demonstrates the superiority of using SAE as
the data structure to formulate information granules. The p-values
of the t-tests are listed in Table 3.

4.3 Granular interpretation

Information granules are based on fuzzy rules that lack sufficient
explanation for field engineers. To improve the interpretability of
the proposed approach, two widely used risk measures, namely, VaR
and CVaR were computed to indicate the boundaries of each
variable in the original dataset. Information granules with respect
to each variable were visualized using box plots, and are presented in
Figure 10. Considering the scale differences across all variables, all
box plots used min-max rescaling to ensure that the values were
between 0 and 1.

According to Figure 10, the mean, median, 25th–75th, 10th–90th,
and 5th–95th percentiles for the distribution in each variable per group
are visualized. Here, the information granules denote the interval
between VaR.05 and VaR.95. A significant distinction between the
three risk groups existed with respect to area, runout distance, and
slide volume. This phenomenon confirms the expert opinion that these
three are the top factors in determining landslide risk.

Additionally, the geospatial distribution of the three risk
groups was labeled on the map with different colors, as
illustrated in Figure 11. These colored points indicate the
location and size of the corresponding earthquake-induced
landslides in Wenchuan County. Instead of a case-by-case risk
assessment, the proposed approach automatically classified the
risk of landslide occurrence in the study area.

5 Discussion

The information granules constructed for the three risk
groups were computed using the latent vectors of the (SAE)
algorithm. The interpretation of the information granules in
each risk group has been visualized in Figure 10 with respect to
each variable in the provided dataset. To provide meaningful
information to field engineers for classifying the risks of
applying these information granules, we computed the
CVaR.95/VaR.95 and CVaR.05/VaR.05 for each variable and
included them in Table 4.

As listed in Table 4, the computed values indicate the risk
boundaries for landslides in each risk group. A new sample can
be automatically applied to the explainable rules derived from
information granules to obtain the corresponding risk
assessment.

6 Conclusion

In this study, a data-driven framework is proposed to assess the
risks of earthquake-induced landslides using a semi-supervised
learning approach. The development of the proposed framework
consists of two phases: training the stacked autoencoder and
construction of fuzzy information granules. The stacked
autoencoder was trained using field landslide data, following an
unsupervised learning approach. The data vector was utilized as
both the input and output, and the mean squared error loss was
selected as the loss function for all training tasks. The deep patterns
within the dataset were effectively compressed into a central latent
space, and fuzzy information granules were constructed. The
boundaries in the latent space for all risk levels were optimized
and obtained.

The development of this framework was compared with that
of the different benchmarks in a case study area in Wenchuan
County, China. The computational results demonstrate that the
pre-trained stacked autoencoder can more effectively compress
deep data patterns into a low-dimensional space. A comparative
analysis based on the testing dataset demonstrated that the
information granules could cover most of the homogenous
data points in each subgroup. Additionally, stacked-
autoencoder-based information granules offer higher
accuracy, robustness, and specificity than other state-of-the-
art data structures. The proposed fuzzy information granules
based on the latent space of a stacked autoencoder are
promising for achieving satisfactory classification
performance, especially for earthquake-induced landslide
datasets, and can offer valuable suggestions to practicing field
geology engineers.
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