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A HISTORICAL INTERACTION 
BETWEEN ARTIFICIAL
INTELLIGENCE AND
PHILOSOPHY
Abstract: Th is paper delves into AI de-
velopment’s historical and philosophical 
dimensions while highlighting the sym-
biotic relationship between philosophy 
and AI from a  technological perspective:
philosophy furnishes foundational 
concepts, and AI supplies practical tools.
Th e paper posits neurosymbolic AI as
a solution to present challenges, sparking 
discussions encompassing both techni-
cal and philosophical considerations.
Advocating a multidisciplinary approach
calls for merging empirical AI insights
with philosophy and cognition science to
enrich our comprehension of intelligence
and propel AI forward.
Keywords: history of AI; philosophy of 
AI; symbolism; connectivism

Historická interakce mezi umělou 
inteligencí a fi losofi í
Abstrakt: Tento článek se zabývá his-
torickými a  fi losofi ckými rozměry vývoje 
umělé inteligence a  zdůrazňuje symbio-
tický vztah mezi fi losofi í a umělou inteli-
gencí z technologického hlediska: fi losofi e 
poskytuje základní koncepty a  umělá 
inteligence praktické nástroje. Článek 
p y j p y

navrhuje neurosymbolickou umělou 
inteligenci jako řešení současných výzev 
a  otevírá diskusi zahrnující technická 
i  fi losofi cká hlediska. Podpora tohoto 
multidisciplinárního přístupu vyžaduje 
spojení empirických poznatků z  oblasti 
umělé inteligence s  fi losofi í a  kognitivní 
vědou. Tento přístup dokáže nejen obo-
hatit naše porozumění inteligence jako 
takové, ale také posunout vývoj umělé 
inteligence vpřed.
Klíčová slova: historie umělé inteli-
gence; fi losofi e umělé inteligence; symbo-
lismus; konektivismus
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1. Introduction
It has been nearly 70 years since the emergence of AI technology. Alan Tu-
ring, widely regarded as the father of AI, could hardly have envisioned its
profound impact on everyday life and academic research. In a thought-pro-
voking contribution to a philosophy journal in 1950, Turing posed a ques-
tion: “Where is the best place to start research? […] chess or hardware?”1 Th is
query shed light on two key components that have since become fundamen-
tal to AI research: algorithms (programming) and arithmetic (hardware). 
As a result, philosophical discussions on AI in the modern technical sense
have fl ourished among both philosophers and the AI research community.

Th e pursuit of creating “intelligent” AI programs transcends the confi nes
of the AI discipline, as it has become an interdisciplinary endeavor. Over the
course of the past 70 years, two distinct research paths have emerged, known
as symbolism and connectionism, representing diff erent paradigms within
the scientifi c community. Th ese paradigms embody divergent approaches
to AI research and have sparked lively debates and collaborations among
researchers and scholars.

2. Brief History of Symbolism and Connectionism
In the relatively short history of AI, symbolic AI emerged as the dominant
approach for an extended period. Its development can be characterized by 
three signifi cant stages: Automatic Th eorem Proving, Expert Systems, and
Knowledge Representation. Symbolic AI aimed to emulate human reaso-
ning by employing logic and manipulating symbols. It achieved notable
advancements in formal reasoning and rule-based systems, contributing to
applications such as automated theorem proving and expert systems.

However, in the 21st century, connectionist AI, also called Artifi cial
Neural Networks (ANNs), gained prominence and eventually surpassed
symbolic AI as the mainstream approach in modern AI research. Connec-
tionist AI operates by simulating the interconnected structure of biological
neural networks. Its ascendancy can be traced through three distinct stages:
Perception machines, Backpropagation algorithms, and Deep Learning.

During the Perception machines stage, ANNs primarily focused on
mimicking human sensory perception and pattern recognition. Th is in-

1  Alan M. Turing, “Computing Machinery and Intelligence,” Mind LIX, no. 236 (1950): 433–60.d
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volved the development of early neural network models and algorithms that
enabled machines to process sensory inputs and make basic classifi cations.

Th e introduction of the Backpropagation algorithm marked a  sig-
nifi cant breakthrough in connectionist AI. Th is algorithm allowed ANNs
to learn from examples by adjusting the strengths of connections between
artifi cial neurons. It enabled the training of multi-layer neural networks,
enhancing their capacity to handle complex tasks and learn hierarchical
representations.

Th e most recent and revolutionary stage in connectionist AI is Deep 
Learning. Deep Learning leverages deep neural networks with many layers,
enabling the models to automatically learn intricate patterns and repre-
sentations from vast amounts of data. Th is approach has led to signifi cant
breakthroughs in various domains, including image and speech recognition,
natural language processing, and even playing complex games.

In this section, we will delve deeper into this rich history’s chronological 
progression and technical aspects, exploring the developments and break-
throughs that have shaped both symbolic AI and connectionist AI.

2.1 1950–1965 Start of Intelligence Dream
Th e origins of symbolic AI can be traced back to the fi eld of Automatic Th eo-
rem Proving (ATP), which is closely intertwined with the study of logic.2

By considering “formal” as synonymous with “mechanical,” most of the
methods employed in ATP can be categorized within the realm of logic.3

In 1954, the logician Martin Davis created the fi rst ATP program on a tube
computer called JOHNNIAC at the Institute for Advanced Study in Prince-
ton.4 However, the research paper detailing this program was not publicly 
released until 1957. Davis’s most notable contribution was his collaboration
with Hilary Putnam in solving Hilbert’s tenth problem, propelling their
research partnership forward. Putnam, a renowned American philosopher
known for his “brain in a vat” thought experiment exploring the nature of 
reality, worked extensively alongside Davis. Together, they introduced the

2 Dominique Pastre, “Automated Th eorem Proving in Mathematics,” Annals of Mathematics
and Artifi cial Intelligence 8, no. 3–4 (1993): 425–47.
3  Donald W. Loveland, “Automated Th eorem Proving: Mapping Logic into AI,” in Proceedings 
of the ACM SIGART International Symposium on Methodologies for Intelligent Systems, eds.
Zbigniew W. Ras and Maria Zemankova (Knoxville, TN: ACM, 1986), 214–29.
4 Martin Davis, “A Computer Program for Presburger’s Algorithm,” Symbolic Computation 
Automation of Reasoning 1 (1957): 41–48.
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Davis–Putnam (DP) procedure5 and refi ned it into the Davis–Putnam–Lo-
gemann–Loveland (DPLL) algorithm.6

In 1957, “Th e Logic Th eorist,” an ATP program developed by Herbert
Simon and Allen Newell, the founders of symbolic AI, gained signifi cant
attention for pioneering the use of heuristic procedures.7 Another infl uential
work during this period was Dag Prawitz’s natural deduction algorithm in
1957, which not only marked the inception of natural deduction but also
introduced the concept of “Unifi cation.”8Additionally, in 1958, logician
Wang Hao implemented complete propositional logic and fi rst-order logic
programs on an IBM 704 computer. Subsequently, the latter program was
improved to prove all 150 fi rst-order logic and 200 propositional logic
theorems in Russell’s Principia Mathematica.9 While numerous studies on
ATP have followed, the fundamental works of the 1960s established a solid
foundation for symbolic AI.

In contrast to symbolic AI, connectionist AI follows a diff erent philo-
sophical principle known as computationalism. Rather than deriving intel-
ligent machine behavior from formal logic, Warren McCulloch and Walter
Pitts drew inspiration from neuroscience and sought to formalize biological
neural activity to imbue machines with intelligence. Th ey posited that the
“all-or-none” law of neural activity adequately represented the activity of any 
neuron as a proposition, setting a threshold θ to determine neuron activity 
based on its characteristics.10 Th e original artifi cial neural network model,
known as the M-P model, laid the groundwork for subsequent ANNs.

In 1957, Frank Rosenblatt, infl uenced by psychologist Donald Hebb and
philosopher Friedrich Hayek, improved upon the M-P model with his theory 
of “Perception.” Th is theory integrated inputs by adding weighted inputs

5  Martin Davis and Hilary Putnam, “A  Computing Procedure for Quantifi cation Th eory,”
Journal of the ACM 7, no. (1960): 201–15.M
6  Martin Davis, George Logemann, and Donald W. Loveland, “A  Machine Program for
Th eorem-Proving,” Communications of the ACM 5, no. 7 (1962): 394–97.M
7  Allen Newell and Herbert A. Simon, “Th e Logic Th eory Machine. A Complex Information
Processing System,” Journal of Symbolic Logic 22, no. 3 (1957): 331–32.
8  Dag Prawitz, Haå kan Prawitz, and Neri Voghera, “A Mechanical Proof Procedure and Its
Realization in an Electronic Computer,” Journal of the ACM 7, no. 2 (1960): 102–28.
9  Hao Wang, “Toward Mechanical Mathematics,” IBM Journal of Research and Development 4,t
no. 1 (1960): 2–22.
10  Warren S. McCulloch and Walter Pitts, “A  Logical Calculus of the Ideas Immanent in
Nervous Activity,” Th e Bulletin of Mathematical Biophysics 5, no. 4 (1943): 115–33.
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with fi xed weights obtained during the training phase.11 If the sum of these 
weighted inputs exceeded a  given threshold θ, the neuron would trigger.
When triggered, the neuron’s output was set to 1; otherwise, it was set to 0.
While the Perceptron functioned similarly to the M-P model, Rosenblatt re-
moved the absolute inhibition rule, granting the neuron greater adaptability.
Rosenblatt implemented soft ware for the perceptron model on an IBM 704
at Cornell Aeronautical Laboratory and subsequently developed the Mark 
I Perceptron, which his team used for image classifi cation.12 In 1962, Rosen-
blatt published “Principles of Neurodynamics,” summarizing his work and
delving into biology, psychology, and philosophy.13 At the time, he became
a  highly sought-aft er scholar in the United States, attracting signifi cant
attention and receiving substantial funding from private and government
sources. In his paper, he openly criticized many scholars in the symbolic AI
fi eld, arguing that their approach was incapable of achieving true AI.14 How-
ever, his views were not well-received, and in Marvin Minsky and Seymour
Papert’s 1969 book Perceptron: An Introduction to Computational Geometry, 
they criticized the perceptron and the connectionist AI approach, pointing
out limitations such as the inability to solve the linear separability prob-
lem.15 According to Minsky and Papert, single-layer perceptrons could not 
perform certain functions, like the XOR function, even with multiple layers. 
Th eir critique aimed to discredit Rosenblatt’s work, which ultimately led to
the end of the initial boom in connectionist AI driven by the perceptron and 
tragically marked the end of Rosenblatt’s life.

2.2 1965–1990 Th e Golden Age of Artifi cial Intelligence 
in the 20th Century
During the period when connectionist AI faced temporary suppression while 
symbolic AI dominated, an important collaboration took place between 
Feigenbaum, who had studied under Simon, and geneticist Lederberg. Th eir 
encounter occurred at a conference held at Stanford University’s Center for 

11  Frank Rosenblatt, “Th e Perceptron: A  Probabilistic Model for Information Storage and
Organization in the Brain,” Psychological Review 65, no. 6 (1958): 386–408.
12  John Cameron Hay, Mark I Perceptron Operators’ Manual (Project PARA) (Buff alo: Cornell
Aeronautical Laboratory, 1960).
13  Frank Rosenblatt, Principles of Neurodynamics: Perceptrons and the Th eory of Brain
Mechanisms (Washington, D.C.: Spartan Books, 1962).
14  Rosenblatt, “Perceptron,” 387.
15  Marvin Minsky and Seymour A. Papert, Perceptrons: An Introduction to Computational 
Geometry (Cambridge, MA: MIT Press, 1969).y

Artificial Intelligence and Philosophy



220

Advanced Behavioral Science Research in 1964.16 United by their shared 
interest in the philosophy of science, they embarked on a fruitful interdis-
ciplinary collaboration, with Lederberg’s infl uence and leadership playing
a  central role. According to Bruce Buchanan, Lederberg’s interest shift ed
aft er conceiving the project’s philosophical framework, and it took Feigen-
baum’s computer team fi ve years to actualize his vision.17 Th e collaboration’s
fi rst outcome, aft er the addition of Carl Djerassi, the inventor of the oral
contraceptive pill, in 1965, was the Expert System DENDRAL.18 DENDRAL 
utilized data from a mass spectrometer to generate the chemical structure
of a given substance. Th e creators aimed for it to function as an “intelligent
assistant” for chemists, capable of performing expert-level tasks without
necessitating an expert level of theoretical knowledge.19 Buchanan, as one of 
the participants in DENDRAL, noted that their early motivations included
using heuristic search to tackle complex scientifi c problems and employing
AI methods to gain a  deeper understanding of fundamental issues in the
philosophy of science.20 Following the development of DENDRAL, Edward 
Shortlife, a doctoral student under Buchanan’s guidance, designed the ex-
pert system MYCIN for medical diagnosis.21 Although MYCIN was never
put into use, it laid the foundation for its successor, EMYCIN.22 Buchanan
commented that MYCIN and the multitude of expert systems that followed
it demonstrated the ability of a  small amount of knowledge to facilitate
intelligent decision-making processes in various signifi cant domains. Ho-
wever, with the discontinuation of the fi ft h-generation computer program

16  Gil Press, “History Of AI In 33 Breakthroughs: Th e First Expert System,” Forbes (web-
site), October 29, 2022, https://www.forbes.com/sites/gilpress/2022/10/29/history-of-ai-in-
33-breakthroughs-the-fi rst-expert-system/.
17  Bruce G. Buchanan, “Oral History Interview with Bruce G. Buchana,” interview by Arthur
L. Norber, June 11–12, 1991, transcript (Pittsburgh, PA: Charles Babbage Institute).
18  Joshua Lederberg, “How DENDRAL Was Conceived and Born,” in A  History of Medical 
Informatics, ed. Bruce I. Blum (New York, NY: Association for Computing Machinery, 1990),
14–44.
19 Joshua Lederberg et al. “Applications of Artifi cial Intelligence for Chemical Inference.
I. Number of Possible Organic Compounds. Acyclic Structures Containing Carbon, Hydrogen,
Oxygen, and Nitrogen,” Journal of the American Chemical Society 91, no. 11 (1969): 2973–76.y
20 Bruce G. Buchanan and Edward A. Feigenbaum, “Dendral and Meta-Dendral: Th eir
Applications Dimension,” Artifi cial Intelligence 11, no. 1–2 (1978): 5–24.
21  Edward H. Shortlife, “Th e Computer as Clinical Consultant,” Archives of Internal Medicine
140, no. 3 (1980): 313–14.
22 William van Melle, “A  Domain-Independent Production-Rule System for Consultation
Programs,” in Proceedings of the 6th International Joint Conference on Artifi cial Intelligence –
Volume 2 (San Francisco, CA: Morgan Kaufmann Publishers Inc., 1979), 923–25.
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in Japan in 1988,23 expert systems fell out of favor and became a term that 
people avoided mentioning. With the rise of E-commerce driven by the
Internet, many Expert Systems, such as XCON, rebranded themselves as
Rule Engines.24 Today, there are few independent Expert System projects and
R&D companies.

During this period, connectionist AI did not have as signifi cant an 
impact as expert systems. However, it experienced a  brief resurgence. In
1974, Paul Werbos demonstrated in his doctoral dissertation that the XOR 
problem could be solved by adding an additional layer to neural networks
and utilizing Back Propagation.25 Initially, Werbos’s research received little 
attention, but he was later honored with the IEEE Neural Network Society’s
Pioneer.26 Th e revival of neural networks in the 1980s is largely attributed to
physicist Hopfi eld, who proposed neural networks capable of solving a wide
range of pattern recognition problems and providing approximate solutions
to combinatorial optimization problems.27 Th is neural network model is 
now known as the Hopfi eld Network. In 1984, Hopfi eld implemented his
proposed model using an analog integrated circuit,28 which caught the at-
tention of many physicists and invigorated the fi eld of connectionism. Th e
leaders of this movement were psychologists David Rumelhurt and James
McLelland, along with computer scientist Geoff rey Hinton. Th eir collabora-
tion led to the publication of Parallel Distributed Processing, a collection of gg
papers that synthesized the perspectives of scholars from various disciplines
and sparked a  surge of research at the intersection of diff erent fi elds and

23  Hiroyuki Odagiri, Yoshiaki Nakamura, and Minoru Shibuya, “Research Consortia as
a  Vehicle for Basic Research: Th e Case of a  Fift h Generation Computer Project in Japan,”
Research Policy 26, no. 2 (1997): 191–207.y
24  Wolfgang Runte, “Enhancing Business Process Management with a  Constraint-Based
Approach,” in New Trends in Soft ware Methodologies, Tools and Techniques, eds. Hamido 
Fujita and Roberto Revetria (Amsterdam: IOS Press, 2012), 215–37.
25 Paul Werbos, “Beyond Regression: “New Tools for Prediction and Analysis in the Behavioral
Sciences,” PhD diss., Harvard University, 1974.
26 IEEE Xplore, “Paul J. Werbos – Author Profi le,” accessed May 7, 2023. https://ieeexplore.
ieee.org/author/37344537300.
27  John J. Hopfi eld, “Neural Networks and Physical Systems with Emergent Collective
Computational Abilities,” Proceedings of the National Academy of Sciences 79, no. 8 (1982): 
2554–58; John J. Hopfi eld and David W. Tank, “‘Neural’ Computation of Decisions in
Optimization Problems,” Biological Cybernetics 52, no. 3 (1985): 141–52.
28 John J. Hopfi eld, “Neurons with Graded Response Have Collective Computational 
Properties like Th ose of Two-State Neurons,” Proceedings of the National Academy of Sciences
81, no. 10 (1984): 3088–92.
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neural networks.29 Within the discipline, Hinton’s research contributed to
the optimization of Back Propagation algorithms.30 However, hardware limi-
tations hindered the eff ective use of Back Propagation in multilayer neural
networks. At the end of the century, the Internet boom again overshadowed
the brief resurgence of connectionism.

2.3 Early Studies of Symbolists and Connectivists in the 21st Century
Symbolic techniques such as frames, logic, word vectors, scripts, and seman-
tic networks played a  pivotal role in structuring knowledge and enabling
AI to perform intelligent tasks. Th ese techniques, combined with Expert
Systems, laid the foundation for the fi eld of Knowledge Representation and
Reasoning. Key contributions in this domain include Marvin Minsky’s
introduction of “Frame Th eory” in 1974, which infl uenced the design lan-
guages of related programs and fostered an object-oriented design philoso-
phy.31 In 1975, Roger Schank and Robert Abelson proposed “Script Th eory,”
utilizing frames to organize knowledge.32 John Sowa’s 1976 proposal of the 
“Conceptual Graph” introduced a knowledge representation system based
on Semantic Networks and Peirce’s logic.33 Additionally, Rudolf Wille’s in-
troduction of Formal Concept Analysis (FCA) in 1982 provided a method to
derive conceptual hierarchies and formal ontologies from objects and their
attributes.34 Concurrently, the Cyc project was launched in 1981 to develop
an encyclopedia-like Knowledge Graph. Led by D. Lenat and R. Guha, the
project sought to build a comprehensive and robust AI system. Cyc aimed
to encompass a vast collection of properly organized information, including

29  David E. Rumelhart, James L. McClelland, and PDP Research Group, Parallel Distributed 
Processing, vol. 2 (Cambridge, MA: MIT Press, 1986).
30  David E. Rumelhart, Geoff rey E. Hinton, and Ronald J. Williams, “Learning Representations
by Back-Propagating Errors,” Nature 323, no. 6088 (1986): 533–36.
31 A. J. Bayle, “Frames: A Heuristic Critical Review,” in Eighth Annual International Phoenix 
Conference on Computers and Communications. 1989 Conference Proceedings (Scottsdale, AZ:
IEEE Computer Society Press, 1989), 624–28.
32  Roger C. Schank and Robert P. Abelson, “Scripts, Plans, and Knowledge,” in Proceedings of 
the 4th International Joint Conference on Artifi cial Intelligence – Volume 1 (San Francisco, CA:
Morgan Kaufmann Publishers Inc., 1975), 151–57.
33 John F. Sowa, “Conceptual Graphs for a Data Base Interface,” IBM Journal of Research and 
Development 20, no. 4 (1976): 336–57.t
34  Rudolf Wille, “Restructuring Lattice Th eory: An Approach Based on Hierarchies of 
Concepts,” in Ordered Sets, ed. Ivan Rival (Dordrecht: Springer, 1982), 445–70.
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rules and fact.35 While G. Miller’s Wordnet project in 1995 created a ma-
chine-readable database linked by lexical and semantic associations, it lacked
the rule-based capabilities of Cyc. In 2001, T. Berners-Lee et al. introduced
the Semantic Web, which relied on a machine-readable database but diver-
ged from the approach of the World Wide Web Consortium (W3C).36 Th e 
acquisition of Metaweb by Google in 2010 led to the integration of its data-
base into Freebase, ultimately resulting in the release of Google’s Knowledge
Graph in 2015.37 Th ese advancements marked signifi cant milestones in the
development of knowledge representation and the utilization of machine-
-readable databases for AI applications.

Simultaneously, the growth of the Internet and advancements in AI 
technology presented opportunities for neural networks. In 2006, Hinton’s 
paper on Deep Learning unveiled a machine learning method that trans-
formed high-dimensional data into a low-dimensional code, training it layer 
by layer.38 Th is marked the resurgence of Deep Learning (DL) as a fi eld, ena-
bling machines to learn features from datasets without explicit labeling. AI’s 
development drew inspiration from various disciplines and, in turn, started 
to infl uence them.39 Th e renewed interest in DL sparked advancements in
Artifi cial Neural Networks (ANNs), with specifi c types gaining prominence. 
Convolutional Neural Networks (CNNs), introduced by LeCun et al. in 1998, 
found applications in machine vision, utilizing convolutional, pooling, and 
fully connected layers.40 Recurrent Neural Networks (RNNs), pioneered by 
Hochreiter and Schmidhuber in 1997, excelled in processing sequential data
and natural language, employing hidden layers with dependent activation.41

35  Charles Elkan and Russell Greiner, “Building Large Knowledge-Based Systems:
Representation and Inference in the Cyc Project: D. B. Lenat and R. V. Guha,” Artifi cial 
Intelligence 61, no. 1 (1993): 41–52.
36 Tim Berners-Lee, James Hendler, and Ora Lassila, “Th e Semantic Web,” Scientifi c American
284, no. 5 (2001): 34–43.
37 Tanon Pellissier et al., “From Freebase to Wikidata: Th e Great Migration,” in Proceedings 
of the 25th International Conference on World Wide Web (Republic and Canton of Geneva:
International World Wide Web Conferences Steering Committee, 2016), 1419–28.
38 Geoffrey E. Hinton and Ruy slan Salakhutdinov, “Reducing the Dimensionality of Data with 
Neural Networks,” Science 313, no. 5786 (2006): 504–7.
39 Bruce G. Buchanan, “A  (Very) Brief History of Artifi cial Intelligence,” AI Magazine 26,
no. (2005): 53.
40 Patrice Simard et al., “Boxlets: A  Fast Convolution Algorithm for Signal Processing and
Neural Networks,” in Advances in Neural Information Processing Systems, volume 11, eds.
M. Kearns, S. Solla, and D. Cohn (Cambridge, MA: MIT Press, 1998).
41  Jürge Schmidhube and Sepp Hochreiter, “Long Short-Term Memory,” Neural Computation
9, no. 8 (1997): 1735–80.
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Graph Neural Networks (GNNs), introduced by Scarselli et al. in 2009, spe-
cialized in analyzing graphs representing entities and their relationships.42

Quantum Neural Networks (QNNs), designed for quantum computers and
proposed by Schuld et al. in 2014, aimed to overcome the limitations of tra-
ditional ANNs by applying quantum theory.43 Th ese diverse neural network 
models collectively strive to simulate brain intelligence, echoing the original
vision of Rosenblatt.

3. Philosophical Th inking in AI Research
When examining the history of AI throughout the last century, it becomes 
evident that numerous philosophical terms were employed to label the
technologies. AI researchers during this period displayed a notable incli-
nation towards publishing in philosophical journals (as evidenced by refe-
rences in the previous section). Nevertheless, it is crucial to acknowledge
that disparities between disciplines persist. For instance, the term “on-
tology” carries distinct meanings in the realms of AI and philosophy.44

Th erefore, in this section, we will explore the philosophical diff erences
existing between the two paradigms, encompassing their theoretical con-
ceptions, practical implementation approaches, and the perspectives of 
professional philosophers. By delving into these aspects, a comprehensive
understanding of the contrasting philosophical underpinnings between
AI and philosophy will emerge.

3.1 Symbolic Versus Neural: A Diff erence in Th eory
When we trace the history of AI, we discover that the theoretical foundati-
ons of connectionism emerged before symbolism. McCulloch, in collabora-
tion with Pitts, amalgamated philosophical theory and scientifi c practice,
culminating in their groundbreaking work “A Logical Calculus of the Ideas
Immanent in Nervous Activity.” Th is seminal piece serves as the corners-
tone of connectionist philosophy in AI. Th e groundbreaking idea that “the
law of ‘all-or-none’ neural activity can represent the activity of any neuron
as a proposition” introduced a pioneering theory that reduced the brain and

42  Franco Scarselli et al., “Th e Graph Neural Network Model,” IEEE Transactions on Neural 
Networks 20, no. 1 (2009): 61–80.
43  Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione, “Th e Quest for a Quantum Neural
Network,” Quantum Information Processing 13, no. 11 (2014): 2567–86.g
44  Christopher Welty, “Ontology Research,” AI Magazine 24, no. 3 (2003): 11.
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mind to a mathematical model.45 Importantly, it provided philosophers with
a novel avenue to explicate the nature of the mind.

McCulloch and Pitts postulated that “the physiological relations be-
tween neural activities correspond to the relations between propositions.”46””
By harnessing these logical relations, they sought to uncover the fi xed pro-
cesses of neural activity and present them in a formalized manner. Building
upon this theory, they put forth two conjectures: the “nets without circle”
theory and the “nets with circle” theory. Th e “nets without circle” theory 
gave rise to the M-P model, a neural network where synapses do not form
loops. Here, fi rst-order logic was referred to as “Temporal Propositional
Expressions” (TPE).47 Th is non-recursive neural network could implement 
TPE, eff ectively emulating the function of a Turing machine.

On the other hand, the “nets with circle” theory encompassed neural 
networks with recurrent connections. McCulloch and Pitts acknowledged
the challenges involved in achieving this, stating that it was “much more
diffi  cult to achieve if one is not satisfi ed with the free assumption of acyclic
nets.”48””  In comparison to acyclic nets, the expressions for networks with
cycles were more intricate due to the uncertain timing of neuronal activity 
within the loops, involving multiple quantifi cations. Stephen C. Kleene later
enhanced the theory of acyclic nets by identifying patterns within them.49 He
described the set of all input neuron activation sequences through mathe-
matical expressions, leading to a specifi c state for a given network with cyclic
connections aft er complete processing.

In contrast to the neural activity perspective, the article “Computer
Science as Empirical Inquiry: Symbols and Search” by the founders of the
symbolic school, Simon and Newell, explicitly delves into philosophical
considerations regarding symbolic AI. Th e article elucidates the nature of 
research within the symbolic AI framework, framing computer science as
empirical research.50 It emphasizes that AI is not a metaphysical fantasy but

45 Warren S. McCulloch and Walter Pitts, “A  Logical Calculus of the Ideas Immanent in 
Nervous Activity,” Th e Bulletin of Mathematical Biophysics 5, no. 4 (1943): 117.
46  Ibid.
47  Ibid., 120.
48  Ibid., 124.
49 Stephen C. Kleene, “Representation of Events in Nerve Nets and Finite Automata,” in 
Automata Studies (AM-34), eds. Claude E. Shannon and John McCarthy (Princeton: Princeton 
University Press, 1956), 3–42.
50  Allen Newell and Herbert A. Simon, “Computer Science as Empirical Inquiry: Symbols and
Search,” Communications of the ACM 19, no. 3 (1976): 114.M

Artificial Intelligence and Philosophy



226

rather an empirical simulation and logical inference of human intelligence,
aimed at discovering and analyzing new and known phenomena.51

Th e relationship between symbols and intelligence is a central question
addressed in the article. It posits that there is no overarching “intelligence
principle” to explain the fundamental manifestations of intelligence,
similar to how there is no “life principle” that encapsulates the nature of 
life itself.52 However, the ability to store and process symbols is deemed
a necessary prerequisite for intelligence. Symbolism asserts that a physical 
symbol system has the potential for exhibiting intelligent behavior, thereby 
inferring that human beings, as systems with physical symbolic attributes,
possess intelligence.53

Regarding the implementation of intelligence, the authors argue that
symbol systems do not demonstrate intelligence when in a chaotic state.54

Th ey propose that symbol systems solve problems through heuristic search,
employing structured heuristic algorithms as a  systematic approach to
problem-solving. Th e purpose-driven Problem Domain is considered an
imitation of human purposeful intelligent activity and a defi ning aspect of 
artifi cial intelligence, delineating its scope.

3.2 Turing and Rosenblatt: Diff erent Visions of Intelligent Machines
Th roughout the real world, an array of logical symbols is prevalent, and wi-
thin this landscape, Turing machines can be viewed as a symbolic endeavor.
While the von Neumann structure constitutes the framework of a computer,
the Turing machine is oft en regarded as its soul. It is intriguing to note that
Turing machines were not originally devised for computers; rather, they 
emerged as an attempt to address Hilbert’s fundamental mathematical
question.55 However, in contemporary applications, Turing machines hold
far greater signifi cance within the realm of computers than within ma-
thematics. While alternative approaches, such as λ-evaluations, exist for
resolving the decision problem, the Turing machine remains the defi nitive
formulation for computers.

51  Ibid.
52  Ibid., 115.
53 Ibid., 118.
54  Ibid., 126.
55 Alan M. Turing, “On Computable Numbers, with an Application to the Entscheidungsproblem,”
Proceedings of the London Mathematical Society 2, no. 42 (1936/37): 230–65.y
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In his seminal work on the philosophy of AI, Computing Machinery, 
and Intelligence, Turing posited the possibility that machines would eventu-
ally rival humans in all domains of pure intelligence.56 His visionary ideas
catalyzed subsequent AI research. Th is work made several noteworthy 
contributions to the fi eld. First and foremost, it introduced the concept of 
the “imitation game” and provided a  functional characterization of how 
electronic computers can simulate human-like intelligence. Turing’s argu-
ments, despite facing objections from various disciplines such as theology,
mathematics, neuroscience, and computer science, laid the groundwork for
machine intelligence.57

Secondly, Turing’s concept of a  “learning machine” served as a  well-
spring of inspiration for contemporary machine learning methodologies.
His notion of a “child machine” presaged developments akin to the advance-
ments seen with AlphaZero. Th e idea of “accidental deviation of computer
intelligence behavior”58 discussed in his paper continues to hold relevance 
and infl uence in the design of modern training and learning algorithms.

Moreover, Turing shed light on the “unpredictable” nature of intelligent
systems, highlighting that intelligent behavior may exhibit slight deviations
from fully self-consistent computational behavior, without resorting to ran-
domness or meaningless repetitive loops.59

Lastly, Turing recognized the role of punishment in machine learning,
emphasizing the need to construct machines in a manner that minimizes the
occurrence of punishment signals.60 He emphasized the use of “non-emo-
tional” communication channels for punishment and reward, which could
eff ectively teach machines to adhere to commands within specifi c languages,
ultimately reducing the reliance on punishment and reward signals.61

While Turing’s visionary perspective may have carried a touch of humor,
it posed a critical question: “Where is the best place to initiate research? […]
play chess or hardware?”62 Th is question marked the advent of the AI era and
served as an impetus for further exploration and advancements in the fi eld.

Four years following Turing’s passing, Rosenblatt emerged as a signifi -
cant fi gure in the fi eld. Distinguishing himself from the early pioneers of 

56 Turing, “Computing Machinery and Intelligence,” 460.
57  Ibid., 443–54.
58  Ibid., 459.
59  Ibid.
60  Ibid., 457.
61 Ibid., 459.
62  Ibid., 460.
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connectionism, Rosenblatt not only envisioned Artifi cial Neural Networks
(ANNs) but also translated his theories into practical applications, leaving
a profound impact on various domains of cognitive science. ANNs are ma-
chine learning models inspired by the functioning of the brain, and their
development has been met with controversy due to the incomplete under-
standing of the human brain.

Rosenblatt’s groundbreaking creation, the Perceptron, is oft en regarded
as a composition of individual artifi cial neurons, serving as the foundational
model for today’s complex neural networks. He argued that the symbolic AI
approach, which employs physical systems to replicate biological brain func-
tions, fails to align with biological systems and is incapable of fully explain-
ing biological intelligence.63 While modern science has elucidated numerous 
principles, no single theory can comprehensively elucidate the intricate
workings of the human brain and the operational principles of intelligence.

Th e success of symbolic AI in the previous century was inevitable. In an
era marked by limited progress in biological science and technology, achiev-
ing what was deemed “artifi cial intelligence” necessitated creating machines
or programs that exhibited at least a semblance of “intelligence.” Symbolic
AI pursued an external approach, relying on symbolic logic, digital comput-
ers, and switch theory, while assuming the physical and logical foundations
of intelligence, including the existence of “intelligent agents” and “human
intelligence.” But according to Rosenblatt, “Th e models of symbolic AI are
merely logical constructs designed to execute specifi c algorithms in response
to stimulus sequences, but the language of symbolic logic and Boolean alge-
bra is ill-suited for such investigations.”64

Conversely, the perceptron embodies an internal approach, simulat-
ing biological neurons with digital counterparts, and posits that the fun-
damental basis for intelligence lies within the operation of the brain. Th is
was Rosenblatt’s ambition and aspiration, oft en referred to as “Rosenblatt’s
dream”65 – not to create a  contemporary notion of “artifi cial intelligence”
but to construct an artifi cially intelligent brain. In the preface to Principles
of Neurodynamics, Rosenblatt writes:

63 Rosenblatt, “Perceptron,” 388.
64 Ibid., 387.
65  Guang-Bin Huang, “What Are Extreme Learning Machines? Filling the Gap Between Frank 
Rosenblatt’s Dream and John von Neumann’s Puzzle,” Cognitive Computation 7, no. 3 (2015): 
263–78.
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It is only aft er much hesitation that the writer has reconciled himself to the
addition of the term “neurodynamics” to the list of such recent linguistic arti-
facts as “cybernetics,” “bionics,” “autonomies.”

For this writer, the perceptron program is not primarily concerned with 
the invention of devices for “Artifi cial Intelligence,” but rather with investi-
gating the physical structures and neurodynamic principles which underlie
“natural intelligence.” A perceptron is fi rst and foremost a brain model, not
an invention for pattern recognition.66

3.3 Dreyfus’s Criticism
Hubert Dreyfus was a philosopher who played a signifi cant role in criticizing
symbolic AI. His infl uential report, Alchemy and Artifi cial Intelligence,67

later published as What Computers Can’t Do,68 eff ectively bridged the gap 
between philosophy and AI. While some attribute his infl uence to social
factors, the lasting impact of his work suggests otherwise.

Dreyfus’s critique of symbolic AI primarily focused on three philo-
sophical hypotheses: the psychological hypothesis, the epistemological
hypothesis, and the ontological hypothesis.69 Th e psychological hypothesis
raises the question of whether the mind can be eff ectively modeled as a com-
puter, particularly regarding the validity of using psychological computer
models.70 According to this view, human thinking operates hierarchically,
and computers can simulate human thought by accessing information at
the appropriate level. Dreyfus, however, argues that the specialized use of 
the term “information” within this theory diff ers from its ordinary mean-
ing, and processing information heuristically does not equate to possessing
genuine mental activity.71

Th e epistemological hypothesis critique centers on the belief among
AI experts that all non-arbitrary behavior can be formalized using specifi c
rules, which computers can replicate.72 Dreyfus challenges this notion from

66 Rosenblatt, Principles of Neurodynamics.
67  Hubert L. Dreyfus, Alchemy and Artifi cial Intelligence (Santa Monica, CA: RAND 
Corporation, 1965).
68  Hubert L. Dreyfus, What Computers Can’t Do: Th e Limits of Artifi cial Intelligence (New 
York: Harper & Row, 1979).
69  Ibid., 68.
70  Ibid., 75.
71  Ibid., 77.
72  Ibid., 102.
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a physical standpoint, emphasizing that behavior lacks universal laws and
drawing a distinction between neurological and physicochemical laws. He
asserts that meaningful human action transcends mere physical movements
and questions the ability of machines to understand semantics, as they can
generate arbitrary interpretations based on formal rules.73

Dreyfus’s critique of the ontological hypothesis revolves around the un-
derstanding that intelligent acts should be comprehensible as independent
elements.74 He does not directly examine machines as ontological entities but 
criticizes the practice of confi ning intelligence within symbolic processing.
He argues that the world must be expressed as a structured set of descrip-
tions composed of initial elements, which serves as a crucial foundation for
AI research.75 His strongest criticism lies in the formalization and modeling 
of intelligence within the symbolic ontology.

However, when it comes to Artifi cial Neural Networks (ANNs), Drey-
fus’s position appears inconsistent in his earlier and subsequent studies. Ini-
tially, his critique of ANNs was focused on the biological level, contending
that “the human brain may process information in a  completely diff erent
way than a digital computer.”76 He argued that the M-P neural model only 
off ered a partial explanation of how neurons functioned, and he considered
ANNs to be an uncritically accepted explanation embraced by neuroscien-
tists and AI experts due to their limited understanding of human experi-
ence. Dreyfus employed philosophical synthesis to challenge AI analysis, yet
it is worth noting that philosophical synthesis is rooted in concrete analysis.
Consequently, his simplistic analysis, devoid of formal education in comput-
ing, invited joint criticism from both AI and philosophy fi elds.

With the decline of symbolic AI and the resurgence of ANNs in the
1980s, Dreyfus revisited his critique in collaboration with his cousin,77 nar-
rowing the scope of his AI critique to symbolism while expressing some
optimism toward ANNs. He suggested that valid methods discovered in the
philosophy of natural sciences must also hold true in AI research.78 However,

73 Ibid., 106.
74  Ibid., 118.
75  Ibid., 123–24.
76  Ibid., 71.
77  Stuart Dreyfus S. E. is a  cousin of Hubert Dreyfus H. L., whose research interests are in
Artifi cial Neural Networks.
78  Hubert L. Dreyfus and Stuart E. Dreyfus, “Making a  Mind Versus Modelling the Brain:
Artifi cial Intelligence Back at the Branchpoint,” in Understanding the Artifi cial: On the Future
Shape of Artifi cial Intelligence, ed. Massimo Negrotti (London: Springer, 1991), 33–54.
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his arguments relied on vague references to traditional philosophy, attempt-
ing to draw connections between computer languages, AI programming,
and long-standing ideas in philosophy. Th is far-reaching approach to proof 
drew similar criticisms as his earlier work.

4. Symbolism and Connectivism: What the Future Holds
In 2022, OpenAI introduced Chat GPT, an AI model that utilizes textual
descriptions to generate content, reigniting discussions surrounding the de-
velopment of “Artifi cial General Intelligence (AGI).” Th is breakthrough has
sparked controversy and challenged many philosophical biases associated
with AI. Amidst the media hype, GPT has even been hailed as a potential
pathway to achieving AGI (Artifi cial General Intelligence).79

Within GPT, we can observe the presence of reasoning functions, albeit 
not as accurately as desired. Th is highlights the crucial role of reasoning
abilities in future general-purpose models. Furthermore, it is important
to acknowledge that language processing, while a  signifi cant aspect of in-
telligence, only encompasses certain functions and does not represent its
entirety. To truly achieve intelligence, it begs the question: Do we require
a more comprehensive and expansive model of intelligence?

4.1 Th e Reasoning Function Is Important
In the realm of AI, we have witnessed remarkable achievements through
various approaches. IBM’s Deep Blue, utilizing Expert Systems in the last
century, employed exhaustive enumeration to defeat a chess grandmaster in
1997. Similarly, DeepMind’s AlphaStar, based on Neural Networks, trium-
phed over a human professional in StarCraft  2 in 2019. Connectionist AI,
trained through neural networks employing supervised and reinforcement
learning, has proven its ability to outperform human players in numerous
video games. However, it is essential to recognize that these successes are
specifi c to particular environments. For instance, AlphaGo, designed for
playing Go, cannot excel in StarCraft  due not only to the uniqueness of the
trained neural networks but also because these networks rely on decision-
-making rather than reasoning. While both decision-making and reasoning
involve correct judgments within their respective environments, the ability 

79 Sam Altman, “Planning for AGI and Beyond,” Open AI (blog), February 24, 2023,I
https://openai.com/blog/planning-for-agi-and-beyond.
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to make judgments in settings with clear rules and objectives diff ers sig-
nifi cantly from making judgments in open environments. Consequently,
connectionist AI is inadequate as a trader in the stock market, which opera-
tes within clear rules but in an open environment.

One of the primary limitations lies in the fact that network models of 
connectionist AI struggle to eff ectively capture the macro-level eff ects of 
large-scale synchronized spiking activity and global connectivity resulting
from the micro-level phenomena of synaptic reorganization, neurotransmit-
ters, and hormonal neuromodulation.80 Consequently, modeling the brain at 
multiple levels remains a challenge for connectionist AI, and to transcend
the limitations of “specialized AI,” we must develop systems that combine
the expressive and programmatic diversity of symbolic systems with the 
ambiguity and adaptability of connectionist expressions.81

Th e concept of Neural-Symbolic AI (NeSy AI) represents a synthesis of 
connectionism and symbolism, and while this research has made theoreti-
cal progress, achieving breakthroughs in practical applications proves to be
challenging. Th ere are several reasons for this. Firstly, although the human
brain can employ fully physical neural networks to solve highly abstract rea-
soning problems, our understanding of the underlying mechanisms remains
partial. Secondly, the human brain operates through neurons exchanging
chattering bioelectrical impulses rather than symbols like words, and the
logical structures in mental thinking function diff erently from the workings
of the brain.82 Despite these signifi cant diff erences, recent research by Paul
J. Blazek and Milo M. Lin has made strides in addressing the neurosymbolic
problem with Essence Neural Networks (ENNs).83 ENNs alleviate the “unin-
terpretability” issues associated with backpropagation and stochastic gradi-
ent descent. Each neuron in ENNs possesses a diff erentiation function, with
conceptual neurons distinguishing between “like A” and “not like A,” and
diff erentiation neurons distinguishing between diff erent elements. ENNs
simulate the function of a symbolic AI program and establish a computa-
tional framework that deciphers cognitive neural processes, as highlighted
by Blazek. However, despite their advancements in logical reasoning, ENNs

80  Tom Macpherson et al., “Natural and Artifi cial Intelligence: A  Brief Introduction to the
Interplay between AI and Neuroscience Research,” Neural Networks 144 (2021): 603–13.
81 Marvin L. Minsky, “Logical Versus Analogical or Symbolic Versus Connectionist or Neat
Versus Scruff y,” AI Magazine 12, no. 2 (1991): 34.
82  Herbert Jaeger, “Deep Neural Reasoning,” Nature 538, no. 7626 (2016): 467–68.
83 Paul J. Blazek and Milo M. Lin, “Explainable Neural Networks Th at Simulate Reasoning,”
Nature Computational Science 1, no. 9 (2021): 607–18.
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still require training, and the training set serves as an “innate condition”
for their intelligence. Although ENNs excel in image recognition and text
translation, achieving AGI capabilities remains a signifi cant challenge.

One of the fundamental roles of AI is to introduce more structure into 
our understanding of human thinking. However, if we perceive thinking as
a singular entity, we may struggle to delve deeper and gain a comprehensive
understanding. It is imperative to explore various avenues and strive to
grasp the complexities and nuances of human cognition.

4.2 Neurosymbolic Systems
We have mentioned one approach to implementing Neurosymbolic systems
above and have described its rationale, but it is still necessary to understand
the purpose of the research and the problems faced by this approach.

Neurosymbolic systems represent a fascinating area of research in the
fi eld of AI that aims to bridge the gap between the subsymbolic nature of 
neural networks and the explicit representation and reasoning capabilities of 
symbolic AI.84 By integrating these two paradigms, Neurosymbolic systems 
strive to overcome the limitations of purely Connectionism or Symbolism
approaches and provide a more comprehensive framework for understand-
ing and replicating human intelligence.

Th e central idea of Neurosymbolic systems is that human minds ex-
hibit both subsymbolic processing, characterized by neural activation and
pattern recognition, and symbolic processing, which involves explicit rep-
resentation, manipulation of abstract concepts, and logical reasoning.85 By 
combining these two aspects, researchers aim to create artifi cial intelligence
systems that capture the richness and complexity of human cognition.

A key challenge in Neurosymbolic systems is the problem of symbolic 
foundations.86 Symbolic AI relies on symbols that have meaning and refer to 
objects, concepts, or events in the world. However, associating symbols with
the objects they refer to in a meaningful way is diffi  cult for purely symbolic
approaches. Neuralsymbol systems attempt to address this challenge by lev-

84 Pascal Hitzler and Md Kamruzzaman Sarker, Neuro-Symbolic Artifi cial Intelligence: Th e
State of the Art (Amsterdam: IOS Press, 2022).t
85  Hugo Latapie et al., “Neurosymbolic Systems of Perception and Cognition: Th e Role of 
Attention,” Frontiers in Psychology 13 (2022).y
86  Pascal Hitzler et al., “Neuro-Symbolic Approaches in Artifi cial Intelligence,” National 
Science Review 9, no. 6 (2022): nwac035.
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eraging the learning and pattern recognition capabilities of neural networks
to ground sensory data with symbols from real-world experiences.

Another challenge lies in bridging the gap between subsymbolic and sym-
bolic processing.87 Neural networks excel at tasks such as image and speech
recognition and can learn patterns from large datasets. Symbolic reasoning,
on the other hand, makes possible logical inference and explicit representa-
tion of knowledge. Neurosymbolic systems are dedicated to combining the
statistical learning capabilities of neural networks with symbolic reasoning
to achieve a more comprehensive understanding of complex problems.

Current research on Neurosymbolic systems is focused on developing
hybrid approaches that can exploit the complementary strengths of connec-
tionism and symbolism.88 Advances in Neurosymbolic reasoning and learn-
ing algorithms are also being actively pursued to enhance the capabilities of 
these systems. Ethical and social implications are being explored to ensure
the responsible and benefi cial deployment of Neurosymbolic AI.

In summary, Neurosymbolic systems represent a  promising research
direction that seeks to combine the power of neural networks and symbolic
reasoning. By integrating these paradigms, researchers aim to create arti-
fi cial intelligence systems capable of more comprehensive and human-like
cognition. Addressing these challenges will require interdisciplinary re-
search and collaboration across the fi elds of artifi cial intelligence, cognitive
science, philosophy, and neuroscience.

Ongoing eff orts are focused on developing new Neurosymbolic archi-
tectures, training algorithms, and evaluation frameworks to overcome these
problems and improve the capabilities and understanding of Neurosymbolic
systems.89 While challenges and philosophical questions remain, ongoing 
research on Neurosymbolic systems has the potential to open up new pos-
sibilities for artifi cial intelligence and deepen our understanding of intel-
ligence and thinking.

87 Zenan Li et al., “Soft ened Symbol Grounding for Neuro-Symbolic Systems,” in Proceedings 
of the Eleventh International Conference on Learning Representations (ICLR 2023), Kigali,
Rwanda, 2023.
88  Amit Sheth, Kaushik Roy, and Manas Gaur, “Neurosymbolic Artifi cial Intelligence (Why,
What, and How),” IEEE Intelligent Systems 38, no. 3 (2023): 56–62.
89 Pascal Hitzler, “Some Advances Regarding Ontologies and Neuro-Symbolic Artifi cial
Intelligence,” in ECMLPKDD Workshop on Meta-Knowledge Transfer, eds. Pavel Brazdil etrr  al.
(Proceedings of Machine Learning Research, 2022), 8–10.
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4.3 Cognitive Architecture & Foundational Models
In the above sections, we discussed the importance of combining symbo-
lism and connectionism in the development of AI systems, emphasizing
the signifi cance of the reasoning function and the purpose of research on
neurosymbolic systems. While this hybrid approach of Neurosymbolic AI
suggests promising directions for future research, its limited technical im-
plementation is hindered by the lack of a robust underlying theory. Cognitive
architecture, on the other hand, is widely recognized in cognitive science as
an approach to comprehending and elucidating the concept of “intelligence.”

In the previous century, two prominent models of cognition, namely 
the SOAR model and the ACT-R model, have garnered signifi cant attention
in the fi eld of artifi cial intelligence. Th e SOAR model, proposed by Paul
Rosenbloom and others, provides a  comprehensive framework that inte-
grates reasoning, learning, perception, motor control, language, cognitive
development, emotion, and potentially even consciousness within a cohesive
structure.90 Due to the multifaceted nature of human cognition, the SOAR 
model may not encompass all cognitive structures and may present solu-
tions in applications that were unforeseen by its creators.91

On the other hand, the ACT-R model, proposed by John Anderson, is 
a representative model of artifi cial neural networks (ANNs). It off ers a gen-
eral framework for understanding the organization of the brain and how 
this organization generates thoughts.92 Both the SOAR and ACT-R models 
transcend the traditional debates between connectionism and symbolic ap-
proaches. A comprehensive model must incorporate the strengths of both
paradigms since symbolic approaches aim to describe thought as a manifes-
tation of brain function utilizing specifi c types of entities and systems.

Recent theories in cognitive science have introduced the concept of dual 
processes, oft en referred to as System 1 and System 2, to explain human
behavior. Th is theoretical framework provides insights into the coordina-
tion between symbolic and connectionist AI aspects. According to the
dual-process theory of the mind, System 1 is characterized by associative,

90 Paul S. Rosenbloom, Allen Newell, and John E. Laird, Soar Papers: Research on Integrated 
Intelligence (Cambridge, MA: MIT Press, 1993).
91  M. Mitchell Waldrop, “Soar: A Unifi ed Th eory of Cognition?,” Science 241, no. 4863 (1988):
296–98.
92  Christian Lebiere and John R. Anderso, “A  Connectionist Implementation of the ACT-R 
Production System,”in Proceedings of the Fift eenth Annual Conference of the Cognitive Science 
Society (Boulder: University of Colorado, 1993), 635–40.
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implicit, imaginative, personalized, and rapid cognitive processes. In con-
trast, System 2 is characterized by analytic, episodic, verbal, generalized,
and slower cognitive processes.93 It is important to note that the relationship 
between System 1 and System 2 in human cognition is not a direct one-to-
one correspondence. While System 1 may involve the use of symbols and 
abstract functions and algorithms that connect to AI, the functions and
algorithms of System 2, although based on a symbolic approach, are imple-
mented through the neural networks of the human brain.

Additionally, Global Workspace Th eory (GWT) is a  compelling theo-
retical framework in cognitive psychology and neuroscience that aims to
elucidate the architecture underlying consciousness and cognitive pro-
cesses. Developed by Bernard Baars, GWT proposes that conscious experi-
ence emerges from the coordinated activity of multiple specialized brain
systems that exchange information within a global workspace.94 According
to GWT, the brain is comprised of various specialized processing modules, 
each responsible for specifi c tasks such as vision, language, motor control,
and memory. Th ese modules operate in parallel and independently, uncon-
sciously processing information. However, when information becomes rel-
evant to the entire cognitive system, it is broadcasted to a global workspace
– a shared neural network accessible to multiple modules.

Despite its merits, some scholars have raised concerns about GWT. Th ey 
argue that it lacks a detailed mechanism for the selection and dissemination
of information in the global workspace.95 Additionally, GWT falls short in
addressing the subjective experience and the quality of consciousness. In
2023, the result of the bet between neuroscientist Christof Koch and phi-
losopher David Chalmers brought renewed attention to GWT.96 However, 
Koch’s experiment highlighted that GWT did not provide a clear explana-

93 Keith E. Stanovich, Richard F. West, and Ralph Hertwig, “Individual Diff erences in 
Reasoning: Implications for the Rationality Debate? – Open Peer Commentary – the
Questionable Utility of Cognitive Ability in Explaining Cognitive Illusions,” Behavioral and 
Brain Sciences 23, no. 5 (2000): 645–65.
94 Bernard J. Baar and Stan Franklin, “An Architectural Model of Conscious and Unconscious
Brain Functions: Global Workspace Th eory and IDA,” Neural Networks 20, no. 9 (2007):
955–61.
95 David Kemmerer, “Are We Ever Aware of Concepts? A  Critical Question for the
Global Neuronal Workspace, Integrated Information, and Attended Intermediate-Level
Representation Th eories of Consciousness,” Neuroscience of Consciousness 2015, no. 1 (2015): 
niv006.
96  Mariana Lenharo, “Decades-Long Bet on Consciousness Ends – and It’s Philosopher 1,
Neuroscientist 0,” Nature 619, no. 7968 (2023): 14–15.
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tion for the mysteries of consciousness research within the specifi ed time
limit. Th is underscores the realization that we still have a long journey ahead
in our quest to comprehensively unravel the cognitive theory of conscious-
ness from a top-down perspective.

Moreover, the concept of a  Foundational Model was introduced in 
a  thought-provoking paper published in 2021 by Stanford University’s
Human-Centered Artifi cial Intelligence.97 Th is paper provides a clear expo-
sition of the limitations of the Large Language Model (LLM) in terms of 
implementing intelligence, and it advocates for the development of a more
comprehensive model that encompasses a broader range of disciplines. Th e
authors emphasize the need for collaboration and invite researchers in the
humanities and social sciences to actively participate in this endeavor.

Th is notion of a Foundational Model suggests a shift  in focus within the 
fi eld of AI. While technical challenges in AI have progressively diminished,
the scientifi c challenges have become more prominent, particularly those
related to cognitive science. Th ese challenges necessitate a concerted eff ort
from the cognitive sciences as a  whole, encompassing disciplines such as
philosophy and AI research. By recognizing the interdisciplinary nature of 
intelligence and encouraging collaboration across these fi elds, we can ad-
dress the complex scientifi c problems that arise in the pursuit of developing
advanced AI systems.

5. Conclusion
When refl ecting upon the entire trajectory of AI’s historical development,
we employ the designations of “symbolism’ and “connectionism” as conveni-
ent tools to distinguish between the two distinct approaches toward research
objectives. Th ese classifi cations aid us in better discerning the outcomes
derived from AI research. In truth, if we were to transport the researchers
of the bygone century to our present era, they would likely be astonished by 
the evolution of their fi eld. Many of these eminent pioneers aspired to create
intelligent systems that could rival, or perhaps even surpass, human capa-
bilities. Th eir visions extended far beyond the contemporary subdomains of 
AI, encompassing endeavors like speech recognition, image analysis, auto-
nomous driving, and various other domains that have experienced remar-
kable breakthroughs within the expansive realm of artifi cial intelligence. It

97 Rishi Bommasani and Liang Percy, “Refl ections on Foundation Models,” Stanford HAI
(website), October 18, 2021, https://hai.stanford.edu/news/refl ections-foundation-models.
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is due to their great vision and deep interest in the study of philosophy that
philosophy has developed a deep connection with AI.

Philosophical luminaries like René Descartes, John Locke, and David
Hume laid the very bedrock upon which discussions concerning the nature
of thought and knowledge were constructed, prompting AI researchers to 
embark on a quest to replicate these cognitive processes within machines.
Similarly, concepts like the intriguing “trolley problem” and the persistent
debates surrounding machine ethics have ignited fervent discussions con-
cerning the ethical decision-making abilities of AI systems and the potential
for AI to possess moral agency. In the realm of linguistics and language
philosophy, fi gures like Ludwig Wittgenstein and Noam Chomsky have
profoundly infl uenced AI research, particularly in the domains of natural
language processing and comprehension. Yet, AI research reciprocates this
infl uence by introducing fresh perspectives on traditional philosophical
domains such as the mind, consciousness, and cognition. As AI research
continues its inexorable march forward, it simultaneously begets new 
philosophical inquiries, particularly in the realms of ethics and sociology.
Philosophy, therefore, serves as the very cornerstone upon which the edifi ce
of AI inquiry is erected. It has been a guiding beacon in the development
of AI technologies and an enduring catalyst for discussions concerning the
societal implications of AI, its ethical underpinnings, and its capacity to
emulate or even surpass human capabilities.

As the landscape of artifi cial intelligence research continues to unfold,
our endeavors extend beyond the mere construction of computationally 
adept machines; they delve into the very essence of humanity itself. In our
relentless pursuit of replicating intelligence, we fi nd ourselves entangled in
profound inquiries concerning the enigma of consciousness, the essence
of the self, and the boundaries of our comprehension. As AI continues to
evolve, our responsibility transcends the quest for technological innovation;
it encompasses the preservation of those distinctive attributes that defi ne our
humanity. Th e future of AI research presents us with an intricate labyrinth,
one woven with threads of ethics, morality, and existential contemplation. It
serves as a poignant reminder that as we embark on the journey to engender
intelligence, we may inadvertently unearth profound insights into the very 
core of our own existence.
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