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Background: Despite advancements in hepatocellular carcinoma (HCC)

treatments, the prognosis for patients remains suboptimal. Cumulative

evidence suggests that programmed cell death (PCD) exerts crucial functions

in HCC. PCD-related genes are potential predictors for prognosis and

therapeutic responses.

Methods: A systematic analysis of 14 PCD modes was conducted to determine

the correlation between PCD and HCC. A novel machine learning-based

integrative framework was utilized to construct the PCD Index (PCDI) for

prognosis and therapeutic response prediction. A comprehensive analysis of

PCDI genes was performed, leveraging data including single-cell sequencing and

proteomics. GBA was selected, and its functions were investigated in HCC cell

lines by in vitro experiments.

Results: Two PCD clusters with different clinical and biological characteristics

were identified in HCC. With the computational framework, the PCDI was

constructed, demonstrating superior prognostic predictive efficacy and

surpassing previously published prognostic models. An efficient clinical

nomogram based on PCDI and clinicopathological factors was then

developed. PCDI was intimately associated with immunological attributes, and

PCDI could efficaciously predict immunotherapy response. Additionally, the

PCDI could predict the chemotherapy sensitivity of HCC patients. A multilevel

panorama of PCDI genes confirmed its stability and credibility. Finally, the

knockdown of GBA could suppress both the proliferative and invasive

capacities of HCC cells.
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Conclusion: This study systematically elucidated the association between PCD

and HCC. A robust PCDI was constructed for prognosis and therapy response

prediction, which would facilitate clinical management and personalized therapy

for HCC.
KEYWORDS
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Introduction

Hepatocellular carcinoma (HCC) continues to be a leading cause

of cancer-associated mortality, with its incidence increasing annually

at a rapid rate. It is projected that by 2025, nearly one million new

cases will be reported (1, 2). Standardized treatments such as surgical

resection or liver transplantation for early-stage tumors, transarterial

chemoembolization (TACE) for intermediate-stage tumors, and

systemic therapies, including tyrosine kinase inhibitors (TKIs) and

immune checkpoint inhibitors (ICIs) for advanced-stage tumors (3),

have enhanced the prognosis of patients with HCC. However, the

outcomes are still often short of expectations. Historically, clinical

staging systems, such as the Barcelona Clinic Liver Cancer (BCLC)

staging system, have played a central role in HCC management,

serving as routine tools for clinicians to evaluate the conditions and

therapeutic requirements of patients in practice (4). Nevertheless, the

current clinical staging systems have limitations that may hinder their

capacity to provide optimal therapeutic interventions to patients.

They only focus on clinicopathological characteristics and do not take

into account an individual’s molecular biological characteristics (5).

Therapeutic decisions relying solely on them were obviously

unilateral and could lead to potential over- or undertreatment,

contributing to suboptimal therapeutic outcomes. For HCC, which

is characterized by high heterogeneity, the realization of personalized

treatment is essential to improving patient prognosis (6, 7). Thus, it is

imperative to identify novel biomarkers that can clarify the molecular

biological profile of patients, aid in risk stratification, and ultimately

optimize HCC treatments and prognosis.

Programmed cell death (PCD), also referred to as regulated cell

death, is the gene-regulated autonomous process employed by cells

to maintain homeostatic balance. The progression and treatment

response of tumors are intricately associated with PCD. Broad

crosstalk exists in the initiation and regulation of various PCD

types, and this interaction has emerged as a prominent focus in

tumor research. Alongside the recently identified disulfidptosis and

cuproptosis, the mainly recognized types of PCD include apoptosis,

necroptosis, ferroptosis, pyroptosis, autophagy, parthanatos,

entosis, NETosis, lysosome-dependent cell death, alkaliptosis, and

oxeiptosis (8). Disulfidptosis was discovered in UMRC6 cells

characterized by high SCL7A11 expression. It occurs under

conditions of glucose deficiency, resulting in the accumulation of

disulfide bonds, which cause abnormal cross-linking between actin

and cytoskeletal proteins. Consequently, this leads to cytoskeletal
02
contraction and the collapse of the actin network, ultimately

resulting in cell death (9). Cuproptosis is induced by an overload

of copper ions, and its regulation is closely tied to mitochondrial

metabolism and the sulfuric acid pathway (10, 11). Apoptosis is the

most classical form of PCD and is the primary target of current

antitumor strategies (12). Anoikis is a specific case of intrinsic

apoptosis, triggered by the loss of cellular contact with the

extracellular matrix or other adjacent cells. It serves as an

important inhibitor in the growth and metastasis of tumors (13–

15). Necroptosis is considered an alternative mechanism to

apoptosis, primarily mediated by RIPK1, RIPK3, and MLKL, and

can be inhibited by Nec-1. Necroptosis plays a dual role in tumors,

as it can inhibit tumor growth while promoting metastasis and

immune suppression through inflammatory responses induced (16,

17). Ferroptosis is a cell death type resulting from iron-dependent

lipid peroxidation. Targeting ferroptosis represents a promising

antitumor strategy (18, 19). Pyroptosis is mediated by the

gasdermin protein family and is also associated with tumor

proliferation and metastasis (20). The potential anti-tumor effects

of pyroptosis have gained increasing attention (21). The occurrence

of autophagy relies on lysosomal degradation, and its role in tumors

is complex (22). On the one hand, autophagy is an important

mechanism for suppressing tumor formation, but once a tumor is

established, the activation of autophagy could promote further

progression (23). Parthanatos is a cell death reliant on PARP-1

and is widely implicated in pathological processes such as

inflammatory damages and neoplasms leading to aberrant

activation of PARP-1 (24). Entosis, initially discovered in certain

tumors, is described as a phenomenon of cell cannibalism (25).

NETosis is a specialized mechanism in neutrophils for resisting

pathogens, characterized by the formation of neutrophil

extracellular traps (NETs) through the release of chromatin

covered with antibacterial proteins (26, 27). Lysosome-dependent

cell death is often induced by an imbalance in the cellular internal

environment, marked by lysosomal membrane permeabilization

and the release of lysosomal contents into cytoplasm (28).

Alkaliptosis was discovered during antitumor molecular screening

of G protein-coupled receptors, and it is regulated by an elevation of

intracellular pH levels (29, 30). Oxytosis is cell death mediated by

reactive oxygen species, with KEAP1-PGAM5-AIFM1 as the key

axis regulating this process (31).

Owing to its close association with tumors, PCD has become a

central focus in the field of oncology research. However,
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comprehensive studies elucidating the relationship between PCD and

HCC remain lacking. In the study, we performed a summative

analysis of 14 PCD modes within HCC and developed the

programmed cell death index (PCDI) using a machine learning

algorithms-integrated framework. The PCDI could effectively

characterize the heterogeneity of HCC patients, enabling risk

stratifications among them and accurate prediction of their clinical

prognosis and therapeutic response. This, in turn, could facilitate the

personalized treatment and clinical management for HCC.
Materials and methods

Data collection and processing

The regulatory factors that govern 14 PCD modes were

identified as PCD-related genes (Supplementary Table S1). These

genes were sourced from the GSEA gene sets, KEGG, previous

studies (32), and the Gene-Cards online platform (https://

www.genecards.org/). A total of 1,937 nonredundant PCD-related

genes were included for analysis.

Three independent HCC datasets containing clinical and

transcriptomic data of patients, TCGA-LIHC, GSE76427, and ICGC-

LIRI-JP, were acquired from TCGA database (https://

portal.gdc.cancer.gov/), GEO database (https://www.ncbi.nlm.nih.gov/

geo/), and ICGC database (https://icgc.org/), respectively. The

transcriptomic data underwent conversion into TPM values using

the “limma” package, followed by the removal of batch effects using the

“SVA” package. Subsequently, the log2 transformation was conducted.

A total of 711 HCC samples were included for analysis: 365 from

TCGA-LIHC dataset, 231 from the ICGC-LIRI-JP dataset, and 115

from the GSE76427 dataset (Supplementary Table S2). TCGA-LIHC

dataset served as the training dataset, while the GSE76427 and ICGC-

LIRI-JP datasets were employed as validation datasets for the

construction and evaluation of the PCDI.
Analysis of expression patterns and
mutation characteristics of PCD-
related genes

The “limma” package was employed to identify differentially

expressed genes (DEGs) with these criteria of p < 0.05 and |log2FC|

> 1. A univariate Cox analysis was performed to identify prognostic

genes, which were used in subsequent analyses. Mutation

characteristics of prognostic PCD genes were described using the

“mafTools” package. The copy number variation (CNV)

characteristics of these genes were visualized through the GISTIC

algorithm and the “RCircos” package.
Identification of PCD clusters

Unsupervised clustering analysis was performed to identify the

distinct PCD clusters in HCC patients. PCA, t-SNE, and UMAP

analyses were utilized to illustrate the differences in sample
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distribution between PCD clusters. The survival analysis was

performed using the R packages “survival” and “survminer”. The

“Pheatment” package was utilized to visualize the expression

patterns of PCD-related genes, immune checkpoint genes (ICGs),

chemotherapy resistance-related genes (CRRGs), and

clinicopathological characteristics between different PCD clusters.

ICGs and CRRGs were obtained from previous studies (33, 34) and

the Gene-Cards website. The “ESTIMATE” package was applied for

calculating the TME score of patients, and their immune cell

infiltration levels were evaluated through the ssGSEA algorithm.
Functional enrichment analysis

We employed various methods to elucidate the biological

functional differences among HCC patients. For HCC patients in

different PCD clusters, Gene Set Variation Analysis (GSVA), Gene

Set Enrichment Analysis (GSEA), and GO/KEGG functional

enrichment analyses were all used. The same methods were

employed in the analysis of patients with different PCDI scores.

GSEA was also applied to explore the potential functions of PCDI

genes in patients with HCC. The criteria for GSVA and GO/KEGG

analyses were both p-value < 0.05 and FDR < 0.05; for GSEA, the

criteria were p-value < 0.05, FDR < 0.25, and NES > 1.
Construction and prognostic predictive
value evaluation of the PCDI

To develop an accurate and robust PCDI, the following steps

were adopted:
1. Using the univariate Cox analysis, 87 prognostic PCD genes

were introduced for prognostic model construction.

2. We employed a machine learning algorithm integrated

framework that incorporated 10 machine learning

algorithms, such as random survival forest (RSF), partial

least squares regression for Cox (plsRcox), supervised

principal component (SuperPC), generalized boosted

regression modeling (GBM), support vector machine

(SVM), elastic net (Enet), LASSO, ridge, stepwise Cox,

and CoxBoost. Via 10-fold cross-validation, we generated

88 algorithm combinations within TCGA-LIHC dataset for

training prognostic models, and further validation was

carried out in the GSE76427 and ICGC-LIRI-JP datasets.

Upon comparison, the model that exhibited the highest

average C-index among these three datasets was thus

determined as the PCDI.

3. In this study, the PCDI was constructed through

the combination of CoxBoost and RSF algorithms. The

CoxBoost model was instantiated utilizing the “CoxBoost”

software package, engineered to facilitate the estimation of

Cox proportional hazards models through componentwise

likelihood-based boosting techniques. For this model, the

optimal regularization parameter, signifying the extent of

shrinkage, was rigorously identified by employing the 10-
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Fron
fold cross-validation strategy within the framework of the

CoxBoost penalty function. The “RandomForestSRC”

package was employed for the RSF model. This model

comprised two parameters. Ntree was indicative of the

number of trees constituting the forest, and mtry

represented the quantity of arbitrarily selected variables

designated for bifurcation at every individual node. A

meticulous grid search was conducted on both ntree and

mtry, assisted by the 10-fold cross-validation mechanism.

All possible pairings of (ntree, mtry) were formulated, with

the pairing boasting the superior C-index value recognized

as the optimized parameters.

4. A comprehensive evaluation was subsequently carried out

to assess the prognostic value of PCDI. Patients were

categorized into dichotomous groups based on their

PCDI score. Survival curves were generated to compare

the prognosis between the two groups. ROC curves were

applied to assess the predictive accuracy of PCDI, while chi-

square analysis was performed to explore the correlation

between PCDI and other clinicopathological features. The

independent prognostic value of PCDI and other

clinicopathological factors was compared through

univariate and multivariate Cox analyses. The predictive

efficacy of PCDI and other clinicopathological attributes

was assessed through C-index curves and DCA curves.

Additionally, the predictive efficacy of PCDI was compared

with 102 other published prognostic models using C-index

curves (Supplementary Table S12).
Construction and evaluation of the
clinical nomogram

The “rms” and “regploy” packages were used to develop a

c l i n i c a l nomogram bas ed on the PCDI and o the r

clinicopathological factors, predicting the overall survival (OS) of

patients with HCC. Calibration and ROC curves along with DCA

were used to evaluate the predict ive efficacy of the

clinical nomogram.
Correlation analysis of PCDI with
immunological, gene mutation, and
stemness characteristics

Using various algorithms, including CIBERSORT-ABS,

TIMER, and XCELL, we assessed the differences in immune cell

infiltration levels between these two groups. The “ESTIMATE”

package was utilized to calculate the tumor microenvironment

(TME) score, while Gene Set Variation Analysis (GSVA) and

single sample gene set enrichment analysis (ssGSEA) were

performed to further explore the immunological functional status.

Additionally, the correlation between PCDI and ICG expression

patterns was investigated.
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The “maftools” package was applied to describe different

mutation statuses of patients between both groups. We also

compared their different TMB and microsatellite instability (MSI)

statuses. Moreover, we extracted the stemness index of HCC

patients from “StemnessScores_RNAexp_20170127.2.tsv”.

Subsequent correlation analysis was performed between the PCDI

and tumor stemness features.
Predictive value evaluation of the PCDI in
immunotherapeutic responses

Employing the Tumor Immune Dysfunction and Exclusion

(TIDE) algorithm (http://tide.dfci.harvard.edu/) and multiple

immunotherapy cohorts, we discussed the value of the PCDI in

immunotherapeutic response prediction. In TCGA-LIHC dataset, we

calculated and compared the TIDE, dysfunction, and exclusion scores

of HCC patients in the two groups. A correlation analysis between

immunotherapeutic response and PCDI score was then performed.

Subsequently, the predictive capability of PCDI for immunotherapeutic

response was further validated in 10 cohorts: IMvigor210 (35),

Checkmate (36), GSE175307, GSE179351, GSE165252, GSE103668,

GSE78220, GSE91061, GSE35640, and GSE120644, which included the

immunotherapeutic response data from tumor patients. Moreover, the

GSE109221 cohort (sorafenib treatment for HCC) and GSE104580

cohort (TACE treatment for HCC) were included for an extensive

assessment of the predictive value in HCC treatments.
Correlation analysis between PCDI and
chemotherapeutic drug sensitivities

In TCGA-LIHC dataset, we detected the different expression

patterns of CRRGs between patients in the high and low PCDI score

groups. Furthermore, the “OncoPredict” package was applied in

predicting various chemotherapeutic drug sensitivities between the

two groups.
PCDI gene analysis based on single-cell
transcriptomic data

GSE125449 was obtained from the GEO database, which

encompassed single-cell transcriptomic profiles from 19 liver cancer

patients. The “Seurat” package was employed for the initial data

processing. For the GSE125449 dataset, quality control was conducted

according to these criteria: (1) genes expressing in fewer than three

cells were excluded; (2) cells expressing fewer than 500 genes were

excluded; (3) cells expressing 500 to 10,000 genes were retained; (4)

cells with mitochondrial gene expression exceeding 20% were

excluded; and (5) cells with ribosomal gene expression exceeding

20% were excluded. The “NormalizeData” function was applied to

normalize the data passed quality control measures. Highly variable

genes were identified by the “FindVariableFeatures” function. The

“ScaleData” function was utilized for scaling gene expression profiles.
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Dimensionality reduction was executed using the “RunPCA” function,

and the first 20 principal components (PCA) were selected for cluster

analysis. The main cell types were annotated utilizing the “SingleR”

package, with subsequent corrections based on markers in the original

literature (37). The “CellChat” package was employed to assess cellular

communication among different cell populations.
PCDI gene analysis based on proteomic
and immunohistochemistry data

The HCC proteomic dataset PDC-000198 was obtained from the

CPTAC database (https://pdc.cancer.gov/pdc/), with 151 samples with

complete clinical information and proteomic data included. Using the

“limma” package and the criteria of p < 0.05 and |log2FC| > 0.585, we

assessed the different expression patterns of PCDI genes between

tumor and adjacent tissues at the protein level. Survival analysis was

performed as described before. And immunohistochemistry data of

PCDI genes was acquired from the Human Protein Atlas(HPA)

database (https://www.proteinatlas.org/) for further analysis.
Cellular cultivation and transfection

The human HCC cell lines MHCC97H andHuH-7 were acquired

from the Hepatic Surgery Center at the Affiliated Tongji Hospital of

Huazhong University of Science and Technology. All cells underwent

rigorous STR analysis to ensure they were free from mycoplasma

contamination. HCC cells were cultured with Dulbecco’s modified

Eagle’s medium (DMEM) (Cibco, Massachusetts, USA) added the

10% fetal bovine serum (FBS) (Gibco, USA) under the conditions of

37°C and 5% CO2 atmospheric composition.

SiRNAs were transfected into MHCC97H and HuH-7 cells to

downregulate GBA expression. The negative control siRNA (si-

NC), si-GBA-1, si-GBA-2, and si-GBA-3 were designed and

synthesized by Hippo Biotechnology (Huzhou, China), with

detailed sequences provided in Supplementary Table S3. HCC

cells under optimal conditions were seeded uniformly into six-

well plates. Upon cell adhesion and achieving approximately 50%

confluency, transfection was executed utilizing Lipofectamine 2000

(Invitrogen, Massachusetts, USA).
HCC tissue sample collection

Five paired HCC tumors and adjacent tissue samples were

obtained from the Affiliated Tongji Hospital of Huazhong University

of Science and Technology with the ethical authorization conferred by

the Tongji Hospital Research Ethics Committee. The information on

HCC patients is delineated in Supplementary Table S4.
Quantitative real-time PCR and
Western blotting

The total RNA extraction was conducted with the TRIzol

reagent (Vazyme, Nanjing, China). CDNA synthesis was carried
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out with ABScript III RT Master Mix (ABclonal, Wuhan, China).

Quantitative real-time PCR (qRT-PCR) analysis was performed

with Universal SYBR Green Fast qPCR Mix (ABclonal) in the

CFX96 Touch™ Real-Time PCR Detection 203 System (Bio-Rad,

California, USA). GAPDH served as the internal negative control,

and the relative mRNA expression levels of target genes were

quantified with the 2−DDCT method.

Western blotting (WB) was carried out following the published

protocols previously (38), and Image Lab software (Bio-Rad,

California, USA) was used in data analysis. GAPDH served as the

internal negative control for the comparison of protein expression

levels across various groups. The primers and antibodies involved in

this study are listed in Supplementary Table S5.
Functional experiments on proliferation,
invasion, and migration in vitro

Cell Counting Kit-8 (CCK-8, ABclonal, Wuhan, China) assay

and colony formation test were utilized for assessing the

proliferative capacity of HCC cells. For the CCK-8 assay,

MHCC97H and HuH-7 cells were seeded in 96-well plates at

3,000 cells/well density. Upon cell adhesion, the medium was

substituted with DMEM supplemented with CCK-8 reagent (100

µL DMEM + 10 µL CCK-8 per well). Each group had five duplicate

wells. The absorbance at 450 nm was measured after a 2-h

incubation at 37°C. The CCK-8 assay spanned 3 days. For the

colony formation test, HCC cells were seeded in six-well plates at

500 cells/well density. The culture medium was replaced every 3

days, following the same cell cultivation procedure as previously

described. Cultivation was terminated after 2 weeks, and the cell

colonies were fixed with paraformaldehyde (Solarbio Science and

Technology Co., Beijing, China) for 25 min, followed by staining

with the crystal violet dye (G1014, Servicebio, Wuhan, China) for

25 min. Cell colonies were counted under a microscope.

The Transwell assay and wound-healing test were both used for

assessing the migratory and invasive capacity of HCC cells. For the

transwell assay, MHCC97H and HuH-7 cells were cultured in a

serum-free medium for 8 h. Subsequently, 5*104 cells were

resuspended in 200 µL of serum-free medium and uniformly

seeded to the upper chamber of Transwell inserts (Corning, New

York, USA), with Matrigel coating (BD Bioscience, New Jersey,

USA) for invasion or with no Matrigel coating for migration. The

lower chamber was filled with 700 µL of complete DMEMmedium.

After culturing for 36 h, the chambers were harvested. Cells that

invaded or migrated to the lower surface of the chamber were fixed

and stained as previously described. Cellular migration or invasion

was quantified with ImageJ software, with the calculation of average

cell counts from five randomly selected fields of view.

For the wound-healing test, HCC cells were uniformly seeded in

six-well plates. Upon reaching a cellular confluence exceeding 95%,

scratches were performed with a 200-µL pipette tip. At 0 h, 12 h,

24 h, and 48 h, nonadherent cells were removed carefully, and

photographs were captured. The scratch closure rates were analyzed

with ImageJ software.

All experiments were independently replicated three times.
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Statistical analysis

In this study, statistical analysis was accomplished with R 4.3.0

and GraphPad Prism 8.0.1 software. The findings of in vitro

experiments were typified by representative images from three

independent replicates, conveyed as the mean ± standard

deviation (SD). The Spearman’s correlation coefficient was

conducted for the correlation test between continuous variables.

The Chi-square test was utilized to assess the correlation between

categorical variables. The differences between groups were

determined by the Wilcoxon rank-sum test, independent

Student’s t-test, or analysis of variance for continuous variables.

The survival analysis was performed employing the Kaplan–Meier

(KM) method, and the log-rank test was applied for the assessment

of statistical significance. A p-value of < 0.05 indicated

statistical significance.
Results

Landscape of expression and mutation in
PCD-related genes

The comprehensive framework for this present study is

depicted in Supplementary Figure S1.

By analyzing PCD-related gene expression profiles, we

identified 756 DEGs. Among these, 721 genes exhibited

upregulated expression in tumor tissues, while only 35 genes

displayed downregulated expression (Supplementary Table S6).

We further conducted univariate Cox regression analysis,

revealing 87 prognostic PCD-related genes. Among these, 85

genes correlated with an unfavorable prognosis in HCC, while

ADRA1A and FABP4 were protective factors for patients

(Supplementary Table S7). A subsequent analysis of the 87

prognostic PCD genes was conducted. As shown in Figure 1A,

these PCD-related genes frequently exhibit CNVs. The top 5 genes

with the highest amplification frequencies were GBA, SQLE, USP21,

GSDMC, and NDRG1, while SFN, E2F2, CDKN2A, BRCA2, and

CDX2 displayed the highest frequencies of copy number loss. The

chromosomal locations of CNVs are presented in Figure 1C.

Additionally, we observed that PCD-related genes exhibited

mutations in 125 samples, with CDKN2A exhibiting the highest

mutation frequency (Figure 1B). Figure 1D depicts the expression

network of the aforementioned PCD-related genes.
Identifying PCD clusters with distinct
characteristics of clinicopathology,
molecular patterns, and functions

In accordance with the expression profiles of the 87 prognostic

PCD genes, we identified two PCD clusters (Supplementary Figures

S2A–D). PCA, t-SNE, and UMAP analysis substantiated notable

disparities in the distribution of patient samples between the two

PCD clusters (Supplementary Figures S2E–G). As illustrated in
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Supplementary Figure S3A and Figure 2A, we found patients in

cluster A exhibited higher expression levels of PCD-related genes

and suffered advanced clinical stages and pathological grades. In

Figure 2C, survival curves clearly demonstrate that patients in

cluster A experienced worse survival outcomes. Concurrently, it

was demonstrated that the expression levels of most ICGs and

CRRGs increased in cluster A (Figure 2B; Supplementary Figure

S3B). Furthermore, we observed notable variations in immune

characteristics between patients in the two clusters. As depicted in

Figures 2F, G, patients in cluster A displayed higher immune scores

and immune cell infiltrations. For example, the infiltration levels of

MDSCs, macrophages, monocytes, and Treg cells were elevated in

cluster A, whi le only eosinophi ls exhibi ted reduced

infiltration levels.

Distinct molecular biological functions were observed across

the PCD clusters. GSVA (Supplementary Figures S4A, B) and GSEA

results (Supplementary Figures S4C, D) revealed the activation of

numerous tumor-associated biological processes and signaling

pathways in cluster A. These processes encompassed epithelial-

mesenchymal transition (EMT), cell proliferation (MYC targets,

G2M checkpoints, E2F targets, cell cycle), and signaling pathways

like WNT/b-Catenin, TGF-b, and PI3K/AKT. In contrast, cluster B

exhibited the activation of several metabolism-associated biological

processes, such as fatty acid metabolism and bile acid metabolism.

These findings were corroborated by the results of the GO/KEGG

analysis (Supplementary Figures S5A–D). In addition to disparities

in tumor biological attributes, significant differences in various

biological functions associated with PCD, such as apoptosis,

necroptosis, and autophagy, were observed between the

two clusters.
Construction and evaluation of the
prognostic predictive value of PCDI

Based on 87 prognostic PCD genes, we employed a machine

learning algorithms integrated framework that combined 10

different machine learning algorithms through 10-fold cross-

validation. The PCDI was constructed by integrating CoxBoost

and RSF algorithms, which demonstrated the highest average C-

index across three datasets among 88 algorithm combinations

(Figure 3A). With the CoxBoost algorithm, we identified GBA,

G6PD, ETV4, KIF20A, LAPTM4B, TRAF5, and SLC2A1 as the seven

most valuable PCD-related genes (Figure 3B; Supplementary Table

S8). Furthermore, the RSF algorithm enhanced the reliability of this

model (Figure 3C). We observed elevated expression levels of seven

PCDI genes in HCC tissues (Supplementary Table S6), all of which

were associated with an unfavorable prognosis (Supplementary

Table S7; Supplementary Figures S16A–G). Concurrently, through

GSEA, we detected that PCDI genes could trigger the activation of

crucial tumor-associated biological processes, such as proliferation,

invasion, and metastasis. Moreover, TRAF5 and SLC2A1 may be

linked to immunological regulation, such as inflammation

responses, and chemokine and T-cell receptor signaling pathways

(Supplementary Figures S6A–G).
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Subsequently, a comprehensive evaluation was performed for

the prognostic predictive value of PCDI. In TCGA-LIHC dataset,

survival curves demonstrated the PCDI could effectively predict the

clinical outcomes of HCC patients, as indicated by survival metrics.

Patients in the high PCDI score group suffered poor OS, PFS, DFS,

and DSS compared to others (Figures 3D–G). ROC curves

illustrated the accuracy of PCDI in prognostic prediction

(Figure 4A). Notably, the highest accuracy was observed when

utilizing the PCDI to predict OS, with the AUC values of 0.963 (95%

CI: 0.945–0.981), 0.960 (95% CI: 0.926–0.983), and 0.946 (95% CI:

0.905–0.986) at 1 year, 3 years, and 5 years. Particularly, we found

that PCDI scores for HCC patients in cluster A were significantly

higher than those in cluster B, indicating congruence in terms of

sample distribution (Figures 2D, E).

Afterward, we conducted a correlation analysis between PCDI

and clinicopathological attributes. The PCDI exhibited a significant
Frontiers in Immunology 07
association with the advanced clinical stage, T stage, pathological

grade, and vascular invasion status among HCC patients

(Figures 4B, C). Independent prognostic analysis revealed PCDI

as an independent risk factor for the OS, PFS, DFS, and DSS in HCC

patients (Figures 4D, E). Through C-index and DCA curves, we

observed that the PCDI exhibited superior predictive performance

compared to other clinicopathological attributes in predicting OS,

PFS, DFS, and DSS (Figures 4F, 5A–C; Supplementary Figure S7A–

I). Additionally, when compared with 102 published prognostic

predictive models, a C-index analysis affirmed the superiority of

PCDI (Figures 6A–D).

Finally, the prognostic predictive value of PCDI was validated in

the GSE76427 and ICGC-LIRI-JP datasets. Survival curves

substantiated the capacity of PCDI to effectively predict the

clinical outcomes of HCC patients in both datasets, indicating a

worse OS in patients with higher PCDI scores (Figures 3H, I). In the
B C

D

A

FIGURE 1

Mutation characteristics of PCD-related genes in HCC. (A) Characteristics of CNVs in PCD-related genes. (B) Characteristics of genetic variation in
PCD-related genes. (C) Location of CNVs in PCD-related genes on chromosomes. (D) Expression correlation among PCD-related genes.
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GSE76427 dataset, ROC curves presented the AUC values of PCDI

as 0.629 (95% CI: 0.517–0.761), 0.631 (95% CI: 0.531–0.772), and

0.659 (95% CI: 0.556–0.790) at 1 year, 3 years, and 5 years in

predicting OS (Supplementary Figure S8A), and in the ICGC-LIRI-

JP dataset, the values were 0.757 (95% CI: 0.630–0.890), 0.726 (95%

CI: 0.661–0.858), 0.692 (95% CI: 0.549–0.818) (Supplementary

Figure S9A). In both datasets, Chi-square analysis revealed a

significant correlation between PCDI and advanced clinical stages

(Supplementary Figures S8B, C, S9B, C). Independent prognostic

analysis demonstrated that the PCDI served as an independent risk

factor for worse outcomes in HCC (Supplementary Figures S8D, E,

S9D, E). C-index and DCA curves indicated excellent prognostic

predictive performance of the PCDI in both datasets
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(Supplementary Figures S8F–I, S9F–I). When compared with

published predictive models, the PCDI consistently demonstrated

exemplary performance (Supplementary Figures S10A, B).
Construction and evaluation of the
predictive efficacy of clinical nomograms

Owing to the remarkable prognostic predictive value of PCDI, we

developed a clinical nomogram to facilitate the utilization of PCDI. In

TCGA-LIHC dataset, the PCDI was integrated with other

clinicopathological factors to establish a clinical nomogram for

predicting the OS of patients. As shown in Figure 5D, the PCDI
B
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A

FIGURE 2

The correlation between PCD clusters, clinicopathological characteristics, and molecular patterns. (A) Different clinicopathological characteristics and
PCD-related gene expression patterns between the two PCD clusters. (B) Different clinicopathological characteristics and ICG expression patterns
between the two PCD clusters. (C) Different OS statuses of HCC patients between the two PCD clusters. (D) Correlation analysis between PCDI scores
and PCD clusters. (E) Distribution of patients with different OS statuses across PCD clusters and PCDI score groups. (F) Different TME scores between
the two PCD clusters. (G) Different immune cell infiltration patterns between the two PCD clusters. (*p < 0.05; **p < 0.01; ***p < 0.001.).
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score emerged as a significant variable in the clinical nomogram.

Calibration and ROC curves indicated the exceptional predictive

efficacy of this nomogram (Figures 5E, F). Furthermore, DCA curves

validated the superior predictive efficacy of this clinical nomogram for

OS compared to other clinicopathological factors (Figures 5G–I).

Subsequently, we applied a similar method to construct clinical

nomograms in the GSE76427 and ICGC-LIRI-JP datasets. In the

GSE76427 dataset, the PCDI score was the significant variable in the

clinical nomogram (Supplementary Figure S11A), and a similar result

was observed in the ICGC-LIRI-JP dataset (Supplementary Figure

S12A). Calibration and ROC curves clearly demonstrated the favorable
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predictive performance of these clinical nomograms in predicting OS

(Supplementary Figures S11B, C, S12B, C). Additionally, DCA curves

affirmed the nice predictive performance of clinical nomograms for OS

(Supplementary Figures S11D–F, S12D–F).
Clarifying the characteristics of
immunology and biological function based
on the PCDI score in HCC

To explore the correlation between PCDI and immunological

features in HCC patients, we conducted a comprehensive
B
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FIGURE 3

Construction of the PCDI based on an integrated framework for machine learning. (A) Combining 88 machine learning algorithms for prognostic
models via 10-fold cross-validation and identifying the best one by C-index as the PCDI. (B) Determination of seven PCDI genes via the CoxBoost
algorithm. (C) Determination of PCDI with minimal error and the importance of seven PCDI genes via the RSF algorithm. (D–G) Differences between
patients in the high and low PCDI score groups for the OS, PFS, DFS, and DSS in TCGA-LIHC dataset. (H, I) Differences between patients in the high
and low PCDI score groups for the OS in the GSE76427 and ICGC-LIRI-JP datasets.
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investigation. Using multiple immunological algorithms such as

TIMER, CIBERSORT, and XCELL, we observed notable differences

in immune cell infiltration levels between the high and low PCDI

score groups (Figures 7A, B). Furthermore, we found that the

infiltration levels of Treg cells, neutrophils, and M0 and M2

macrophages exhibited a significant positive correlation with

PCDI scores, whereas CD8+ T cells, CD4+ T cells, and M1

macrophages displayed a significant negative correlation

(Figures 7C–I). Employing the ESTIMATE algorithm, we found

that the stromal and estimate scores of patients with higher PCDI

scores were significantly decreased compared to those with lower
Frontiers in Immunology 10
PCDI scores. However, no statistically significant differences were

observed in the immune scores between these two groups

(Figure 7K). Additionally, we noticed that, compared to patients

with lower PCDI scores, patients with higher PCDI scores exhibited

significant suppression of type I/II IFN responses, T-cell co-

stimulation, cytotoxic responses, and proinflammatory processes

(Figure 7L). These findings indicated a potential suppressive

immune microenvironment in the high PCDI score group and

enhanced stromal cell infiltration in the TME of the low PCDI score

group. Furthermore, a significant positive correlation was detected

between stemness score and PCDI score, suggesting the potential
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FIGURE 4

Validation of the prognostic predictive value of PCDI. (A) Evaluating the predictive accuracy of the PCDI for the OS, PFS, DFS, and DSS in TCGA-LIHC
dataset with ROC curves. (B, C) Correlation analysis between clinicopathological characteristics and PCDI in TCGA-LIHC dataset. (D) Univariate Cox
analysis revealing the impacts of PCDI and clinicopathological characteristics on OS, PFS, DFS, and DSS in TCGA-LIHC dataset. (E) Multivariate Cox
analysis revealing the impacts of PCDI and clinicopathological characteristics on OS, PFS, DFS, and DSS in TCGA-LIHC dataset. (F) Comparing the
prognostic predictive efficacy of PCDI and clinicopathological characteristics for the OS, PFS, DFS, and DSS in TCGA-LIHC dataset with C-index curves.
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presence of active cancer stem cells in the TME of patients with

higher PCDI scores (Figure 7J).

Subsequently, we compared the biological functional attributes

between HCC patients in the high and low PCDI score groups.

Through GSVA (Supplementary Figures S13A, B) and GSEA

(Supplementary Figures S13C, D), we observed a significant

activation of tumor-associated biological processes such as EMT,

cell proliferation (MYC targets, E2F targets, G2M checkpoints, and

cell cycle), and signaling pathways like WNT/b-catenin and PI3K/
Frontiers in Immunology 11
AKT/MTOR pathways in the high PCDI score group. Conversely,

metabolic-associated processes, such as fatty acid metabolism and

bile acid metabolism, were notably activated in the low PCDI score

group. Furthermore, between these two groups, GO/KEGG analysis

(Supplementary Figures S14A–D) revealed notable differences in

various oncological biological functions and numerous cellular

processes associated with cell replication, such as nuclear division

and chromosomal disjunction regulation. Additionally, various

metabolic-related processes exhibited distinct patterns.
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FIGURE 5

Construction and evaluation of the nomogram based on PCDI and clinicopathological characteristics. (A–C) Comparing the prognostic predictive
efficacy of PCDI and clinicopathological characteristics for OS with DCA curves in TCGA-LIHC dataset. (D) Construction of a nomogram with PCDI
and clinicopathological characteristics for predicting OS in TCGA-LIHC dataset. (E) Evaluating the predictive accuracy of a nomogram for the OS
with calibration curves in TCGA-LIHC dataset. (F) Evaluating the predictive accuracy of a nomogram for the OS with ROC curves in TCGA-LIHC
dataset. (G–I) Comparing the predictive efficacy of nomogram and clinicopathological characteristics for the OS in TCGA-LIHC dataset with
DCA curves.
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Clarifying ICG expression patterns and
gene mutation statuses based on the PCDI
score in HCC

We explored the correlation between PCDI and gene mutation

statuses along with ICG expression patterns. We found a higher

frequency of gene mutations in the high PCDI score group.

Missense mutations were the predominant mutation type

observed. TP53 emerged as the most frequently mutated gene in

the high PCDI score group, displaying the greatest disparity in

mutation frequency between the two groups. Moreover, CTNNB1

mutations were most prevalent in the low PCDI score group

(Figures 8A, B). Further analysis indicated an obvious increase in

TMB levels among patients in the high PCDI score group.

Concurrently , pat ients with higher TMB levels were
Frontiers in Immunology 12
predominantly classified as cluster A (Figures 8C, D). Similarly,

we observed a positive correlation between MSI levels and PCDI

scores. Patients with high MSI levels were primarily clustered in the

high PCDI score group (Figures 8E, F). Moreover, correlation

analysis of PCDI and ICG expression patterns revealed that the

expression of the majority of ICGs exhibited a significant positive

correlation with PCDI scores (Figure 8G; Supplementary Table S9).
Evaluation and valuation of the predictive
value of PCDI in immunotherapy responses

Considering the correlation between PCDI and TMB, MSI, and

ICG expression patterns, we examined the predictive value of PCDI

in patients’ responses to immunotherapy.
B C DA

FIGURE 6

Comparison of the predictive value between PCDI and other models in TCGA-LIHC dataset. (A) Comparing the prognostic predictive efficacy of
PCDI and other published models for OS by C-index analysis. (B) Comparing the prognostic predictive efficacy of PCDI and other published models
for PFS by C-index analysis. (C) Comparing the prognostic predictive efficacy of PCDI and other published models for DFS by C-index analysis. (D)
Comparing the prognostic predictive efficacy of PCDI and other published models for DSS by C-index analysis.
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In TCGA-LIHC dataset, we calculated the TIDE, dysfunction,

and exclusion scores for HCC patients through the TIDE algorithm.

We found the TIDE and dysfunction scores exhibited a notable

reduction in the high PCDI score group, while the exclusion score

demonstrated an increase (Figures 9A–C). These results suggested

patients with higher PCDI scores could respond to immunotherapy

easily. Further analysis indicated a significant relationship between

higher PCDI scores and an increased response rate to
Frontiers in Immunology 13
immunotherapy. More patients responding to immunotherapy

were found in the high PCDI score group (Figures 9D, E). These

results reaffirmed our earlier findings, indicating that patients with

higher PCDI scores were more responsive to immunotherapy.

PCDI could be employed for immunotherapy response prediction

in HCC patients.

Subsequently, we analyzed multiple immunotherapy cohorts to

further validate the predictive efficacy of PCDI for immunotherapy
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FIGURE 7

The correlation between immunological characteristics and PCDI. (A, B) Different immune cell infiltration patterns between the high and low PCDI
score groups. (C-I) Correlation analysis of the immune cell infiltration levels and PCDI scores. (J) Correlation analysis of the stemness scores and
PCDI scores. (K) Different TME scores between the high and low PCDI score groups. (L) Different immune function statuses between the high and
low PCDI score groups. (*p < 0.05; **p < 0.01; ***p< 0.001).
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responses. In the IMvigor210 cohort, we found a higher PCDI score

was significantly associated with a better response rate to

immunotherapy, and more patients responding to immunotherapy

were in the high PCDI score group (Figures 10A–E). Furthermore, we

observed that the median levels of immune cell infiltration were

elevated in patients with higher PCDI scores, but there was no

significant difference. Additionally, there was no significant

correlation between immune microenvironment statuses and PCDI

scores, while tumor cell infiltration levels were positively associated

with PCDI scores (Figures 10F–H). Moreover, in the GSE176307,

Checkmate, GSE179351, GSE103668, and GSE78220 cohorts,
Frontiers in Immunology 14
patients in the higher PCDI score group demonstrated a greater

likelihood of responding to immunotherapy (Supplementary Figures

S15A–G); and in the GSE35640 and GSE120644 cohorts, patients in

the low PCDI score group were more responsive to immunotherapy

(Supplementary Figures S15I, J). In the GSE91061 cohort, PCDI

appeared to have no association with the immunotherapy responses

(Supplementary Figure S15H). Overall, the PCDI can effectively

predict patients’ responses to immunotherapy, and it can guide

immunotherapy for patients based on PCDI scores. Particularly for

HCC patients, those with higher PCDI scores could be better

candidates for immunotherapy.
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FIGURE 8

The correlation between mutation characteristics, ICG expression patterns, and PCDI. (A, B) Different genetic mutation characteristics between the
high and low PCDI score groups. (C) Different TMB levels between the high and low PCDI score groups. (D) Correlation analysis of TMB, PCD
clusters, and PCDI scores. (E) Correlation analysis of MSI statuses and PCDI scores. (F) Distribution of patients with different MSI statuses across PCDI
score groups. (G) Correlation analysis of ICG expression levels and PCDI. (*p < 0.05; **p < 0.01; ***p< 0.001).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1298290
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shi et al. 10.3389/fimmu.2023.1298290
Additionally, as shown in Supplementary Figures S15K, L, PCDI

can also predict the responses of HCC patients to sorafenib and TACE

treatments. Patients in the low PCDI score group were more likely to

respond to sorafenib and TACE therapies, suggesting that patients with

lower PCDI scores could be better candidates for these treatments.
Evaluation of the predictive value of PCDI
in chemotherapy sensitivity for HCC

We further investigated the predictive value of the PCDI in

chemotherapy. As depicted in Figure 11A, we found a significant

positive correlation between the PCDI scores and the expression

levels of most CRRGs. The results suggested the PCDI could be used

for assessing the drug resistance of HCC patients, and PCDI genes

may represent promising targets for overcoming chemotherapeutic

resistance in HCC (Supplementary Table S10). Figure 11B visualizes

the first nine CRRGs exhibited a positive correlation with the PCDI

score. We employed the “OncoPredict” package to further validate

the capability of PCDI in drug sensitivity prediction. As illustrated

in Figure 11C, in the low PCDI score group, the imputed sensitivity

score of oxaliplatin was significantly reduced, indicating a

heightened sensitivity in patients with lower PCDI scores.

Conversely, in the high PCDI score group, several drugs such as

paclitaxel, docetaxel, vinblastine, cediranib, and bortezomib

displayed lower imputed sensitive scores, implying a potential

increase in sensitivity to these drugs in these patients.
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Comprehensive analysis of the PCDI genes

To acquire a deeper understanding of the PCDI, we performed a

comprehensive analysis of the PCDI genes in HCC.

At the single-cell level, we investigated the expression patterns

and cellular communication characteristics of PCDI genes.

Employing the t-SNE method for cluster analysis, we identified 21

cell clusters, which were annotated as eight primary cell populations

(Figures 12A, B). Subsequently, we explored the expression patterns

of seven PCDI genes across different cell populations (Figures 12C,

D). We observed stable expression of PCD genes in malignant cells,

with LAPTM4B, G6PD, SLC2A1, and GBA exhibiting the highest

expression levels. Notably, besides malignant cells, PCDI genes are

also expressed in immune and stromal cells. G6PD is mainly

expressed in TAMs, LAPTM4B is predominantly expressed in

tumor endothelial cells (TECs), GBA is expressed in both cell

populations, and TRAF5 is primarily expressed in cancer-

associated fibroblasts (CAFs). Moreover, we conducted a cellular

communication analysis. Given the limited research on GBA in

HCC and its high expression level in malignant cells and

suppressive immune cells, we selected it as the focal point of this

analysis. We divided malignant cells into two groups: GBA+ and

GBA−, based on their GBA expression levels (GBA+ indicating high

expression, GBA− indicating low expression). We then compared

the cellular communication characteristics between the two groups.

The communication network among all cell populations is

displayed in Figures 12E, F. Among all cell populations,
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FIGURE 9

Evaluation of the predictive value of PCDI in immunotherapy responses based on TIDE algorithms. (A) Different TIDE scores between the high and
low PCDI score groups. (B) Different dysfunction scores between the high and low PCDI score groups. (C) Different exclusion scores between the
high and low PCDI score groups. (D) Correlation analysis of immunotherapy response statuses and PCDI scores. (E) The distribution of patients with
different immunotherapy response statuses across the PCDI score groups.
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malignant cells exhibited the most extensive cell communication

and showed the highest signal output intensity. TAMs, TECs, CAFs,

and HPCs exhibited similar numbers of cellular interactions, with

TAMs demonstrating the highest signal input strength. Notably,

GBA+malignant cells exhibited more extensive cell communication

in terms of both quantity and strength. For specific cellular

communication pathways, GBA+ malignant cells exhibited higher

activation levels in pathways such as SPP1, GDF, ANGPTL, PARs,

and PROS (Figure 12G). This suggested more active biological

processes in GBA+ malignant cells, including cell proliferation,

invasion, metastasis, angiogenesis, and inflammatory responses.
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At the protein level, we explored the expression patterns and

prognostic correlations of the PCDI genes. Utilizing the

proteome dataset PDC-000198, we observed a significant

upregulation in the expression of GBA, G6PD, and KIF20A in

HCC tissue, which was associated with unfavorable clinical

outcomes. Although SLC2A1 and TRAF5 exhibited no

significant expression difference between HCC and adjacent

tissues, they still displayed an association with a poor

prognosis. Unfortunately, data for LAPTM4B and ETV4 were

not available in this dataset (Supplementary Table S11;

Supplementary Figures S16H–L).
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FIGURE 10

Validation of the predictive value of PCDI for immunotherapy response in the IMvigor210 cohort. (A, B) Correlation analysis of immunotherapy
response statuses and PCDI scores. (C, D) The distribution of patients with different immunotherapy response statuses across the PCDI score
groups. (E) The distribution of patients with different immunotherapy responses and OS statuses across the PCDI score groups. (F) Correlation
between the levels of immune cells and PCDI scores. (G) Correlation between the levels of tumor cells and PCDI scores. (H) Correlation between
TME characteristics and PCDI scores.
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We subsequently acquired IHC data for PCDI genes from the

HPA database. Among them, GBA, G6PD, and KIF20A

demonstrated remarkably elevated expression levels in HCC tissue.

Similarly, SLC2A1 and TRAF5 also displayed a modest difference

between HCC tissue and normal tissue. Additionally, LAPTM4B

exhibited notably heightened expression in HCC tissue, while ETV4

exhibited slightly higher expression in HCC tissue (Figures 13A–G).
Functional evaluation of the PCDI genes

We then aimed to provide experimental evidence elucidating

the involvement of PCDI genes in HCC. Building upon prior

findings, a sequence of functional investigations focused on GBA

was undertaken.
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As shown in Figures 14A, B, both qRT-PCR and WB analyses

consistently revealed a significant upregulation of GBA in tumor

tissues. Afterward, we downregulated GBA expression levels in

MHCC97H and HuH-7 through transfection of siRNAs. GBA

knockdown was validated at both the mRNA and protein levels,

and three distinct siRNAs, si-NC (control), si-GBA-1, and si-

GBA-2, were selected for subsequent experiments (Figures 14C,

D). The results of the CCK-8 assay and colony formation test

revealed GBA knockdown significantly suppressed the

proliferative capacity of MHCC97H and HuH-7 cells

(Figures 14E, F). Simultaneously, WB analysis demonstrated

GBA knockdown substantially reduced the expression levels of

CDK1, CDK2, CDK4, and c-MYC in both two HCC cell lines

(Figure 14G). These results indicated the integral role of GBA in

the regulation of the cell cycle and tumor proliferation.
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FIGURE 11

Correlation between CRRG expression patterns, chemotherapeutic drug sensitivities, and PCDI. (A) Correlation analysis of CRRG expression levels
and PCDI. (B) Correlation analysis of multiple CRRG expression levels and PCDI scores. (C) Different drug sensitivities between the high and low
PCDI score groups. (*p < 0.05; **p < 0.01; ***p< 0.001).
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Furthermore, our results suggest that GBAmay also be involved in

the invasive processes of the tumor. The wound-healing test

revealed that the downregulation of GBA significantly

attenuated the scratch closure rates of MHCC97H and HuH-7

cells (Figure 15A), suggesting a reduced migratory capacity of

HCC cells. The Transwell assay further validated that GBA

knockdown resulted in a diminished migratory and invasive
Frontiers in Immunology 18
capacity of HCC cells (Figure 15B). WB analysis illustrated that

in both MHCC97H and HuH-7 cell lines, GBA knockdown

notably decreased the expression levels of N-cadherin, Vimentin,

Snail, and MMP2. Conversely, the expression levels of E-cadherin

increased with the downregulation of GBA (Figure 15C). These

findings suggested GBA was involved in the EMT in HCC cells,

thereby enhancing their invasive and metastatic potential.
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FIGURE 12

Expression patterns and cellular communication characteristics of the PCDI genes at single-cell level. (A, B) The results of cell clustering and
annotation for the GSE125449 dataset. (C, D) The expression patterns of seven PCDI genes in different cell populations. (E, F) The cellular
communication network among different cell populations. (G) The activated state of specific pathways in different cell populations.
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Discussion

Despite notable advancements in HCC therapies, the clinical

prognosis for patients remains unsatisfactory. Surgical

interventions, such as resection and transplantation, are the

optimal therapeutic strategies for early-stage HCC patients.

However, over half of them experience a relapse within 5 years

following a hepatectomy. While the recurrence rate is lower for liver

transplant recipients, the widespread adoption of liver

transplantation is constrained by the limited availability of donors

(1, 39). For the majority of patients diagnosed with advanced-stage
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HCC, systemic treatments are the primary therapeutic approach.

The application of TKIs and ICIs represents a significant

transformation in the current systemic treatment for HCC.

However, these treatments have only resulted in modest

improvements in survival time, ranging from 1.2 to 5.8 months,

which falls short of expectations (40–45). This may be attributed to

the limited success of personalized treatment owing to tumor

heterogeneity. Although clinical staging systems provide a

foundation for HCC management, they are incapable of assessing

the molecular biological characteristics of patients. This limitation

is a significant hindrance to the implementation of personalized
B
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FIGURE 13

Immunohistochemistry results for the PCDI genes. (A–G) Different protein expression levels of PCDI genes between tumor and normal tissues in the
HPA database.
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treatments for HCC. Thus, there is an imperative requirement to

identify potent biomarkers as complementary tools to existing

staging systems for guiding therapeutic decisions, which could

elevate the level of personalized treatment and enhance the

clinical management of HCC, thus improving the prognosis.

Distinct from accidental cell death, PCD is a complex process

characterized by intricate regulation and diverse operational
Frontiers in Immunology 20
patterns. Accumulated evidence has implicated various cell death

modes as pivotal hallmarks of tumorigenesis, potentially serving as

a theoretical foundation for innovative anticancer strategies (8). In

this study, we presented a comprehensive examination of the

correlation between 14 distinct PCD modes and the clinical

characteristics along with the biological patterns of HCC for the

first time. Initially, we investigated the expression patterns of PCD-
B

C D
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G

A

FIGURE 14

Experimental validation of GBA on proliferation. (A) Relative expression of GBA in HCC tumor tissues and para-tumor tissues at the mRNA level. (B)
Expression of GBA in HCC tumor tissues and para-tumor tissues at the protein level. (C, D) Verification of GBA knockdown efficiency with siRNA at
the mRNA and protein levels in MHCC97H and HuH-7 cells. (E, F) Effects of GBA knockdown on the proliferation capability of both cell lines
detected with CCK-8 and colony formation assays. (G) Effects of GBA knockdown on cell cycle-associated markers in both cell lines detected by
WB. (*p < 0.05; **p < 0.01; ***p < 0.001.).
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related genes in HCC. We identified 756 differentially expressed

PCD-related genes, with 721 of them exhibiting increased

expression in tumor tissues. Among these genes, we further

identified 87 prognostic PCD genes, with 85 of them associated

with an unfavorable prognosis. These findings indicated a potential

role for PCD-related genes in HCC. Among the 87 prognostic-

related PCD genes, CNVs were frequently observed, and

approximately one-third of patients experienced mutations of
Frontiers in Immunology 21
these genes. Indeed, there is some evidence suggesting that

mutations in specific genes could participate in PCD regulation

and influenced tumorigenesis. For example, mutations in the TP53

gene could disrupt various PCD pathways, playing a crucial role in

HCC progression (46).

Subsequently, we identified two PCD clusters in HCC patients.

These two PCD clusters exhibited notable differences in sample

distribution, clinical attributes, and biological features. HCC patients
B

C

A

FIGURE 15

Experimental validation of GBA on invasion and migration. (A) Effects of GBA knockdown on the migration capability of both cell lines detected with
a wound healing test. Scale bar: 100 µm (×40). (B) Effects of GBA knockdown on the migration and invasion capability of both cell lines detected
with a Transwell assay. Scale bar: 100 µm (×200). (C) Effects of GBA knockdown on EMT-associated markers in both cell lines detected by WB.
(*p < 0.05; **p < 0.01; ***p < 0.001.).
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in cluster A displayed more severe clinical manifestations, such as

advanced clinical stage, pathological grade, and poor prognosis. In

addition to higher expression levels of PCD-related genes, HCC

patients in cluster A also demonstrated elevated expression of ICGs

and CRRGs compared to those in cluster B. Drug resistance

mechanisms in HCC have been categorized into seven types,

encompassing drug uptake and export, drug metabolism, alterations

in drug targets, DNA repair, disruption in apoptosis/survival signals,

adaptation to the TME, and phenotypic transition. These mechanisms

can elucidate the roles of most CRRGs in regulating drug sensitivity in

HCC (34). Similarly, ICGs could be categorized into three types: tumor

cell dominant, immune cell dominant, and balanced type. HCC

patients with higher expression of ICGs exhibited a favorable

prognosis and were more likely to benefit from immunotherapy (33).

These findings indicated a potential association between treatment

responses for HCC patients and the expression patterns of ICGs and

CRRGs, which could cause variable treatment responses. Despite

patients in cluster A exhibiting higher immune scores and enhanced

immune cell infiltration, the presence of cells including MDSCs,

macrophages, monocytes, and Treg cells suggested the existence of

an immunosuppressive microenvironment (47). In addition, we

observed a significant activation of numerous tumor-associated

biological functions and pathways in cluster A, such as EMT, cell

proliferation (MYC targets, G2M checkpoints, E2F targets, and cell

cycle), WNT/b-catenin, TGF-b, and PI3K/AKT signaling pathways.

The characteristics of these HCC patients, including an unfavorable

prognosis, increased proliferation, heightened invasiveness, and

pathway activation, align with the proliferative subtype in the

classical classification of HCC. Additionally, the activation of the

WNT/b-catenin pathway has been defined as a hallmark of the

nonproliferative subtype of HCC, which correlates with enhanced

immune infiltration (48, 49). Notably, these features were also

observed in HCC patients in cluster A. Our findings substantiate the

close association between PCD clusters and the clinical and biological

characteristics of HCC patients. We posited that focusing on PCD

could offer a novel perspective for comprehending the pathogenesis,

evolution, and treatment of HCC.

Afterward, we constructed the well-performing PCDI model,

which could serve as a tool for prognostic prediction and

therapeutic guidance in HCC. Indeed, with the advancements in

gene sequencing and bioinformatics techniques, there has been an

exponential increase in genomic and molecular data from both

tissues and single cells. This abundance of data has led to the

identification of numerous gene signatures (referred to as

prognostic models) similar to the PCDI model. These gene

signatures could be used to assess patients at a molecular level

and group them based on shared phenotypes, such as clinical and

molecular biological characteristics and responses to specific

treatments. Thus, these signatures can assist clinicians in patient

risk stratification and screening potential beneficiaries of certain

treatments. For example, He et al. reported a coagulation pathway

subtype in HCC with distinct immunological and prognostic

features. They further developed a coagulation-related gene risk

score to predict patient prognosis and treatment responses (50).

Zeng et al. developed a hypoxia-driven gene signature for predicting

and improving outcomes for HCC patients (51). Liu et al.
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established a prognostic model for HCC with cuproptosis-related

genes and the RSF algorithm, which was used for patient risk

stratification and treatment beneficiary selection (52). In diseases

with complex etiologies and heterogeneity, such as HCC, these gene

signatures, which were composed of multiple genes, demonstrated

greater reliability compared to biomarkers such as AFP, PD-L1, and

TMB (53). However, most gene signatures were constructed using a

single algorithm, typically a regression algorithm (e.g., LASSO

regression) or a machine learning algorithm (e.g., the RSF

algorithm). This often resulted in decreased stability and

generalizability, manifesting as a significant decrease in accuracy

when tested on validation or external datasets. Furthermore, these

studies frequently lack lateral comparisons among prognostic

models, hindering the further validation of their predictive

efficacy. These limitations may compromise the ability of most

gene signatures to accurately predict and guide personalized

treatment for HCC patients. In this study, we employed a novel

framework that integrated 10 machine learning algorithms and

generated 88 prognostic models via algorithmic combinations. The

model composed of a CoxBoost and RSF algorithmic combination

was identified as the best one, referred to as the PCDI. Compared to

singular algorithms, the integration and combination of multiple

algorithms could effectively reduce the dimensionality of variables,

optimize stability and generalizability, and thereby enhance the

performance of prognostic models. Furthermore, through extensive

lateral comparisons, the superior performance of the PCDI model

has been further substantiated. This also highlighted the potential

utility of integrating and combining multiple algorithms in

developing high-performance gene signatures.

In this study, the PCDI was comprised of seven genes: GBA,

G6PD, ETV4, KIF20A, LATPM4B, TRAF5, and SLC2A1. G6PD, an

essential rate-limiting enzyme of the pentose phosphate pathway,

exhibits notable upregulation in HCC patients. G6PD was reported

as a promoter in tumor growth, invasion, and metastasis,

correlating with a poor prognosis. Concurrently, G6PD suppresses

ferroptosis by downregulating POR expression. Targeting G6PD

could potentially inhibit the progression of HCC (54, 55). ETV4

expression was upregulated in HCC tissues, involved in the

modulation of numerous oncogenes, proteins, and signaling

pathways, thereby contributing to HCC progression (56).

Increased KIF20A expression has been observed in mouse HCC

models and could promote tumor proliferation. Knockdown of

KIF20A in human HCC cell lines could also suppress cell growth

and enhance their sensitivities to sorafenib and cisplatin (57, 58).

LATPM4B, which was overexpressed in HCC, induced malignant

behaviors, including proliferation, migration-invasion, and stem

cell phenotypes (59, 60). TRAF5 enhanced the ability of HCC in

proliferation and invasion-metastasis. Reduction of TRAF5 could

induce necroptosis, thereby impeding HCC progression (61, 62).

SLC2A1 expression was upregulated in numerous solid tumors,

including HCC. SLC2A1 could promote HCC progression, and

suppressing SLC2A1 could induce immunogenic cell death in HCC

(63, 64). Currently, few studies have addressed the role of GBA in

HCC. One study suggested that GBA may be implicated in the

antineoplastic activity of artemisinin against HCC (65). These

results illuminated the complex involvement of the PCDI genes in
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HCC. In our study, we also performed a multilevel investigation of

PCDI genes based on single-cell transcriptomic data, transcriptomic

data, proteomic data, and IHC data. At the single-cell level, we

provided a possible explanation for the correlation between PCDI

and biological characteristics in patients with HCC. PCDI genes are

primarily expressed in malignant cells and are also observed in

certain immune and stromal cells such as TAMs and CAFs. These

findings suggested the presence of massive active tumor cells and a

suppressive immune microenvironment in the tumor tissues of

patients with high PCDI scores. This was consistent with the TME

characteristics of patients in the high PCDI score group. At the

mRNA and protein levels, our findings further validated the

oncogenic potential of PCDI genes. Furthermore, we investigated

the role of GBA in HCC. Single-cell analysis revealed that GBA is

predominantly expressed in malignant cells, TAMs, and TECs.

Concurrently, GBA promoted the formation of cellular

communication between malignant cells and other cells,

particularly between malignant cells and TAMs, TECs, and CAFs.

Upon activation of specific signaling pathways, GBA could enhance

malignant behaviors such as proliferation, invasion, metastasis, and

angiogenesis. These observations provided preliminary evidence for

the oncogenic role of GBA in HCC. In addition, we conducted more

deep experimental studies subsequently. In HCC patient specimens,

we validated the expression pattern of GBA, observing a significant

upregulation of GBA expression in tumor tissues at both mRNA

and protein levels. This result was consistent with relevant

transcriptomic, proteomic, and IHC data. Next, we found GBA

was intricately engaged in biological processes, including cell cycle

regulation and EMT. Functional experiments and WB analysis

further substantiated that GBA knockdown notably diminished

the proliferative, migratory, and invasive capacity of HCC cells,

which aligned with the results of single-cell analysis. Therefore, our

findings exhibited novel evidence regarding the role of GBA in

HCC. GBA promoted the malignant behaviors in HCC, including

proliferation, invasion, and metastasis. In summary, our findings

extended the understanding of PCDI genes in HCC and thereby

enhanced the credibility of PCDI as a biomarker.

Subsequently, the PCDI was further validated. The PCDI

exhibited robust predictive efficiency for clinical prognosis. In

TCGA-LIHC dataset, we observed a significant correlation

between the PCDI and clinical staging, pathological grade, T

staging, and vascular invasion status among patients. The PCDI

also emerged as an independent risk factor for the OS, PFS, DFS,

and DSS. The accuracy and stability of the PCDI in predicting

prognosis were assessed by ROC curves, C-index curves, and DCA

curves, obviously outperforming other clinical indicators. These

findings were independently validated in both the GSE76427 and

ICGC-LIRI-JP datasets. Moreover, we compared the PCDI with 102

different prognostic models published in recent years. Most models

exhibited good performance in the training dataset (TCGA-LIHC).

However, the predictive performance obviously declined in the

validation datasets (GSE76427 and ICGC-LIRI-JP). This decline

should be attributed to overfitting in models developed through a

single algorithm, resulting in reduced model generalizability.

Notably, despite the decreased predictive performance in the

validation datasets, the PCDI maintained superior performance
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over nearly all other models during the comparative analysis. This

suggests that dimension reduction through the combination of

machine learning algorithms is an effective approach for

improving model generalizability. To assess the practical utility of

PCDI in clinical settings, we developed clinical nomograms across

the three datasets. Moreover, we observed a significant correlation

between PCDI score groups and PCD clusters. Patients in the high

PCDI score group and in PCD cluster A demonstrated a substantial

overlap in sample distribution, indicating similar unfavorable

prognoses and biological functional features. The alignment

between PCDI score groups and PCD clusters undeniably

bolstered the credibility of PCDI. In conclusion, these findings

highlighted the superior predictive performance of the PCDI in

clinical prognosis, affirming its suitability as a novel biomarker for

prognostic evaluation in HCC patients.

The PCDI exhibited robust predictive efficiency for the

immunotherapeutic responses of HCC patients. In the high PCDI

score group, we observed a conspicuous immunosuppressive

microenvironment characterized by enhanced immunosuppressive

cell infiltration, including M2 macrophages, Treg cells, and

neutrophils, along with impaired antitumor immune functions such

as IFN response and T-cell co-stimulation, resembling the

immunological features of cluster A. In addition, we discerned a

significant positive correlation between stemness score and PCDI

score, aligning with a previous study associating tumor stem cell

status with immunological characteristics in solid tumors. This stem

cell phenotype was found to inhibit anti-tumor immune functions (66).

Given the close relationship between PCDI and immunological

characteristics in HCC patients, we further investigated the potential

of PCDI for predicting immunotherapeutic responses. Our results

indicated that HCC patients in the high PCDI score group displayed

elevated gene mutation frequencies. TP53 was the most frequently

mutated gene in the high PCDI score group, while CTNNB1 was the

most frequently mutated one in the low PCDI score group. Studies

have shown that TP53 and CTNNB1 mutations are common in HCC,

usually occurring in the early stages. TP53mutations lead to the loss of

P53 function and could promote the recruitment of

immunosuppressive cells, whereas CTNNB1 mutations could

enhance immune evasion and resistance to immunotherapy in tumor

cells (67). Furthermore, we found a significant positive correlation

between the PCDI score, TMB and MSI levels, and the expressions of

most ICGs. TMB, MSI, and ICG expression patterns were considered

crucial indicators for predicting immunotherapeutic responses in

tumor patients. It is widely accepted that increased levels of TMB,

MSI, and ICG expression correlated with a higher likelihood of positive

responses to immunotherapy (33, 68–70). Therefore, we posit that

HCC patients with higher PCDI scores could benefit more from

immunotherapy. Subsequently, we validated this hypothesis through

the TIDE algorithm. By calculating the TIDE scores, we observed that

patients in the high PCDI score group exhibited significantly decreased

TIDE scores. This suggested that patients with higher PCDI scores were

more responsive to immunotherapy. Subsequent correlation analysis

validated that the immunotherapeutic response rates of patients in the

high PCDI score group were significantly higher than those in the low

PCDI score group. These results provided more compelling evidence

that the PCDI could predict immunotherapy responses in HCC
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patients. Thereafter, a more comprehensive study was conducted to

assess the predictive ability of PCDI in immunotherapeutic responses

across multiple immunotherapy cohorts. Our findings revealed that in

the IMvigor210, GSE176307, Checkmate, GSE179351, GSE103668, and

GSE78220 cohorts, patients who responded to immunotherapy were

predominantly found in the high PCDI score group. In the GSE35640

and GSE120644 cohorts, patients who responded to immunotherapy

were primarily in the low PCDI score group. In the GSE91061 cohort,

immunotherapeutic responses seemed unrelated to PCDI scores. In

summary, the PCDI demonstrated excellent predictive capability

regarding immunotherapy responses. Higher PCDI scores were

associated with a greater likelihood of tumor patients benefiting from

immunotherapy. These results highlighted the PCDI as a valuable tool

for predicting the immunotherapy responses of tumor patients. In

particular, HCC patients with higher PCDI scores were more suitable

candidates for immunotherapy.

Additionally, we found that the PCDI could be employed to

predict the chemotherapeutic sensitivity of patients with HCC. The

expression levels of most CRRGs in patients with HCC showed a

significant positive correlation with the PCDI score. This

observation suggested that the PCDI could serve as an effective

indicator for assessing chemotherapeutic resistance. Patients with

higher PCDI scores may exhibit heightened resistance to

chemotherapy. In the two HCC treatment cohorts, GSE109211

and GSE104580, we observed that patients with lower PCDI scores

were more responsive to sorafenib and TACE treatments. When

comparing the imputed sensitivity scores of drugs, HCC patients

with lower PCDI scores demonstrated heightened sensitivity to

oxaliplatin, whereas those with higher PCDI scores exhibited

heightened sensitivity to inhibitors of cell mitosis and

proliferation, such as paclitaxel, docetaxel, and vinblastine, as well

as certain targeted drugs and small molecule inhibitors such as

cediranib, bortezomib, MIM1, MK-1775, and WIKI4. In summary,

the PCDI exhibited remarkable predictive efficacy in assessing the

responses of HCC patients to various therapies, including

immunotherapy. Overall, it holds promise as a novel biomarker

for guiding personalized treatment in HCC.

Although we have demonstrated the robust performance and

clinical value of the PCDI, it is necessary to recognize several

constraints inherent in this study. Firstly, the data used here

were all sourced from public databases, classifying it as a

retrospective study. During the data processing phase, we

excluded samples with incomplete clinical data, which reduced

the usage of samples and might have influenced the analytical

outcomes. Consequently, large-scale prospective studies are still

necessary to comprehensively evaluate the precise value of the

PCDI. Secondly, we provided a comprehensive landscape of the

PCDI genes across multiple levels, including the transcriptome,

proteome, and single-cell analyses. We also discussed the role of

PCDI genes in HCC development based on existing research.

Moreover, we contributed new experimental evidence supporting

the role of GBA in the progression of HCC. All of these enhance

the reliability of the PCDI as a biomarker for HCC. However,

further research is necessary to elucidate the detailed mechanisms

by which these genes regulate HCC progression and therapy

responses. Lastly, additional therapeutic cohorts involving HCC
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patients are needed to further validate the predictive value of the

PCDI in treatment responses among HCC patients.

In conclusion, we systematically analyzed the correlation between

14 programmed cell death modes and the clinical characteristics and

biological patterns of HCC. We constructed a precise and robust

PCDI model through a comprehensive array of machine-learning

algorithms. The PCDI demonstrated remarkable accuracy in

predicting the prognosis and treatment responses of HCC patients.

It served as an effective biomarker for heterogeneity delineation and

risk stratification. The application of PCDI has the potential to

facilitate personalized treatment and clinical management for HCC

patients, representing a significant contribution to clinical practice.
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