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Abstract 

Monitoring the growth of ginger seed relies on human experts due to the lack of salient features for effective 

recognition. In this study, a region-based convolutional neural network (R-CNN) hybrid detector-classifier model is 

developed to address the natural variations in ginger sprouts, enabling automatic recognition into three growth stages. 

Out of 1,746 images containing 2,277 sprout instances, the model predictions revealed significant confusion between 

growth stages, aligning with the human perception in data annotation, as indicated by Cohen’s Kappa scores. The 

developed hybrid detector-classifier model achieved an 85.50% mean average precision (mAP) at 0.5 intersections 

over union (IoU), tested with 402 images containing 561 sprout instances, with an inference time of 0.383 seconds 

per image. The results confirm the potential of the hybrid model as an alternative to current manual operations. This 

study serves as a practical case, for extensions to other applications within plant phenotyping communities.  

 
Keywords: ginger seed germination, growth monitoring, deep learning, instance segmentation 

 

1. Introduction 

Ginger, Zingiber officinale Rosc., has been recognized as an important spice in the Asia and Africa region. It is a staple in 

everyday cuisine and is available in various forms, including powder, liquid extract, and oil. Besides its culinary uses, the 

abundance of gingerol and other bioactive compounds in ginger highlights its unique medicinal value [1]. The growing 

attention toward ginger has turned it into a commodity with high international demand. In 2019, countries such as India, 

Nigeria, China, and Nepal collectively produced more than 4.09 million metric tons of ginger, accounting for approximately 

3.78 billion international dollars’ worth of commodity [2]. Despite the rising demand, ginger production in some countries is 

not yet self-sustaining. For instance, ginger was reported to have one of the highest import dependency ratios among crops in 

Malaysia, reaching 81.5% in the year 2020 [3]. 

In ginger production, the life of a young plant is propagated through seed cuttings from the rhizome of mature ginger, 

usually referred to as “sett” or “bud”. In traditional methods, after being cut from a rhizome, a ginger seed is buried directly in 

its growing medium. The survival of a ginger seed will only be examined at harvest after about 8 months of the planting period 

[4]. To better utilize resources, the common practice in ginger production is to cultivate seedlings from ginger seeds before 

planting, ensuring secure ginger germination [5]. Fig. 1 illustrates ginger propagation via a seed cut from a mature ginger 

rhizome. After being split from its mother rhizome, the buds on the seed gradually emerge and develop. The ginger seed is then 

harvested and planted in a nurturing medium to continue its growth and produce new mature rhizomes. 

 
* Corresponding author. E-mail address: meyks@usm.my  
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Fig. 1 Ginger propagation via seed from mature ginger rhizome 

In any case, the germination of ginger seeds is crucial to ensure the efficient production of the underground plant. The 

condition of ginger seed sprouting has been shown to significantly contribute to the vigor of ginger plants and final yield, as 

demonstrated by Ai et al. [6]. Inspecting the growth status of ginger seed is therefore a cornerstone in ginger plantation. 

However, categorizing ginger seed growth status is challenging, as it requires not only long hours of work but also the expertise 

of a trained eye. The categorization is difficult to pin down with simple rules due to the irregular shapes and sizes. Meanwhile, 

the inspection process involving human experts lacks traceability. To date, there is no universal standard for ginger seed 

germination growth that can be used as a reference for inspection. On top of possible slip-throughs during judgment, the 

time-consuming manual inspection is sub-optimal for large-scale production. In the long run, the quantity and quality of ginger 

production will inevitably be constrained by the available manpower. Therefore, it is imperative to introduce an automated and 

intelligent solution, such as deep learning (DL), for rapid and traceable inspection of ginger seed growth.  

Despite the use of DL methods in agriculture-related applications has been reported to be on the rise since 2016, the work 

to exploit the potential of DL methods in analyzing plant growth traits is still lacking in general compared to other applications 

in agriculture such as species classification, stress detection, and yield estimation [7]. Specifically, growth monitoring studies 

constitute only 14.08% of the 71 studies as reported by Yang and Xu [8]. Therefore, it is not surprising that the study related to 

ginger plant monitoring is nearly non-existence despite the recent interest in the crop. In a study to automate ginger shoot 

orientation recognition on a mobile platform, Fang et al. [9] demonstrated a successful application of the DL method for 

analyzing shoot orientation in the seed-sowing process. Nonetheless, there has not been a study on ginger germination growth 

monitoring to date. There is still a lack of investigation to obtain an effective object detector or feature extractor that can be 

applied to recognize growth stages of ginger seed. Therefore, this work aims to address the research gap by demonstrating the 

use of DL networks to detect, localize, and identify ginger sprouts of different growth stages in two-dimensional (2D) images.  

The contributions of this work are as follows:  

(1) This paper presents the first work to demonstrate the novel application of a DL network for ginger seed monitoring to three 

growth stages.  

(2) The results in this paper reveal the potential of the DL network to make decisions that surpass human perception in growth 

stage classification at much higher speed. This highlights the applicability of the DL network for ginger seed monitoring 

applications.  

(3) Lastly, this work contributes as a practical case study that utilizes a two-stage strategy in DL modeling, presenting a 

reference to other applications in plant phenotyping and computer vision communities.  

The following section of this paper provides an outline of details regarding materials, steps in acquisition, and the 

preparation of the dataset. Subsequently, the paper introduces a two-stage DL approach concept, followed by the presentation 

of the results from the model training work to select the best models for application. The performance of the selected DL model 

in the ginger seed germination task is then assessed and discussed in subsequent sections. Finally, the paper concludes with a 

summary and suggestions for future development. 
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2. Materials and Methods 

This section outlines the data preparation in the study, which includes the equipment used, data categories, and an 

overview of the date set collected. Next, the strategy employed in this study is also explained, followed by the details on model 

training. Lastly, the categories of the detection result, as well as the performance metrics used are also detailed in this section.  

2.1.   Data preparation 

In this work, a 1.3 megapixel (MP) color digital camera (HIKROBOT MV-CE013-50GC) was used with a 6 mm lens 

(OPTART MK-0614) to capture images of a ginger seed sample at 1280 pixels × 960 pixels resolution. The imaging system 

consisted of a 350 mm wide rotating table with a diffuse non-reflective white surface, a direct illumination source positioned 

360 mm above the table, and a camera mounted at an oblique angle to the table, 30° from the imaging horizontal plane. Images 

of the specimen were captured at every 45° rotation to allow imaging of all sprouts that might emerge at any part of the seed. 

The imaging system used in this work is shown in Fig. 2. 

  

(a) Imaging system (b) Example of the captured ginger seed image 

Fig. 2 Imaging system and resultant image in this work 

Raw mature ginger rhizomes of the species Zingiber officinale Rosc. were obtained from a local ginger plantation in 

Penang, Malaysia. The ginger specimens were prepared following industrial practice in the local ginger plantation. The gingers 

were cleaned with water to remove debris, etc. from their skin. After drying at room temperature, the ginger rhizomes were cut 

into seed pieces weighing from 20 g to 50 g. The ginger seeds were then allowed to germinate in a closed-area laboratory under 

a controlled environment with air at 26 °C and 70% relative humidity. To promote growth, the ginger setts were illuminated 

daily from 7 a.m. to 7 p.m. using white light-emitting diode (LED) lighting (TMS LITE HORTI HBL3-190-24V) with a color 

temperature of 5,300 K. In this study, 480 ginger seed samples underwent daily image acquisition for 21 days. 

Throughout the acquisition period, only 282 ginger seed samples were found to have survived and demonstrated 

development. Besides, the collected images were filtered to remove those without visible seed sprouts. In the end, the 

dataset used in this study consists of 2,277 ginger seed sprout instances in 1,746 randomly selected images from the 282 

ginger seed samples. The labeling of the collected dataset was done by a field expert with a background in ginger plantations. 

Regarding Ai et al. [6], ginger seed sprouts were categorized into three classes: Stage 1 (S1), Stage 2 (S2), and Stage 3 (S3), 

based on visual appearance, following the existing industrial practices. The regions of ginger seed sprouts in the images 

were manually identified and represented in polygon coordinates by the expert. The growth stages of ginger seed sprouts are 

illustrated in Fig. 3. 
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Fig. 3 Descriptions for the ginger seed growth stage and examples of images 

 

 

Fig. 4 Selected images of ginger sprouts with different difficulty annotations 

For each identified region of sprout, additional labels were included besides its growth stage. These included a Boolean 

value indicating whether the working sample poses difficulty in labeling and its corresponding cause, attributed to either 

“confusion”, “occlusion”, “view”, or “lighting” by the expert. Due to the continuous nature of the plant growth, it may be 

challenging for the labeler to identify the subtle differences between two consecutive growth stages (“confusion”). Besides, 
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difficulty in labeling arises when the ginger seed sprout is blocked by other parts of itself (“occlusion”) when it is imaged at a 

perpendicular angle (“view”), or under insufficient illumination (“lighting”). Several selected examples of “easy” and 

“difficult” ginger sprout instances are shown in Fig. 4. The images in Fig. 4 are scaled to the same height, maintaining their 

original aspect ratio. 

Before further processing of the dataset, the labeling process in this work was repeated three times by the field expert. 

Cohen’s Kappa statistic [10] was computed in this study to assess the reliability of the expert’s annotations. The measure has a 

value ranging from -1 to +1, where -1 indicates complete disagreement, and +1 indicates perfect agreement. As shown in Table 

1, a strong agreement (Kappa scores at 0.87) was observed for the growth stage class labels for the total 2,277 object instances. 

Despite the Kappa score of 0.57 indicating that the field expert wavered to decide whether a sample is easy or difficult, firmer 

decisions (Kappa scores at 0.79) were made on what caused the difficulties for the 750 (32.94%) samples marked “difficult” 

based on the majority of the annotations. It is undeniably challenging for the expert to classify seed growth stages. 

Table 1 Cohen’s Kappa scores for annotations on dataset characteristics 

Annotation type Sample size Kappa score (Cohen 1960) 

Class (3-class) 2277 0.8676 

Difficulty (Easy/Difficult) 2277 0.5730 

Difficulty causes (4 causes) 750 0.7873 

The annotated dataset was then split into sets of 1,075 training images, 269 validation images, and 402 testing images (a 

ratio of 8:2:3). The split was carried out through stratification based on the possible seven (23 – 1) cases of the presence of 

object instances classes in the image. This was done to ensure that each training, validation, and testing set shares approximate 

similar object instance distribution across images for the multi-class detection task. Table 2 contains information about the 

dataset splits, including the number of images and the number of object instances. 

Table 2 Dataset characteristics 

Dataset split No. of images No. of instance 
No. of instance by class 

No. of instance by difficulty and cause 

Easy 
Difficult 

S1 S2 S3 Confusion View Occlusion Lighting Total 

Training 1075 1376 564 688 124 911 245 206 12 2 465 

Validation 269 340 141 170 29 229 55 50 6 0 111 

Testing 402 561 263 251 47 387 94 73 6 1 174 

Total 1746 2277 968 1109 200 1527 394 329 24 3 750 

In general, there was a considerably lower number of object instances with S3 class labels in the datasets. This can be 

attributed to a lower occurrence of a ginger seed developing into a later stage within the limited data collection period. 

Nonetheless, the random splitting, using the aforementioned stratification, resulted in approximately similar distributions of 

classes and difficulties for the three training, validation, and testing datasets. 

Besides, it is evident from Table 2 that the difficulty in data annotation was mainly attributed to the causes of “confusion” 

and “view”, which respectively accounted for 52.53% and 43.87% of “difficult” examples in the whole dataset used. This 

result reflects the substantial amount of confusion involved in the human expert’s decisions during the classification task, 

besides the limitation caused by imaging settings. 

2.2.   Two-stage detector-classifier approach 

In object detection or instance segmentation tasks, DL algorithms are commonly categorized into two types of 

architectures, namely, one-stage detectors such as single shot detectors (SSD) [11] and you only look once (YOLO) [12], and 

two-stage detectors, which are commonly represented by a region-based convolutional neural network (R-CNN) [13]. In 

general, R-CNN detectors are found to be more prominent than one-stage detectors in plant phenotyping-related research [14]. 
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This choice can also be attributed to the fact that plant growth occurs eventually over time. Therefore, architectures based on 

the R-CNN family, with reported better detection accuracy, are preferred, since there is no pressing need for real-time detection 

[15]. Several studies have shown the advantages of a multi-stage network that benefits from the concept of task specialization. 

Separating a complex task into simpler tasks for different networks was reported to allow for more flexibility in models [16-17]. 

Compared to the knowledge necessary for fine-grained ginger seed sprout classification, the detection and localization of 

ginger seed sprouts in an image require relatively less expertise. Therefore, in this study, the multi-class ginger seed growth 

stage recognition task will be carried out in a two-stage approach. The concept of the two-stage approach is illustrated in Fig. 5. 

 

Fig. 5 Illustration of the proposed two-stage detector-classifier approach for multi-class instance segmentation 

Firstly, Mask R-CNN [18] networks were developed and trained using transfer learning with different backbones for the 

detection of ginger sprouts regardless of their growth stages. Then, using the extracted image patches, a list of state-of-the-art 

networks with different capacities was trained and compared for classification. The optimal Mask R-CNN and classifier 

selected were then stacked for the ultimate multi-class instance segmentation task. As shown in Fig. 5, the detected sprout 

instances in images by the binary-class detector can be extracted based on their detected bounding boxes and fed to a 

multi-class classifier for further classification to growth stages. Lastly, the applicability of the hybrid model obtained was 

assessed using the testing dataset. 

2.3.   Model training 

For binary-class Mask R-CNN training, several data augmentation techniques were applied to the dataset. The 1,075 

images of the training set, consisting of 1,376 object instances, were further enlarged five times in number to 5,375 images and 

26,328 object instances using a combination of pixel-level augmentation techniques and mosaic augmentation [19]. Firstly, 

each image in the training set was altered four times using at least one of the pixel-level techniques, including adjustments to 

image brightness, hue, saturation, gamma contrast, Gaussian noise, blur, rotation, and flipping. The parameters for these 

pixel-level augmentation techniques were selected to ensure that the alterations appeared reasonable, based on expert feedback. 

Then, mosaic augmentation was also carried out on both the original and pixel-level augmented images. Object instances from 

four randomly selected images were chosen each time to simulate the training images while maintaining the object scale. 

For classifier training, image patches were extracted from the instance segmentation training and validation datasets 

based on the annotated bounding boxes, padded with a five-pixel border. This extraction step was applied directly to the 

validation dataset; however, the step was done on the training dataset after pixel-level augmentation but before mosaic 

augmentation. As a result, 6,880 and 340 image patches were extracted from the training and validation datasets, respectively, 

using the cropping method. Fig. 6 summarizes the aforementioned dataset preparation steps. 
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Fig. 6 Dataset preparation summary 

2.4.   Training details 

In this study, all models were trained using a machine equipped with an Intel i7-10700 CPU (16MB cache, 2.90 GHz) 

CPU, 32 GB DDR4 RAM modules, and an NVIDIA Quadro RTX4000 GPU with 8 GB GDDR6 RAM. In the first part of the 

experiment, the training of binary-class Mask R-CNN was carried out in two steps using the training dataset, as illustrated in 

Fig. 7. 

 

(a) Illustration of transfer learning for Mask R-CNN 

Fig. 7 Illustration of transfer learning and fine-tuning steps for Mask R-CNN training in this work 
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(b) Illustration of fine-tuning for Mask R-CNN 

Fig. 7 Illustration of transfer learning and fine-tuning steps for Mask R-CNN training in this work (continued) 

As shown in Fig. 7(a), during the transfer learning step, common objects in context (COCO) pre-trained weights were 

loaded for all layers in the network, except for the output layers. During transfer learning in this work, the weights for the layers 

up to the feature pyramid network (FPN) were held constant, while the weights in later parts of the network, including the 

region proposal network (RPN), mask head, and classifier head were made trainable. 

Then, in the second fine-tuning step, the model obtained was subsequently fine-tuned with weight updates in all layers, as 

depicted in Fig. 7(b). In this step, the model was loaded with the weights obtained from the previous transfer learning step for 

all layers, including the output layers. The weights from all layers were set to be trainable in the fine-tuning step. 

In both steps, the training dataset was used, and the early stopping of 10 epochs was applied to avoid overfitting the 

models. All the Mask R-CNN models were trained using a stochastic gradient descent (SGD) optimizer with a batch size of one 

image. The image was padded and resized to 1024 pixels × 1024 pixels for Mask R-CNN input. The Mask R-CNN was trained 

with two backbones (ResNet-50 and ResNet-101). The hyperparameters used in this study are depicted in Table 3. 

Table 3 Binary-class Mask R-CNN hyperparameters for ginger seed sprout detection training 

No. Backbone Training mode 
Hyperparameters 

Trained epochs 
Learning rate Weight decay Weights 

1 
ResNet-101 

Transfer learning 1 × 10-4 1 × 10-4 COCO 22 

2 Fine-tuning 1 × 10-5 1 × 10-3 No. 1 last epoch 12 

3 
ResNet-50 

Transfer learning 1 × 10-4 1 × 10-4 COCO 17 

4 Fine-tuning 1 × 10-5 1 × 10-3 No. 3 last epoch 15 

In the second part of the study, the classification training dataset was used to train image classifiers separately. A total of 

six state-of-the-art architectures with different capacities and complexities, indicated by their floating-point operations 

(FLOPs), were selected for training as multi-class classifiers in this study. These include DenseNet [20], EfficientNet [21], 

InceptionResNet [22], NASNet [23], ResNet, and Xception [24] which range from 4.29 G to 23.84 G FLOPs, as shown in 

Table 4. 
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Table 4 Hyperparameters for ginger seed sprout classification training 

No. Model name FLOPs 
Input image 
size (pixel) 

Training mode 
Batch 
size 

Hyperparameter Trained 
epochs L2 decay Weights 

1 DenseNet201 4.29 G 224 × 224 
Transfer learning 

16 
1 × 10-5 ImageNet 198 

Fine-tuning 1 × 10-3 No. 1 last epoch 102 

2 EfficientNetB7 5.20 G 224 × 224 
Transfer learning 16 1 × 10-5 ImageNet 396 

Fine-tuning 8 1 × 10-3 No. 2 last epoch 144 

3 InceptionResNetV2 13.17 G 299 × 299 
Transfer learning 

16 
1 × 10-5 ImageNet 441 

Fine-tuning 1 × 10-3 No. 3 last epoch 118 

4 NASNetLarge 23.84 G 331 × 331 
Transfer learning 16 1 × 10-5 ImageNet 255 

Fine-tuning 4 1 × 10-3 No. 4 last epoch 138 

5 ResNet152V2 10.91 G 224 × 224 
Transfer learning 

16 
1 × 10-5 ImageNet 264 

Fine-tuning 1 × 10-3 No. 5 last epoch 123 

6 Xception 8.36 G 299 × 299 
Transfer learning 

16 
1 × 10-5 ImageNet 311 

Fine-tuning 1 × 10-3 No. 7 last epoch 336 

Similar to the previous part, the models were trained through transfer learning and fine-tuning steps, illustrated in Fig. 8. 

In the transfer learning step, ImageNet weights were loaded to the classifiers, excluding the output layers. All the layers before 

the output layers had frozen weights during transfer learning. Then, the weights obtained in the transfer learning step served as 

the initialization for fine-tuning, which involved weight updates in all layers. As shown in Table 4, Adam optimizer and 

dropout regularization with a rate of 0.5 was applied to all classifiers, with a 10-epoch early stopping setting. A learning rate of 

1 × 10-5 was selected to reduce oscillation in optimization. The L2 regularization parameter increased from 1 × 10-5 during 

transfer learning to 1 × 10-3 for fine-tuning, introducing a higher level of regularization during fine-tuning with a large number 

of layers. The batch size was set at the maximum even number manageable by the GPU unit used in this study. To 

accommodate the training of the selected ImageNet-pretrained architectures listed in Table 4, the cropped patches were resized 

to the network’s default input sizes. 

 

Fig. 8 Illustration of transfer learning and fine-tuning steps for classifiers training in this work 

2.5.   Performance evaluation 

In instance segmentation, performance is evaluated based on a threshold of IoU to gauge the overlap between the 

predicted examples and the label examples. In this study, the IoU value was determined based on the mask predictions. A true 

positive (TP) prediction in instance segmentation is obtained when the prediction exhibits sufficient overlap with labeled 
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examples (i.e., greater or equal to an IoU threshold class) and has the same class label. In the event of duplicated predictions on 

the same labeled example, only the prediction with the highest confidence score is considered as the TP. Predictions that do not 

meet the TP criterion are considered false positives (FP). 

An FP prediction can be further categorized into several types based on localization, classification performance, and 

duplication (DUP) in prediction. An FP prediction with at least 0.1 IoU for any labeled object in the image is regarded as a 

localization (LOC) error, while an FP prediction with an IoU value lower than 0.1 is considered an unlabeled background (BG) 

object [25]. Nevertheless, an FP prediction is also attributed to model confusion when an incorrect class prediction is made. 

Finally, when a labeled object instance is not detected by the model, the example is considered a false negative (FN). 
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The relationship between TP, FP, and FN, and average precision (AP) for a class i at the IoU threshold of x, is listed in Eq. 

(1) to (4). The primary indicator used for the detection performance is the mAP at 0.5 mask-based IoU, denoted as mAP0.50. 

The computation of mAP0.50 facilitates the evaluation of the detection abilities of the proposed model in sprout localization as 

well as the growth stages classification simultaneously. The integration of the area under the interpolated precision-recall curve 

for mAP0.50 in this study was calculated using all points, as explained in Knausgård et al. [26]. 
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In the three-class classification, the following rules were followed to assess the performance of the classifiers. For every 

class, a TP is accounted for when a prediction is made in the class correctly. If a prediction is made to a class incorrectly, it is 

considered an FP to the class. Similarly, when an example of a class is wrongly predicted as another class, it is considered a FN 

to the class. Then, the F1 score of a class was calculated using Eq. (5). The average F1 score across all classes, used as the 

indicator for classification performance, is given in Eq. (6). 

3. Results and Discussion 

In the early parts of this section, the results of the Mask R-CNN models and classification models are presented separately. 

Then, the multi-class detection results of the hybrid model, which is the combination of the best models selected in the 

aforementioned parts, are analyzed and discussed with illustration using selected examples. 

3.1.   Sprout detection using Mask R-CNN 

The performances of the Mask R-CNN models using COCO-pre trained ResNet-101 and ResNet-50 backbones are 

depicted in Table 5 at their best mAP0.50 epochs. From Table 5, the binary-class detection using Mask R-CNN recorded the best 

performance at the 11th epoch and 12th epoch with ResNet-101 and ResNet-50 backbone, respectively. The Mask R-CNN 
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architecture managed to achieve an outstanding performance of 96.17% mAP0.50 in binary detection, identifying the presence 

of ginger seed sprouts in the image regardless of their growth stage. Therefore, Mask R-CNN with ResNet-50 backbone was 

selected for the binary-class detection task due to its superior mAP0.50 measure on the validation set. 

Table 5 Validation performances of the binary-class Mask R-CNN models 

No. Backbone 
Selected 

epoch 

Validation performance 

Average IoU mAP0.50 APEasy,0.50 APDifficult,0.50 
By difficulty cause 

APConfusion,0.50 APView,0.50 

1 ResNet-101 11 0.7050 0.9426 0.9432 0.9730 0.9455 1.0000 

2 ResNet-50 12 0.7294 0.9617 0.9651 0.9820 0.9636 1.0000 

3.2.   Multi-class classification of growth stages 

Table 6 depicts the performances of the classifiers trained in this study. In particular, the best classifier was the 

ResNet152V2 model, which attained an average 89.49% validation F1 score. Although ResNet152V2 has only a slight 0.01% 

advantage over InceptionResNetv2, which comes as second-best using the same cropping method, ResNet152V2 is favored 

due to its lower number of FLOPs. 

Table 6 Validation performance of the classifiers trained in this study 

No. Model name FLOPs 
Selected 
epoch 

Validation performance 

F1 score (S1) F1 score (S2) F1 score (S3) Avg. F1 score 

1 DenseNet201 4.29 G 201 0.8935 0.8896 0.8889 0.8906 

2 EfficientNetB7 5.20 G 417 0.9053 0.8974 0.8519 0.8848 

3 InceptionResNetV2 13.17 G 481 0.8866 0.8855 0.9123 0.8948 

4 NASNetLarge 23.84 G 262 0.8729 0.8709 0.8929 0.8789 

5 ResNet152V2 10.91 G 271 0.8881 0.8841 0.9123 0.8949 

6 Xception 8.36 G 362 0.8850 0.8802 0.8814 0.8822 

Fig. 9 illustrates the losses as well as validation F1 scores computed during the two-step training of the best-performing 

Resnet152V2. In general, the losses of the trained models exhibited large spikes when transitioning from the transfer learning 

setting to the fine-tuning setting. This phenomenon can be attributed to the significantly lower number of layers being trained 

in the transfer learning stage, with only the last few layers included in training at this point. When the models were trained with 

the fine-tuning setting, a large increment in loss due to regularization was introduced. Nevertheless, this transition is also 

accompanied by improvement in classification, as reflected by the increments in the F1 score using the validation set. The 

learning that continued in the fine-tuning stage is reflected by the convergence of losses in the fine-tuning stage. 

 

Fig. 9 Losses and validation F1 score for best-performing Resnet152V2 in the classification task 
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Due to its superior classification performance at lower computation cost, the ResNet152V2 bounding cropping model was 

selected to be employed as the classifier for the two-stage approach. An examination of the predictions on the validation set by 

the selected ResNet152V2 model using gradient-weighted class activation mapping (Grad-CAM) [27] revealed that the model 

has been sufficiently trained. Several selected examples of the Grad-CAM results are depicted in Fig. 10. The top row of 

images in Fig. 10 consists of the original images, while the middle row and bottom row consist of the corresponding 

Grad-CAM overlay images using ResNet152V2 model at the first epoch and the selected fine-tuned epoch, respectively. The 

“difficult” examples among the selection are depicted with blue borders in Fig. 10. Comparing the illustration for the model at 

the first training epoch and its selected fine-tuned state in Fig. 10, the gradient patterns shifted from dispersing patterns to 

appearing concentrated at certain salient parts of ginger sprouts. In general, predictions of S1 were associated with the whole 

region of the emerging sprout, while the regions of tips were revealed to be important in S2 and S3 predictions. 

 

Fig. 10 Validation examples with Grad-CAM overlays (ResNet152V2) 

3.3.   Hybrid model (Binary-class detector + Multi-class classifier) 

Table 7 depicts the testing performance of the binary-class Mask R-CNN and the hybrid model using the testing dataset, 

which consists of 402 images with 561 sprout instances. The binary-class Mask R-CNN managed to detect sprout instances 

regardless of growth stages at a mAP0.50 of 93.10%. Coupling the Mask R-CNN with the selected bounding cropping 

ResNet152V2 classifier increases the model complexity, as reflected by the higher number of FLOPs at 320.19 G compared to 

the simpler binary-class Mask R-CNN at 309.28 G. However, the hybrid model achieved detection at a lower mAP0.50 of 

85.50%. Besides, the hybrid model marked the multi-class detection at an average inference time of 382.87 ms per image, 

which is an additional 94.08 ms compared to the binary-class Mask R-CNN. The increment in inference time, however, is 

insignificant. 

Table 7 Average precision by class of the binary-class Mask R-CNN vs the hybrid model in testing 

Detection 
type 

Model FLOPs 
Avg. inference 

time/image (ms) 
Avg. IoU 

Average precision 

By class 

mAP0.50 AP1,0.50 
(S1) 

AP2,0.50 
(S2) 

AP3,0.50 
(S3) 

Binary-class Mask R-CNN (ResNet-50) 309.28 G 288.79 0.7733 - - - 0.9310 

Multi-class 
 Mask R-CNN (ResNet-50) + 

ResNet152V2 
320.19 G 382.87 0.7733 0.7653 0.8444 0.9552 0.8550 
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Table 8 shows the AP0.50 score by example difficulties for both models. From Table 8, the binary-class Mask R-CNN 

achieved 92.76% and 95.40% AP0.50 for “easy” and “difficult” examples, respectively. Interestingly, when the similar 

binary-class Mask R-CNN was applied as a part of the hybrid model for multi-class detection, the measures dropped to 89.66% 

and 75.86% respectively. The comparable or even higher AP0.50 score achieved for “difficult” examples in binary detection 

indicates that the Mask R-CNN architecture has managed to perform binary detection regardless of human intuition on the 

examples. In contrast, the larger number of mistakes made by the hybrid model on the “difficult” examples than the “easy” 

examples may also indicate a substantial level of agreement with human confusion in distinguishing sprout growth stages. In 

particular, the AP0.50 observed for the “difficult” examples due to “confusion” was marked at only 71.28%. This result reflects 

the different nature of the task to detect the presence of the ginger seed sprout and the task to further classify them into different 

growth stages. 

Table 8 Average precision by difficulty and attributed causes of the binary-class Mask R-CNN vs the hybrid model in testing 

Detection 
type 

Model 

Average precision 

By difficulty 

APEasy,0.50 APDifficult,0.50 
By difficulty cause 

APConfusion,0.50 APView,0.50 

Binary-class Mask R-CNN (ResNet-50) 0.9276 0.9540 0.9681 0.9452 

Multi-class  Mask R-CNN (ResNet-50) + ResNet152V2 0.8966 0.7586 0.7128 0.8356 

Fig. 11 illustrates the confusion matrix of the multi-class detection normalized with the number of labeled examples in 

each class. It is noticeable that the confusion errors were concentrated between the two earlier S1 and S2 growth stages, while 

only a few errors were made for the S3 examples. Specifically, from Fig. 11, 96% of the S3 examples in the testing dataset were 

correctly detected compared to 83% and 86% for S1 and S2 respectively. Nonetheless, the results in the confusion matrix show 

that the classification mistakes by the model were mainly due to confusion between two consecutive growth stages. In contrast, 

there was no confusion between the S1 and S3. This finding is in line with the observations obtained by Wang et al. [28]. The 

authors have attributed the phenomenon to the higher difficulty in distinguishing the two growth stages that share higher 

similarities compared to earlier growth stages. In other words, this result also clearly reflects the sequential relationship in plant 

growth. 

 

Fig. 11 Normalized confusion matrix: Mask R-CNN + ResNet152V2 (testing) 

Besides, the predictions made by the two-stage hybrid model during testing were analyzed and depicted in Table 9. The 

results show that the two-stage model generally achieved more accurate detection in classes S2 and S3 than in class S1. 

According to Table 9, it is evident that the majority of the FP errors occurred in S1 examples. Out of the 267 positive S1 
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predictions made by the model, only 219 were predicted. This ratio is lower compared to S2 (215 TPs for 233 predicted 

positives) and S3 (45 TPs for 49 predicted positives) examples. In general, the FP errors made by the hybrid model were 

mainly due to confusion and localization errors. Specifically, confusion errors accounted for 60.42%, 77.78%, and 75% of the 

FP errors for each S1, S2, and S3 example, respectively. 

Table 9 Multi-class detection results of the hybrid model in testing 

Object 
class 

No. of predicted 
positive 

Detection results of object instances 

TP 

FP 

FN Localization 
(LOC) 

Duplication 
(DUP) 

Confusion 
(CON) 

Background 
(BG) 

S1 267 219 15 0 29 4 4 

S2 233 215 4 0 14 0 18 

S3 49 45 1 0 3 0 1 

Another noteworthy observation from Table 9 is that the majority of the FN predictions made by the hybrid model are 

from the class S1, which was made up of 18 out of 19 of the FN predictions of the model. The investigation of the FN 

predictions revealed model weakness in the detection of small objects in the images. As shown in Fig. 12, it can be observed 

that FN detection tends to occur for object instances with smaller box areas. The misses in detection are concentrated for 

examples with less than 500 pixels of box area for the two-stage model. Nonetheless, this result indicates that FN predictions 

can be reduced using a higher-resolution camera. 

 

Fig. 12 Object instance box characteristics: Mask R-CNN + ResNet152V2 (testing) 

Finally, Fig. 13, Fig. 14, and Fig. 15 each show a randomly selected example of the detections in the testing dataset. Fig. 

13(a), Fig. 14(a), and Fig. 15(a) present the annotations by the experts for Examples A, B, and C, while Fig. 13(b), Fig. 14(b), 

and Fig. 15(b) depict the examples with prediction labels corresponding to Examples A, B and C using the hybrid model 

alongside confidence scores. Despite discrepancies between the segmented masks and the expert-labeled masks in these 

examples, the predicted masks by the hybrid model conform to the general shape of the sprouts, as reflected by the IoU scores, 

which average more than 77%. Regarding example A in Fig. 13, it is notable that the hybrid model suffers from confusion 

errors, where predictions are sufficiently detected and localized but not correctly categorized. 
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(a) Expert annotations in Example A (b) Model predictions in Example A 

Fig. 13 Annotated Example A in the testing dataset and corresponding predictions using the hybrid model 

 

  

(a) Expert annotations in Example B (b) Model predictions in Example B 

Fig. 14 Annotated Example B in the testing dataset and corresponding predictions using the hybrid model 

 

  

(a) Expert annotations in Example C (b) Model predictions in Example C 

Fig. 15 Annotated Example C in the testing dataset and corresponding predictions using the hybrid model 
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As indicated by the 0.87 Kappa score in Table 1, drawing a clear boundary between the growth stages of ginger seed 

sprouts has proven to be a daunting task for humans. In particular, the examples marked with “confusion” difficulty by the 

expert in the testing dataset were revealed to be the culprit in model performance. Nonetheless, the hybrid detector-classifier 

model managed to mark a detection performance of 85.50% mAP0.50 in order of milliseconds per image. Furthermore, the 

examination of the model predictions revealed that the model decisions were in line with the human expert’s confusion in 

growth stages classification. These results highlight the potential of the hybrid model as a rapid alternative to replace human 

inspection for ginger seed germination monitoring. 

4. Conclusions 

As the first work concerning the recognition of growth stages in ginger seed during germination, this study has 

successfully applied DL models to automate the recognition of three growth stages from images. This work also demonstrates 

the effectiveness of a two-stage strategy employing Mask R-CNN models for instance segmentation tasks. In future efforts, the 

incorporation of DL techniques, such as label smoothing, may be considered to mitigate the impact of human errors in 

annotation on model performance. At the same time, the results indicate that the exploration to benefit from the existing 

sequential relationship between object classes could be a worthwhile subject in the future of ginger seed monitoring. Another 

prospective research direction involves utilizing temporal information in a series of images. The a priori sequential relationship 

between plant growth stages, as demonstrated by Samiei et al. [29], may be exploited for classification. 
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