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offspring, mediated by the M1
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Introduction: High-fat diet (HFD) consumption is associated with various

metabolic disorders and diseases. Both pre-pregnancy and maternal obesity can

have long-term consequences on offspring health. Furthermore, consuming an

HFD in adulthood significantly increases the risk of obesity and metabolic

disorders. However, an intriguing phenomenon known as the obesity paradox

suggests that obesity may confer a protective effect on mortality outcomes in

sepsis. In sepsis, activation of the cholinergic anti-inflammatory pathway (CAP) can

help mitigate systemic inflammation. We employed a metabolic programming

model to explore the relationship between maternal HFD consumption and

offspring response to sepsis.

Methods: We fed female mice either a standard diet (SC) or an HFD during the

pre-pregnancy, pregnancy, and lactation periods. Subsequently, we evaluated

28-day-old male offspring.

Results: Notably, we discovered that offspring from HFD-fed dams (HFD-O)

exhibited a higher survival rate compared with offspring from SC-fed dams

(SC-O). Importantly, inhibition of the m1 muscarinic acetylcholine receptor

(m1mAChR), involved in the CAP, in the hypothalamus abolished this

protection. The expression of m1mAChR in the hypothalamus was higher in

HFD-O at different ages, peaking on day 28. Treatment with an m1mAChR

agonist could modulate the inflammatory response in peripheral tissues.

Specifically, CAP activation was greater in the liver of HFD-O following agonist

treatment. Interestingly, lipopolysaccharide (LPS) challenge failed to induce a

more inflammatory state in HFD-O, in contrast to SC-O, and agonist treatment

had no additional effect. Analysis of spleen immune cells revealed a distinct
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phenotype in HFD-O, characterized by elevated levels of CD4+ lymphocytes

rather than CD8+ lymphocytes. Moreover, basal Il17 messenger RNA (mRNA)

levels were lower while Il22 mRNA levels were higher in HFD-O, and we

observed the same pattern after LPS challenge.

Discussion: Further examination of myeloid cells isolated from bonemarrow and

allowed to differentiate showed that HFD-O macrophages displayed an anti-

inflammatory phenotype. Additionally, treatment with the m1mAChR agonist

contributed to reducing inflammatory marker levels in both groups. In summary,

our findings demonstrate that HFD-O are protected against LPS-induced sepsis,

and this protection is mediated by the central m1mAChR. Moreover, the

inflammatory response in the liver, spleen, and bone marrow-differentiated

macrophages is diminished. However, more extensive analysis is necessary to

elucidate the specific mechanisms by which m1mAChR modulates the immune

response during sepsis.
KEYWORDS

high fat diet (HFD), cholinergic, hypothalamus, obesity, muscarinic 1 acetylcholine
receptors, DOHaD (Developmental origins of health and disease), maternal programming
1 Introduction

Obesity paradoxically exhibits an association with improved

mortality outcomes in sepsis when compared with leaner

patients (1, 2). This phenomenon, known as the obesity

paradox, has been discussed previously (3, 4). However, it is

important to note that the protective effect of obesity in sepsis

remains a topic of debate (5). Some studies have demonstrated

the beneficial impact of obesity on sepsis outcomes (6, 7).

Conversely, other studies have found that after adjusting for

comorbidities, the effect of obesity on sepsis outcomes becomes

statistically insignificant (8–10). Furthermore, the precise

mechanisms underlying the protective function of overweight

and obesity in sepsis remain poorly understood, although some

studies have proposed that energy stores in adipose tissue and

differential inflammatory responses in individuals with obesity

may play an important role (3, 11, 12).

The central nervous system plays a critical role in communicating

with the immune system, with the vagus nerve being particularly

important (13). The regulation of inflammatory responses mediated

by the vagus nerve is referred to as the cholinergic anti-inflammatory
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pathway (CAP) with participation of cholinergic receptors, the a7
nicotinic acetylcholine receptor (a7nAChR) and the m1 muscarinic

acetylcholine receptor (m1mAChR) (14–16).

Stimulation of the CAP can attenuate inflammatory responses

in sepsis (17). The JAK2/STAT3 pathway plays a crucial role in the

anti-inflammatory effects associated with a7nAChR activation (18,

19), downregulating NF-kB binding to DNA, subsequently

reducing cytokine expression (20). In a previous study from our

research group, we observed that short-term consumption of a

high-fat diet (HFD) for 3 days resulted in reduced expression of

hypothalamic a7nAChR and increased mortality in C57/BL6 mice

following sepsis induced by administration of lipopolysaccharide

(LPS) or caecal ligation and puncture (CLP). Moreover, HFD

consumption impaired the ability of PNU (a specific agonist of

a7nAChR) to reduce inflammatory markers after LPS injection,

thereby contributing to a higher probability of death in sepsis (21).

The global increase in obesity has contributed to a rise in pre-

pregnant and maternal obesity, which has long-term implications

for the health of both mothers and their offspring (22–24). Animal

studies utilizing rodent and non-human primate models have

demonstrated that maternal obesity induced through dietary

interventions leads to various health issues in the offspring,

including obesity, diabetes, hypertension, fatty liver, and

behavioural changes (25–29). However, there are few studies

available regarding the impact of maternal obesity on the

inflammatory response in offspring. Studies conducted on both

rodent models and humans have uncovered that maternal obesity

can instigate significant modifications in the immune response,

microbiota, and the development of the immune system (30–33).

Therefore, our objective was to investigate the impact of

maternal HFD consumption on the systemic inflammatory

response and sepsis susceptibility in the offspring.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1273556
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Costa et al. 10.3389/fimmu.2023.1273556
2 Materials and methods

2.1 Animals

Five-week-old Swiss female mice were obtained from the

Multidisciplinary Center for Biological Research at the University

of Campinas (Campinas, Brazil). The mice were kept in a

temperature-controlled environment with a 12-h photoperiod.

Experiments were performed in accordance with the ethical

guidelines and regulations for use of laboratory animals. Ethics

approval for this study, including the design for sepsis development

and mortality analysis presented in this paper, was obtained from

the State University of Campinas Ethics Committee (Protocol 5733-

1). Importantly animals did not experience any form of suffering

throughout the study. The female mice were randomly separated

into two groups (25 dams per group), fed with either a HFD or a

standard diet (SC) (NUVILAB® Cr-1, Nuvital, PR, Brazil) (Table 1)

for 4 weeks ad libitum before mating. Dams continued with the diet

during pregnancy and lactation. After birth, the litter size was culled

to eight mice per litter. Male offspring were weaned on postnatal

day 18 (P18) and fed with standard chow until P28 (Figure 1). Each

experimental protocol, such as surgery and survival tests, was

conducted using one pup from each dam to constitute the

respective group. Offspring at different ages were utilized for the

receptor expression experiment, specifically at birth (P0), P56, and

P82. The HFD was prepared in our laboratory according to the

AIN-93G but modified for high-fat content (45%) as described

previously (34).
2.2 Anaesthesia and tissue extraction

Mice were anaesthetized with a mixture containing ketamine

(139.2 mg kg-1 body weight [bw]), diazepam (4 mg kg-1 bw), and

xylazine (18.4 mg kg-1bw) and subsequently euthanized by

decapitation for tissue collection. Tissue samples were frozen in

liquid nitrogen and stored at -80°C until processing. Isoflurane, an

inhalational anaesthetic, was used for induction and maintenance of
Frontiers in Immunology 03
general anaesthesia during stereotaxic surgery. It was used at 3%–

4% for induction and reduced to 2% during surgery.
2.3 Inflammatory response

The offspring were separated as described below to evaluate the

inflammatory response.

Design 1

An LPS-induced sepsis mouse model was used. Mice were

treated with a lethal dose of LPS diluted in sterile saline and

administered intraperitoneally (IP) at 30 mg kg-1 bw. The

offspring were observed for 72 h. The survival rate was recorded

every 1 h. In the survival study, mice were allowed ad libitum access

to food and water. The experiment was replicated twice to validate

the obtained results.

In a separate study, mice were treated intracerebroventricularly

(ICV) with benztropine (mesylate) 20 min before the LPS challenge.

Benztropine, an m1mAChR antagonist, or phosphate-buffered

saline (PBS) was injected at 40 µg kg-1 bw. The mice were

sacrificed 10 h after LPS administration; the serum was collected

for analysis. The time was defined based on the survival rate.

Design 2

To explore the underlying mechanisms of central m1mAChR-

mediated anti-inflammatory effects in mice, McN-A-343, an

m1mAChR agonist, was administered ICV at 5 ng kg-1 bw. The

mice were euthanized 2 h after injection. In a separate study, the

mice were treated with an agonist (ICV) 20 min before LPS

challenge (1 mg kg-1 bw IP). The mice were euthanized 2 h after

LPS challenge.
2.4 Immunofluorescence analysis

At P28, offspring of both groups (SC-O and HFD-O) were

perfused with 4% paraformaldehyde (PFA). Then, the brains were

extracted and fixed in 4% PFA. Subsequently, the brains were

embedded in Tissue-Tek (Sakura, Torrance, CA, USA), frozen,

and cut into 15-µm thick coronal sections, following The Rat

Brain in Stereotaxic Coordinates by Charles Watson and George

Paxinos. The slides were incubated in blocking solution (3%

bovine albumin; Sigma-Aldrich, St. Louis, MO, USA) for 90

min, followed by incubation with specific primary antibodies

overnight at 4°C. The primary antibodies used were anti-Chrm1

diluted 1:500 (sc-365966, Santa Cruz Biotechnology, Inc,

California) and anti-F480 diluted 1:500 (ab6640, Abcam, Inc,

Boston). The slides were washed and incubated with appropriate

secondary antibodies for 120 min. The secondary antibodies used

were Donkey anti-rabbit conjugated to Alexa 488 diluted 1:500

(A-21206, Thermo Fisher Scientific, Inc, Waltham, MA) and goat

anti-Rat conjugated to Cy3 diluted 1:1000 (ab6953, Abcam). TO-

PRO-3 Iodide was used for nuclear labelling (1:1000; Life

Technologies Inc, Carlsbad, CA). The slides were visualized and

images were captured using a TCS SP5II Leica confocal

microscope (Leica Microsystems, Wetzlar, Germany).
TABLE 1 Primers sequence for quantitative polymerase chain reaction.

Gene Forward
sequence (5′→3′)

Reverse
sequence (5′→3′)

Il17 AACCGTTCCAC
GTCACCCT

GCACTGAGCTTCCCAGATCAC

Il22 CGGCTCATCGG
GGAGAAAC

TGACTGGGGGAGCAGAACG

Tgfb CAACCCAGGTCC
TTCCTAAA

GGAGAGCCCTGGATACCAAC

Ifng TGAGCTCATTGA
ATGCTTGG

ACAGCAAGGCGAAAAAGGAT

Nos2 GCCACCAACAAT
GGCAACA

CGTACCGGATGAGCTGTGAATT

Arg1 AACACGGCAGTG
GCTTTAACC

GGTTTTCATGTGGCGCATTC
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2.5 Serum measurements

The offspring were sacrificed by decapitation on P28 after

overnight fasting, and blood was collected. The samples were

centrifuged at 1300 rpm for 15 min at room temperature. The

serum was collected and stored at -80°C until processing. The

cytokine levels were measured using DuoSet enzyme-linked

immunosorbent assay kits, DY410-05 mouse TNF; DY401-05

mouse IL1-b/IL1-F2; and DY417-05 mouse IL-10 (R&D Systems,

Minneapolis, MN, USA). CD14 levels were measured using Mouse

CD14 Quantikine ELISA Kit, #MC140 (R&D Systems, Minneapolis,

MN, USA. The C-reactive protein (CRP- K059-8.1) and albumin

levels (K040-1) were obtained from biochemical analysis provided

by BIOCLIN (Quimica Basica LTDA, Belo Horizonte, Brazil).
2.6 Stereotaxic surgery

The offspring from control and HFD dams received 3%–4%

isoflurane inhalational anaesthesia and were placed in a stereotaxic

instrument (Stoelting Co. Wood Dale, Illinois). Isoflurane was

reduced to 2% during surgery for cannula implantation.

Afterwards, a 26G needle was used for the cannula and inserted

into the lateral ventricle through a cranial incision. The following

coordinates relative to the bregma were used to access the lateral

ventricle: anterior/posterior axis, 0.34 mm from bregma to the rear;

lateral, 1 mm from the midline; dorsoventral, 2.2 mm from the

surface of the skull. Dental acrylic glue was added to secure the

cannula following correct positioning. After surgery, the animals

were allowed to recover from anaesthesia on a warm pad.

Carprofen, an analgesic, was administered for postoperative pain

(5 mg kg-1 bw, IP). The cannula placement was tested 6 days after

the surgery by measuring the dipsogenic response to angiotensin II

injection (2 µL of a 1 × 10-6M solution, ICV) (Sigma-Aldrich Inc,

MERK, St Louis, MO). The time and dose of McN-A-343 (agonist)
Frontiers in Immunology 04
and benztropine (antagonist) treatment were standardized from

time-course and dose-response experiments (data not shown).
2.7 Isolation of bone marrow cells

Bone marrow cells were isolated as described previously (21).

The long bones (femur and tibia) were removed from the offspring

and placed in 0.5 mL perforated tubes inside 1.5 mL tubes, which

were then centrifuged at 1200 g for 15 s at 4°C. The cell pellet was

resuspended in Roswell Park Memorial Institute (RPMI) 1640

culture medium (Invitrogen, Carlsbad, CA, USA) supplemented

with 10% foetal bovine serum (FBS; Invitrogen) and 1% penicillin

(100 U/mL)/streptomycin (100 mg/mL) (Invitrogen). The cells were

counted with a Neubauer chamber and placed on 60 mm culture

dishes. The cells were cultivated for 7 days at 37°C in an atmosphere

containing 5% CO2 and 95% humidity. After this period, photos

were taken of the culture, and cells were trypsinized and collected

for western blotting, RT-PCR, and flow cytometry analysis.
2.8 Western blotting analysis

Tissues were homogenized in freshly prepared ice-cold buffer

(1% v/v Triton X-100, 0.1 M Tris, pH 7.4, 0.1 M sodium

pyrophosphate, 0.1 M sodium fluoride, 0.01 M EDTA, 0.01 M

sodium vanadate, 0.002 M PMSF (Phenylmethylsufonyl fluoride),

and 0.01 mg mL-1 aprotinin). The samples were centrifuged at

12,000 rpm for 30 min at 4°C. The supernatant was removed and

the protein concentration was determined using the Bradford dye-

bleeding method. The samples were resuspended in Laemmli

sample buffer and boiled for 5 min before separation by SDS-

PAGE using a miniature slab gel apparatus (Bio-Rad, Richmond,

CA, USA). The separated proteins were electrotransferred from the

gel to a nitrocellulose membrane for 30 min in a transfer buffer that
FIGURE 1

Experimental design. Mind the Graph website was used to prepare Figure 1.
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contained methanol and SDS. These membranes were incubated

overnight at 4°C with specific antibodies: a7nAChR (bs-1049R,

Bioss Antibodies Inc, Woburn, MA), phosphorylated JNK (#9255;

Cell Signaling Technology Inc, Danvers, MA), phosphorylated

STAT3 (#9145, Cell Signaling), GAPDH (sc-32233, Santa Cruz

Biotechnology, Inc., California), and phosphorylated NF-kB
(#30335, Cell Signaling Technology Inc, Danvers, MA). Then,

after washing with Tris-buffered saline (TBS)-Tween 20 (TTBS;

10 mM Tris, 150 mM NaCl, 0.5% Tween 20), the nitrocellulose

membranes were probed with peroxidase-conjugated secondary

antibodies (KPL, Gaithersburg, MD, USA) for 90 min at room

temperature. Proteins were detected by a chemiluminescence kit

(SuperSignal West Pico Chemiluminescent Substrate, Thermo

Fisher Scientific Inc) and bands were evaluated by densitometry

using Scion Image software (ScionCorp, MD, USA). The intensities

of the bands were normalized to the loading control (GAPDH).
2.9 RT-PCR analysis

Frozen tissues were homogenized in TRIzol reagent (Life

Technologies) for RNA extract ion according to the

manufacturer’s instructions. After incubation for 5 min at room

temperature for complete dissociation, chloroform was added to the

homogenate. Following centrifugation, the RNA phase was

precipitated with isopropyl alcohol and the pellet was washed

with 75% and 100% ethanol. After drying, the pellet was

resuspended in ultra-pure water and stored at -80°C. RNA was

quantified with a Nanodrop ND-2000 (Thermo Fisher Scientific).

Reverse transcription was performed with 3 µg of total RNA using

the High-Capacity cDNA Reverse Transcription kit (Life

Technologies). Relative expression was determined using TaqMan

Gene Expression Assays (Thermo Fisher Scientific) and SYBR

Green Master Mix (Bio-Rad). The following TaqMan Gene

Expression Assays were used: Chrna7 (Mm01312230_m1), Il6

(Mm01312 2 3 0_m1 ) , Tn f (Mm004432 5 8_m1 ) , I l 1 b

(Mm00434228_m1), Socs3 (Mm00545913_s1), and Il10

(Mm01288386_m1). Gapdh (4351309; Applied Biosystems, USA)

was used as endogenous control.

Quantitative PCR was performed with the SYBR Green Master

Mix (Bio-Rad). The primers used are listed in Table 1. Real-time

PCR was performed on an AB/Prism 7500 fast platform. The data

were analysed using the Sequence Detection System 2.0.5 software.
2.10 Flow cytometry analysis

Cells isolated from the spleen and bone marrow were submitted

to flow cytometry analysis. The spleen and bone marrow cells were

evaluated with a macrophage panel, which determined the number

of CD45+, F480+, CD11c+, and CD206+ cells. Spleen cells were also

evaluated with a lymphocyte panel, which determined the number

of CD3+, CD4+, CD8+, and Ly6 G+ cells.

Spleens were collected, and then gently dissociated by a needle

and rinsed with PBS. Single-cell suspensions (1 × 106) were then

suspended in DMEM/FBS). The cells were treated with specific
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antibodies conjugated to FITC (CD45; CD206), PECy7 (CD45),

APC (F480; CD4), PE (CD11c; Ly6G; CD8), and Alexa 488 (CD3).

The incubation was at room temperature for 15 min protected from

light. The analysis was performed in BD-FACS Accuri Cytometry

(Becton Dickinson, MD, USA) and 10,000 events were acquired.

The data were analysed using the FlowJo 7.6 software.

Bone marrow cells were collected after 7 days of spontaneous

differentiation. The cells were treated with specific antibodies

conjugated to FITC (CD206), PECy7 (CD45), APC (F480), and

PE (CD11c). The incubation was at 4°C for 15 min protected from

light. Analysis was performed in BD-FACS Accuri Cytometry

(Becton Dickinson) and 10,000 events were acquired. The data

were analysed using the FlowJo 7.6 software.
2.11 Data presentation and
statistical analysis

The results are presented as the mean ± standard error. The

data were evaluated with the Kolmogorov–Smirnov test to

determine whether they were normally distributed. After

confirming a normal distribution, Student’s t-test for unpaired

samples or analysis of variance (ANOVA) was used. ANOVA was

followed by the Bonferroni post hoc test to determine differences

between more than two groups. The log-rank test was used to

analyse the survival rate. Statistical significance for all analyses was

set at p < 0.05. All statistical comparisons were performed using

GraphPad Prism 9.5.3 (GraphPad Software, San Diego, CA, USA).
3 Results

3.1 Maternal HFD consumption protects
HFD-O against sepsis mortality

In the study, we administered a lethal dose of LPS to SC-O and

HFD-O to induce sepsis and then recorded their survival rates.

First, we assessed whether the LPS challenge was effective in

inducing sepsis in both groups. We measured biomarkers of

sepsis and the inflammatory response in the serum of the

offspring 10 h after the LPS challenge.

The CRP levels were higher after LPS treatment, with no

significant difference between SC-O and HFD-O. Albumin levels

did not show any significant differences between the groups. CD14

levels were elevated in all offspring treated with LPS and exceeded

the highest point of the standard curve (Table 2). TNF, IL1-b, and
IL-10 were undetectable in SC-O and HFD-O that were not

challenged with LPS. TNF and IL-10 levels were lower in HFD-O

compared with SC-O after LPS injection. However, this decrease

was prevented by treatment with an m1mAChR antagonist. IL1-b
was only detected in SC-O after LPS injection and in HFD-O

treated with the m1mAChR antagonist (Table 2). We also evaluated

the spleen weight. LPS significantly increased the spleen weight in

SC-O compared with SC-O that were not treated with LPS

(Table 2). However, there was no difference in spleen weight in

HFD-O treated with LPS.
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Considering that LPS was sufficient to activate the

inflammatory response, we assessed the SC-O and HFD-O

survival curves. The mortality rate was significantly higher in SC-

O compared with HFD-O (Figure 2). However, prior ICV treatment

with benztropine (mesylate), a pharmacological antagonist of

m1mAChR, increased the mortality of HFD-O to levels

comparable to SC-O (Figure 2). This finding suggests that central

m1mAChR is involved in protecting HFD-O against sepsis.
3.2 Maternal HFD consumption leads
to higher central m1mAChR
expression in HFD-O

We evaluated the distribution and expression of cholinergic

receptors (a7nAChR and m1mAChR) in the hypothalamus
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(Figure 3). First, we evaluated the mRNA levels of both receptors

at P0, P28, P56, and P82. While m1mAChR mRNA expression was

higher in HFD-O at P0, P28, and P82 compared with SC-O

(Figure 3A), a7nAChR mRNA expression in HFD-O was reduced

at P0 and increased at P82 compared with SC-O (Figure 3B).

Additionally, we evaluated m1mAChR protein expression by

western blot at P28, P56, and P82. We noted increased

hypothalamic m1mAChR protein expression in HFD-O at P28

and P56 compared with SC-O (Figures 3C, D). Considering the

higher hypothalamic expression of m1mAChR, we evaluated he

distribution of m1mAChR expression with immunofluorescence at

P28 (Figure 3E). There were more m1mAChR+ cells in the median

eminence of HFD-O compared with SC-O (Figure 3E).

Nevertheless, m1mAChR expression seems to be higher in the

arcuate nucleus compared with the median eminence of

SC-O (Figure 3E).
3.3 m1mAChR reduces inflammatory
pathway activation in the liver of HFD-O

To assess the impact of central m1mAChR activation on liver

signalling pathways and a7nAChR expression in offspring at P28,

we administered McN-A-343 (ICV), a pharmacological agonist of

m1mAChR (Figure 4A). Figures 4B, C indicate that hypothalamic

activation of m1mAChR increased a7nAChR and phosphorylated

STAT3 (pSTAT3) protein expression in the liver of SC-O and HFD-

O. Notably, pSTAT3 expression was higher in the liver of HFD-O

than SC-O. Additionally, m1mAChR activation was accompanied

by a reduction in phosphorylated JNK (pJNK) expression in the

liver (Figures 4B, C).

We also evaluated liver cytokine mRNA levels. Il1b expression

was not different between the groups, indicating similar levels of

this cytokine. Interestingly, Tnf expression in HFD-O liver was

lower compared with SC-O liver. However, treatment with the

m1mAChR agonist (McN-A-343) via ICV administration reduced

Tnf mRNA expression in SC-O liver, but there was no additional
TABLE 2 Serum biomarkers of sepsis in the offspring.

Control offspring (SC-O) Hight-fat diet offspring (HFD-O)

Basal LPS Basal LPS

Benztropine (antagonist) – – – – +

CPR (mg/L) 2.718 ± 0.0412 3.155 ± 0.0658* 2.794 ± 0.032 3.052 ± 0.054* 3.018 ± 0.111*

Albumin (g/dL) 3.168 ± 0.131 3.168 ± 0.131 2.882 ± 0.155 2.944 ± 0.056 3.008 ± 0.089

CD14 (pg/mL) 7.953 ± 0.004 Overage Overage Overage Overage

TNF (pg/mL) Not detected 202.48 ± 21.34 Not detected 97.89 ± 27.39* 201.23 ± 33.68#

IL-1b (pg/mL) Not detected 469.63 ± 82.66 Not detected Not detected 81.15 ± 16.97

IL-10 (pg/mL) Not detected 93.39 ± 25.54 Not detected 39.46 ± 10.63 137.39 ± 33.90#

Spleen weight (g/100 g body weight) 0.448 ± 0.023 0.544 ± 0.045* 0.431 ± 0.020 0.493 ± 0.026 0.597 ± 0.060
The data represent the mean ± standard deviation (n = 6 per group).
The data were analysed with analysis of variance.
*Significant difference (p < 0.05) between basal and lipopolysaccharide (LPS) treatment.
#Significant difference (p < 0.05) difference between HFD-O and SC-O.
FIGURE 2

Survival analysis of the offspring. Sepsis was induced with a lethal
dose of lipopolysaccharide (LPS; 30 mg LPS kg-1 body weight,
intraperitoneal) administered to control offspring (SC-O, n = 10) and
high-fat diet offspring (HFD-O, n = 10) at postnatal day 28. Some
HFD-O were pretreated for 20 min with the m1mAChR antagonist
benztropine (intracerebroventricular) (HFD-O + Benztropine, n =
10). The mice were observed for 72 h, and the survival rate was
recorded every 1 h. The data represent the mean ± standard error of
the mean. *p < 0.05 HFD-O versus SC-O and HFD-O + Benztropine
versus HFD-O (log-rank test).
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effect in HFD-O liver (Figure 4D). Il10mRNA expression increased

in HFD-O liver compared with SC-O liver, but ICV administration

of McN-A-343 significantly increased Il10mRNA expression in SC-

O liver compared with HFD-O liver. Furthermore, McN-A-343

delivered via ICV administration demonstrated a greater inhibitory

effect on liver Il6 mRNA expression in HFD-O compared with SC-

O. Similarly, the mRNA levels of Socs3, an important regulatory

molecule in inflammation, were higher in HFD-O liver (Figure 4D).

This indicates that maternal HFD consumption may lead to

increased SOCS3 expression in HFD-O liver, potentially

impacting the regulation of inflammatory responses.

As shown in the Figure 4E, we investigated the hepatic

inflammatory response in SC-O and HFD-O after LPS treatment.

We simultaneously administered SC-O and HFD-O LPS (1 mg kg-1,

IP) and an m1mAChR agonist. Liver pSTAT3, a component of the

anti-inflammatory pathway, was increased in all LPS-challenged
Frontiers in Immunology 07
mice. This suggests activation of the anti-inflammatory response in

both SC-O and HFD-O following LPS treatment. Moreover,

phosphorylated NF-kB (pNF-kB) and pJNK expression was

decreased in the liver of LPS-treated HFD-O compared with LPS-

treated SC-O. This indicates that maternal HFD consumption may

have modulated the hepatic inflammatory response in the offspring,

resulting in reduced activation of these pro-inflammatory signalling

pathways. Interestingly, when we administered LPS-treated HFD-O

with an m1mAChR agonist, there was a further decrease in pNF-kB
and pJNK expression in the liver (Figures 4F, G). This suggests that

activation of m1mAChR can enhance the anti-inflammatory

response and attenuate the activation of pro-inflammatory

signaling pathways in the liver of HFD-O following LPS

challenge, as depicted in Figure 4H. These findings indicate that

maternal HFD consumption and m1mAChR activation can

influence the hepatic inflammatory response in offspring,
A B

D

E

C

FIGURE 3

Cholinergic anti-inflammatory pathway receptor expression in the hypothalamus of the offspring. Hypothalamic m1mAChR and a7nAChR messenger
RNA (mRNA) (A, B) and protein (C, D) levels were evaluated by RT-PCR and western blot, respectively, in control and high-fat diet offspring (SC-O
and HFD-O, respectively). The mRNA and protein levels were evaluated at birth (neonate) and postnatal days 28, 56, and 82. Molecular weight of
proteins: m1mAChR – 52KDa; a7nAChR – 55KDa; and GAPDH – 35KDa. The percent expression of control (GAPDH) is shown (mean ± standard
error of the mean, n = 5 pups per group). Asterisks indicate significant differences determined by Student’s t-test (*p < 0.05 and **p < 0.01).
Confocal images illustrating m1mAChR+ cells (green) and nuclear labelling with TO-PRO-3 (blue) in coronal brain sections (15 µm thick) from 28-
day-old offspring (E). Scale of images 50 µm. The number of m1mAChR+ cells in the median eminence (ME) of SD-O and HFD-O (n = 3 per group)
(E). V3: third ventricle.
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potentially leading to a more pronounced anti-inflammatory state

and reduced activation of pro-inflammatory pathways in HFD-O

following LPS treatment.
3.4 m1mAChR activates the lymphocyte
response in the spleen of HFD-O

The inflammatory and immune response to pathogens depends

on the spleen. We investigated the levels of inflammatory cytokines

in the spleen of SC-O and HFD-O following ICV treatment with the

m1mAChR agonist. However, there were no significant differences

in the inflammatory markers between the groups (data not shown).
Frontiers in Immunology 08
Next, we performed flow cytometry using macrophage and

lymphocyte panels to evaluate the inflammatory response of the

spleen. In the macrophage panel, there was a decrease in

CD45+CD11c+ cells in HFD-O compared with SC-O, and an

increase in CD45+CD206+ cells in HFD-O (Figure 5A). These

findings were supported by the differential expression of

macrophage markers in the spleen. Similarly, Nos2 mRNA

expression was decreased in HFD-O compared with SC-O

(Figure 5C), whereas Arg1 mRNA expression appeared to be

increased in HFD-O (Figure 5C). Furthermore, treatment with

the m1mAChR agonist decreased Nos2 mRNA expression and

increased Arg1 expression only in SC-O after LPS challenge

(Figure 5D). Taken together, these observations confirm that the
A B

D

E F

G H

C

FIGURE 4

Inflammatory markers in the liver of the offspring. Experimental design for pharmacological treatment with the m1mAChR agonist McN-A-343
(delivered intracerebroventricularly [ICV]) (A). Hepatic pSTAT3, a7nAChR, and pJNK protein expression (B, C) and Tnf, Il1b, Il10, Il6, and Socs3
messenger RNA (mRNA) expression (D) were evaluated by western blot and RT-PCR, respectively, in 28-day-old standard and high-fat diet offspring
(SC-O and HFD-O, respectively). The mice were treated with the m1mAChR agonist McN-A-343 (5 ng kg-1, ICV). Experimental design for
simultaneous administration of lipopolysaccharide (LPS; 1 mg kg-1, intraperitoneal) and the m1mAChR agonist (ICV) (E). Hepatic pSTAT3, pNF-kB, and
pJNK protein expression (F, G) and Tnf, Il1b, Il10, Il6, and Socs3 mRNA expression (H) were evaluated by western blot and RT-PCR in 28-day-old
SC-O and HFD-O. Molecular weight of proteins: pSTAT3 – 90KDa; a7nAChR – 55KDa; pJNK – 55KDa; pNFkB – 65KDa; and GAPDH – 35KDa. The
data represent the mean ± standard error of the mean (n = 5 per group). The data were analysed with analysis of variance. *Significant difference
(p < 0.05) between basal and agonist or LPS treatment. #Significant difference (p < 0.05) between HFD-O and SC-O. Mind the Graph website was
used to prepare Figures 4A, E.
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macrophages present in the spleen exhibi t an ant i-

inflammatory profile.

The lymphocyte panel revealed an increase in CD3+CD4+ cells

in the spleen of HFD-O compared with SC-O, and a reduction in

CD3+CD8+ cells in HFD-O (Figure 5B). These findings were

accompanied by a decrease in Il17 and Tgfb mRNA expression in

the spleen of HFD-O compared with SC-O (Figure 5C). To

investigate the increase in T-helper lymphocytes, we determined

the specific type of T-helper lymphocytes present in the spleen of

HFD-O after LPS challenge and treatment with an m1mAChR

agonist. Interestingly, we observed a reduction in Il17 mRNA

expression in the presence of LPS (Figure 5D), while Il22 mRNA

expression appeared to be increased in HFD-O (Figure 5C). These

observations highlight the presence of distinct lymphocyte profiles

in HFD-O. Additionally, Ifng mRNA expression was decreased in

HFD-O following LPS challenge, and the m1mAChR agonist

reduced Ifng mRNA expression in LPS-treated SC-O (Figure 5D).

Overall, these findings suggest reduced differentiation of

lymphocytes towards the Th17 profile in HFD-O in the basal

state and after LPS challenge.
3.5 m1mAchR activates bone marrow cell
differentiation in anti-inflammatory
macrophages profile in HFD-O

To investigate the relationship between central muscarinic

receptor and macrophage activation, we isolated bone marrow
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cells from the offspring. We cultured these cells and after 7 days

of differentiation, we submitted them for further analysis. We

counted the number of cells with a Neubauer chamber

immediately after isolation (Figure 6A). There were fewer cells

isolated from HFD-O compared with SC-O (Figure 6B).

Additionally, a representative image shows that after 7 days of

differentiation, the number of macrophages appears to be reduced

in HFD-O compared with SC-O (Figure 6C). However, when

evaluating the macrophage panel with flow cytometry, there were

no significant differences between the groups in terms of the

number of positive cells for either inflammatory or anti-

inflammatory markers (Figure 6D).

Next, we evaluated the impact of central m1mAChR activation

with McN-A-343 on the macrophage profile of isolated bone

marrow cells (Figure 7). We noted a decrease in IL1-b protein

expression in the culture medium in both groups following

treatment with the m1mAChR agonist (Figure 7A). We also

assessed Tnf, Il1b, Il10, Il6, Nos2, and Arg1 mRNA expression

(Figure 7B). Specifically, Il1b, Il6, and Nos2 mRNA expression

was significantly reduced upon administration of the agonist

McN-A-343. Conversely, McN-A-343 administration increased

Il10 mRNA expression. Interestingly, Il10 mRNA expression

increased in both groups upon agonist treatment. Furthermore,

there was decreased Tnf and Il6 mRNA in HFD-O compared with

SC-O. Nos2 mRNA expression, indicative of the inflammatory

profile, was decreased in HFD-O, and the agonist treatment

further decreased Nos2 mRNA expression in both groups.

Conversely, Arg1 mRNA expression, a marker of the anti-
A B

DC

FIGURE 5

Immune response markers in the spleen of the offspring. Splenic CD45+F480+, CD45+CD11c+, CD45+CD206+, and CD45+Ly6G+ cells were
evaluated with the macrophage panel (A) and CD3+CD4+ and CD3+ CD8+ cells were evaluated with the lymphocyte panel (B) by flow cytometry.
The data represent expression of high-fat diet offspring (HFD-O) relative to the control offspring (SC-O). Splenic Il17, Il22, Tgfb, Ifng, Nos2, and Arg1
messenger RNA (mRNA) expression (C) was evaluated by RT-PCR in 28-day-old SC-O and HFD-O. Splenic Il17, Il22, Tgfb, Ifng, Nos2, and Arg1
mRNA expression (D) was evaluated in the offspring following lipopolysaccharide (LPS) challenge (1 mg kg-1, intraperitoneal) and treatment with the
m1mAChR agonist McN-A-343 (5 ng kg-1, intracerebroventricular). The data represent the mean ± standard error of the mean. The data were
analysed with analysis of variance. *Significant difference (p < 0.05) between basal and agonist or LPS treatment. #Significant difference (p < 0.05)
between HFD-O and SC-O.
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inflammatory profile, was increased in HFD-O (Figure 7B).

Notably, phosphorylation of STAT3, a protein downstream in the

cholinergic anti-inflammatory pathway, was increased in both

groups following treatment with the m1mAChR agonist

(Figures 7C, D).
4 Discussion

Obesity is widely acknowledged for its association with

numerous comorbidities (35–37). Surprisingly, it seems to bestow

a certain degree of protection against sepsis. Epidemiological data

indicate that individuals with obesity exhibit a heightened
Frontiers in Immunology 10
likelihood of survival during clinical systemic inflammatory

responses (1, 2). This intriguing phenomenon is commonly

referred to as the ‘obesity paradox’ (3, 4, 6, 38), yet the actual

protective mechanisms in the context of sepsis continue to be a

subject of debate (5). An essential factor to consider in this analysis

is the programming process during the intrauterine and lactation

period, as per the Developmental Origins of Health and Disease

(DOHaD) concept. However, the precise impact of maternal obesity

on the inflammatory response of offspring during sepsis remains an

unresolved question. What role does maternal obesity play in

shaping the inflammatory response in the context of sepsis?

Several studies have demonstrated that offspring of obese

dams exhibit metabolic impairments following inflammatory
A B

D

C

FIGURE 6

Profile of bone marrow cells after differentiation. Bone marrow cells were isolated from the long bones of 28-day-old control and high-fat diet
offspring (SC-O and HFD-O, respectively) (A). The cells were counted before the culture (B). After 7 days of spontaneous differentiation, pictures
were taken of the culture (C) to confirm that the cells had differentiated into macrophages. CD45+F480+, CD45+CD11c+, and CD45+CD206+ cells
were evaluated with the macrophage panel by flow cytometry (D). The data represent the mean ± standard error of the mean. *Significant difference
(p < 0.05) based on Student’s t-test. Mind the Graph website was used to prepare Figure 6A.
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challenges (39–41). Sepsis is a complex disorder that is widely

recognized as a leading cause of high mortality rates (42–44). It is

characterized by an initial systemic inflammatory response syndrome

(SIRS), followed by a counter-regulatory anti-inflammatory response

syndrome (CARS) (45, 46). The prognosis for sepsis is closely related to

the balance between pro- and anti-inflammatory responses.

We found that HFD-O exhibit enhanced resistance to death in

LPS-induced sepsis. They also demonstrate increased expression of

hypothalamic m1mAChR and reduced levels of inflammatory markers

in the serum following LPS administration. Notably, inhibition of

central m1mAChR completely abolishes the protective effect against

sepsis mortality in HFD-O. Both HFD-O and SC-O show the onset of
Frontiers in Immunology 11
sepsis pathogenesis following LPS administration. However, HFD-O

displays a quicker recovery compared to SC-O, indicating a more

effective counter-regulatory anti-inflammatory response. Central

m1mAChR appears to play a protective role against sepsis in HFD-

O, potentially associated with attenuated sepsis-induced immune and

metabolic dysregulation, as suggested by previous studies investigating

the role of this receptor in the prevention of endotoxemia (21, 47). In

contrast, a previous study demonstrated that knockout mice lacking

m1mAChR exhibit higher perioperative mortality following invasive

surgery to remove the adrenal glands (48).

The expression of cholinergic receptors appears to be regulated

through post-transcriptional mechanisms. Zaghloul and colleagues
A

B

D

C

FIGURE 7

Inflammatory markers in bone marrow cells after differentiation. TNF and IL-1b protein expression was evaluated with enzyme-linked immunosorbent
assays (A) in the culture medium after 7 days of spontaneous differentiation. Tnf, Il1b, Il10, Il6, Nos2, and Arg1 messenger RNA (mRNA) expression (B) and
pSTAT3 and pNF-kB protein expression (C, D) were evaluated by RT-PCR and western blot, respectively, in macrophages differentiated from control and
high-fat diet offspring (SC-O and HFD-O, respectively) bone marrow. The mice were treated with the m1mAChR agonist McN-A-343 (5 ng kg-1,
intracerebroventricular). The bars at the top of blots represent the groups. The data represent the mean ± standard error of the mean. Molecular weight
of proteins: pSTAT3 – 90KDa; pNFkB – 65KDa; and GAPDH – 35KDa. The data were analysed with analysis of variance. *Significant difference (p < 0.05)
between basal and agonist or LPS treatment. #Significant difference (p < 0.05) between HFD-O and SC-O.
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(49) demonstrated a decrease in m1mAChR expression in the

central nervous system of mice with CLP-induced sepsis.

Additionally, a previous study from our group revealed that short-

term HFD consumption reduces hypothalamic a7nAChR
expression and increases mortality in a model of sepsis induced by

CLP surgery (21). Interestingly, HFD-O did not show any

modifications in hypothalamic a7nAChR expression but exhibited

a significant increase in m1mAChR expression. These studies

suggest that modulation of cholinergic receptor expression is a

dynamic process that can be influenced by inflammatory conditions.

Epigenetic mechanisms during developmental phases, such as

pregnancy and lactation, have been associated with improved

prognostics in sepsis (50). Epigenetics plays a significant role in

various stages of sepsis, including pathogen–host interactions,

immunosuppression, and the inflammatory response (51, 52). In

the later stages of sepsis, anti-inflammatory cytokines are produced,

contributing to the immune tolerance of the host. This

phenomenon, referred to as immunologic memory, may be

associated with protection against future infections (50, 53).

The liver plays a crucial role in both inflammatory and innate

immune responses (54, 55). Furthermore, studies have

demonstrated the significant role of the liver in the response to

sepsis stages (56, 57). The liver is responsible for the secretion of

acute phase proteins (APP), which are regulated by IL-6 levels and

STAT3 activation (54, 58, 59). Sander et al. (55) demonstrated that

the activation of APP, such as amyloid A, along with elevated

CXCL1 levels, promote the mobilization, accumulation, and

survival of myeloid cells in the liver. Interestingly, our study

revealed that pharmacological activation of hypothalamic

m1mAChR in HFD-O leads to increased phosphorylation of liver

STAT3 and expression of a7nAChR compared with SC-O.

Furthermore, HFD-O exhibit higher liver IL-6 expression in

response to LPS compared with SC-O. It is worth noting that the

JAK2/STAT3 pathway, as demonstrated by De Jonge and Ulloa

(60), operates downstream of a7nAChR and can reduce the

inflammatory response by inhibiting NF-kB and TNFa
expression. Consequently, there is an enhanced anti-inflammatory

response in HFD-O due to downregulation of inflammatory

cytokine expression and the stimulation of APP secretion. This

effect is achieved through activation of liver a7nAChR as well as

STAT3 via IL-6 signalling.

During the acute phase of sepsis, immune cells such as

macrophages, T and B lymphocytes, and neutrophils in lymphoid

tissues, including the spleen and thymus, undergo activation. However,

in the late phase of sepsis, these cells experience substantial apoptosis

(61, 62). We found an increase in CD4+ T lymphocytes and a decrease

in CD8+ cells in HFD-O compared with SC-O. Similarly, a study

examining sepsis induced by CLP also reported reduced activity of

CD4+ T lymphocytes. However, activation of the CAP significantly

reverses the immunosuppressive state of CD4+ T lymphocytes (63).

Given that immune cells undergo apoptosis as sepsis progresses, the

elevated levels of lymphocytes in the spleen prior to sepsis infection

could potentially confer protection against the pathogenesis of sepsis.

CD4+ lymphocytes have the capacity to differentiate into various

phenotypes, including Th1, Th2, Th17, and Th22. Th17

differentiation is initiated by the secretion of TGF-b, IL6, and
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IL1b, which induce the activation of RORgt, a transcription factor

associated with Th17 differentiation (64). Lymphocyte CD4+ Th17

cells can exhibit pathogenic characteristics and induce an

inflammatory response (64–66). On the other hand, the

differentiation of lymphocyte CD4+ Th22 cells can be regulated by

Th17 cells and the levels of IL-17 and IL-22. Studies have indicated

that elevated levels of IL-6 contribute to the differentiation of naive

CD4+ T cells into Th22 cells (67, 68). Our findings indicate that

TGF-b and IL-17 levels are reduced in the spleen of HFD-O, while

IL-22 and IL-6 levels are increased. As a result, lymphocytes in the

spleen appear to differentiate into the Th22 phenotype rather than

the Th17 phenotype. Th22 cells are associated with anti-

inflammatory responses and play a role in promoting the innate

immune defence against infections (69, 70). Furthermore, spleen

macrophages and bone marrow–derived macrophages in HFD-O

appear to exhibit an anti-inflammatory phenotype, even when

confronted with an inflammatory challenge such as LPS. Boomer

et al. (71) highlighted the crucial role of spleen macrophages in the

anti-inflammatory response during sepsis. These macrophages are

responsible for reducing cytokine levels, including IFNg, TNF, IL-6,
and IL-10, in patients with sepsis. Moreover, in sepsis survivors,

there is an increase in myeloid progenitor cells, and trained

immunity leads to the reprogramming of naïve bone marrow

monocytes (72, 73).

In conclusion, our data provide evidence that HFD-O exhibit

partial protection against LPS-induced sepsis. This protective effect

appears to be mediated through upregulation of central m1mAChR.

While we have identified this central muscarinic receptor as the

primary activator of the CAP, we did not investigate the role of

central a7nAChR in this process, as suggested by Ren and

colleagues (63). However, we did not observe an increase in

central a7nAChR expression in HFD-O compared with SC-O.

Additional studies are required to fully understand the

mechanism underlying the modulation of m1mAChR expression

and its role in protecting offspring against sepsis mortality.

Although the results presented in this study suggest that

maternal obesity brought advantages to the offspring in terms of

the anti-inflammatory response, we need to be cautious in

assimilating this information. It is widely known that other

physiological processes are affected by maternal obesity.

Therefore, it is essential to monitor the development of these

offspring and the maintenance of this characteristic of the

immune system. The use of anti-inflammatory therapies, although

promising in these cases, needs to be used in the correct stages of

sepsis evolution.

As limitations of study, we utilized an LPS model for inducing

sepsis instead of the recommended CLP surgery. Our decision was

influenced by the age of the involved offspring, which were 28 days

old. We were concerned about the size of mice for conducting this

highly impactful surgery, as it might potentially yield false positive

results. Furthermore, while we evaluated IL17 and IL22 levels using

qPCR, performing cytometry analysis of lymphocytes in the spleen

might have provided more comprehensive insights. Our study

assessed changes in the immune response in the offspring at 28

days of age. At this age, we cannot dismiss the contribution of

maternal milk to the results shown. A study involving adult mice
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could provide us with information regarding the persistence of

these alterations in the inflammatory response.

Furthermore, new studies need to be conducted to identify

nutritional components and/or inflammatory factors that may act

in the development of the immune system. Additionally, in our

study, we did not investigate whether the programming of the

inflammatory response occurred during the gestation or lactation

period. However, this study demonstrates that the inflammatory

response can be programmed in such a way as to provide

individuals with greater protection in situations of exposure to

infectious agents and may have been an important mechanism of

evolutionary adaptation for many species.
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