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Introduction: Synthetic hydroxyapatite (HAp) scaffolds have shown promising
therapeutic outcomes in both animals and patients. In this study, we aim to
evaluate the chemical and physical phenotype, biocompatibility, and bone repair
effects of hydrothermally treated coral with natural coral and synthetic HAp.

Methods: The phase composition, surface pattern, 3D structures, and porosity of
the scaffolds were characterized, and cell viability, proliferation, and osteogenic
differentiation of mesenchymal stem cells (MSCs) after seeding onto the scaffold
were determined. The scaffolds were implanted into rats to assess their bone repair
effects using micro-CT analysis, mechanical testing, and histological staining.

Results: The results showed that thephasecomposition, porous structure, andporosity
of hydrothermally treated coral were comparable to pure HAp scaffold. While only the
natural coral happens to be dominantly calciumcarbonate. Higher cell proliferation and
osteogenic differentiation potential were observed in the hydrothermally treated coral
scaffold compared to natural coral and pure HAp. Histological results also showed
increased new bone formation in the hydrothermally treated coral group.

Discussion:Overall, our study suggests that hydrothermal modification enhances
the cytocompatibility and therapeutic capacity of coral without altering its physical
properties, showing superior effectiveness in bone repair to synthetic HAp.
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1 Introduction

The importance of maintaining the normal structure and function of dental tissues for
overall health has made dental tissue regeneration critical area of focus in modern dentistry
(Nauta et al., 2011; Zhai et al., 2019). Among the dental tissues, bone has a very strong repair
ability under normal circumstances, even in the case of fractures or other injuries, bone tissue
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can still be fully repaired (Battafarano et al., 2021). However, large
bone defects exceeding the critical size caused by bone tumors,
injuries, and other bone diseases typically require effective repair
with the help of bone grafts to restore function (Schemitsch, 2017;
Huang et al., 2022). Therefore, bone grafts play a very important role
in the treatment of bone defects (Fernandez de Grado et al., 2018;
Zhou et al., 2021). However, the availability of autologous bone is
limited and may result in delayed union or non-union of the injured
site (Wang and Yeung, 2017; Schmidt, 2021). Therefore, the research
and development of biocompatible materials with osteoconductive
properties for the treatment of bone defects are of great clinical
significance.

Coral is a natural marine organism that is rich in calcium
carbonate, which gives it its unique bone-like porous structure.
Coral is also known for its high tissue compatibility and ability to
promote bone repair. The use of coral as a bone substitute material
has been studied for decades, and it has been found to be effective in
the repair of bone defects in both animals and humans (Dorozhkin,
2010; Liu et al., 2013; Pountos and Giannoudis, 2016). However, the
use of natural coral has some limitations, such as the variability in
composition and impurities among different species and the limited
availability of coral resources. What’s more, the differences in
composition between coral and bone can affect the final bone
defect repair effect (Pountos and Giannoudis, 2016). Coraline
calcium carbonate can be absorbed very quickly after
implantation in vivo, making it difficult for new bone tissue to
grow onto the scaffold (Macha and Ben-Nissan, 2018). Therefore,
attempts have been tried by converting coral into other forms of
materials similarly to bone and maintaining the porous structure
(Nandi et al., 2015; Balu et al., 2021). Those previous studies have
suggested that converting coralline material from carbonate to
phosphate could significantly delay its degradation, making it a
promising material for bone grafting. However, no comprehensive
study has been conducted to compare coral converted
hydroxyapatite (HAp) with synthetic HAp in their compositions,
morphology, mechanical properties, cellular responses, and efficacy
in animal model. We thereby hypothesize that coral converted HAp
may present a better bone healing outcome comparing with
synthetic HAp and nature coral.

Herein, we prepared a coral converted HAp by treating natural
coral with high temperature and hydrothermal treatment. In this
study, we aim to evaluate the chemical and physical phenotype,
biocompatibility, and bone repair effects of coral converted HAp
with natural coral and synthetic HAp.

2 Materials and methods

2.1 Preparation of coral materials

The wild coral reefs were donated to Dr. David Green at the
Faculty of Dentistry of the University of Hong Kong who collected
from the Northeast Australia. The natural samples were first tailored
into uniformly sized cylindrical structures with diameter 4 mm and
height 2.5 mm. They were then washed three times with distilled
water under ultrasound for 15 min each time to remove the salt in
the coral. Afterwards, they were dried in a 60°C oven and washed
again with acetone under ultrasound for 15 min. They were then

dried overnight in a 70°C oven to obtain the natural coral (N-Coral)
group samples.

Half number of the clean natural coral were placed in a 900°C
oven for 2 h to remove the organic components, and to convert them
into phosphate components accordingly to a previous method
(Nandi et al., 2015). Then the treated scaffolds were soaked in
0.6 M di-ammonium hydrogen orthophosphate ((NH4)2HPO4,
VWR Lab, India) solution and potassium di-hydrogen phosphate
(KH2PO4, VWR Lab, India) solution and autoclaved at 150°C,
followed by sintered at 1,250°C. (NH4)2HPO4 was used as source
of phosphate group and KH2PO4 was used as a mineralizer. The
proposed exchange reaction is shown below:

10CaCO3+6 NH4( )HPO4+2H2O

→ Ca10 PO4( )6 OH( )2+6 NH4( )2CO3+4H2CO3

Finally, the hydrothermally treated coral group (T-Coral)
samples were obtained. An equal volume of hydroxyapatite
(HAp, PENTAX Co., Japan) porous material with similar
porosity was used as the control group samples.

2.2 Characterization of coral materials

Fourier transformed infra-red spectroscopy (FTIR) (Perkin-
Elmer, United States) were adopted to analyze phase constituents
of the N-Coral, T-Coral, and HAp. Field-emission Scanning electron
microscopy (SEM; ZEISS SUPRA 40 VP, Germany) were used to
determine the surface of porous cylindrical scaffolds (n = 3) at 3 kV
under various magnifications. Micro-computed tomography
(micro-CT) were used to measure the three-dimensional (3D)
microstructure of the scaffolds (n = 3) at 70 keV, 114 mA, and
isotropic resolution of 10.5 μm (μCT-40, Scanco Medical,
Bassersdorf, Switzerland). The 3D reconstruction was performed
with a segmentation parameter (sigma: 1.2, support: 1, threshold:
30 mg/cm2) (Lin et al., 2019). A specific gravity bottle (Hubbard,
Hanil, Korea) was used to determine the porosity of the fabricated
scaffolds through the ethanol immersion method as described
previously (Lin et al., 2019).

2.3 Cell proliferation and differentiation
assays

The porous cylindrical scaffolds (diameter 4 mm and height 2.5
mm, n = 4) were plated in a 48-well plate. Bone marrow derived
mesenchymal stem cells (MSCs) expressing green fluorescence
protein (GFP) were isolated from GFP transgenic rats (Genome
Information Research Center, Osaka University). The MSCs were
seeded in a density of 2 × 104 cell per well. Fluorescent microscope or
SEMwas used to observe the cells growing on the surface of scaffolds.
Cell proliferation was determined by Alarma Blue assay on day 0, 5,
and 10, respectively. TheMSCswere plated at 1 × 105 cells/per scaffold
in a 24-well plate and cultured in the basal medium until the cells
reached confluence. The cells were then incubated in osteogenic
induction medium, which is basal medium supplemented with
1 nM dexamethasone, 50 μM ascorbic acid, and 20 mM β-
glycerolphosphate (all from Sigma-Aldrich). At day 0, 3 or 7, the
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cells were harvested and homogenized for RNA extraction with the
RNeasy mini kit (Qiagen, Hilden, Germany). Complementary DNA
quantification was performed by qRT-PCR using Step-One-Plus Real
Time PCR Systems (Applied Biosystems, Carlsbad, CA). Relative gene
expression was calculated with the 2−△△CT formula. Primer sequences
(5′ to 3′) were determined through established GenBank sequences
(Forward primer of Runx2: CCGATGGGACCGTGGTT; reverse
primer of Runx2: CAGCAGAGGCATTTCGTAGCT. Forward
primer of Ocn: GAGCTGCCCTGCACTGGGTG; reverse primer of
Ocn: TGGCCCCAGACCTCTTCCCG. Forward primer ofOpn: TCC
AAGGAGTATAAGCAGCGGGCCA; reverse primer of Opn: CTC
TTAGGGTCTAGGACTAGCTTT). Forward primer of β-actin: CGT
AAAGACCTCTATGCCAACAT; reverse primer of β-actin: CGG
ACTCATCGTACTCCTGCT.

2.4 In vivo implantation in bone defects

Adult male SD rats (12-week-old, mean body weight of 350 g)
were provided by the Laboratory Animal Research Centre of the
Chinese University of Hong Kong with ethical approval from the
Animal Experimentation Ethics Committee. For surgery, a solution
of xylazine (2.5 mg/kg) and ketamine (50 mg/kg) was used for
inducing general anaesthesia by intraperitoneal injection.
Osteotomy was conducted to the mid-shaft to create a half-
cortical bone defect, by removing a half cylinder with a diameter
of 4 mm and a length of 5 mm (Figure 1). Animals were randomly
selected for implantation of materials tailored into the same size of
bone defects, including the raw coral control (n = 20), thermal
treated coral material (n = 20), or HAp (n = 20). The bone was
further secured with PEEK internal fixator before wound closure.
Animals were euthanasia by inhalation of carbon dioxane for 10 min
after 8 weeks of operations for sample harvesting.

2.5 Imaging assessment of affected femurs

The microstructure of the affected femurs (n = 10) was
determined by Micro-computed tomography (micro-CT)

analysis. The scanning parameters were 90 keV, 120 mA, and
isotropic resolution of 10.5 μm using μCT-40 system (Scanco
Medical, Bassersdorf, Switzerland). A segmentation parameter
(sigma: 0.8, support: 2, threshold: 158–1,000 mg/cm2) for 3D
reconstruction of images was applied. The volume of interest
(VOI) was the defect area in femoral mid-shaft in a half-cylinder
shape, with 4 mm in diameter. A total of 150 slices were used for
quantification. Bone volume/tissue volume (BV/TV) was
calculated with a built-in program in the μCT-40 system
(Image Processing Language v4.29d, Scanco Medical,
Switzerland).

2.6 Four-point bending mechanical test

Four-point bending test was conducted after micro-CT
examination, the mechanical properties of specimens were
evaluated accordingly to the methods reported before (Yang
et al., 2020). After removal of PEEK fixator, a material testing
system (H25KS; Hounsfield Test Equipment Ltd.,
United Kingdom) was adopted for measurement of the
femoral load-to-failure with 2.5 kN load cell. The femurs
were loaded on the support blades with inner and outer span
set as 2 cm and 6 cm. A displacement rate of 5 mm/min on the
mid-shaft of the femur was adopted during the compression. A
built-in software (QMAT Professional; Tinius Olsen, Inc.,
Horsham, PA) was used to record the load versus
displacement curves, and to calculate the maximum load,
stiffness, and energy to failure.

2.7 Histological analysis

All the affected femurs (n = 10) were fixed with 4% PFA and then
decalcified in 10% ethylenediaminetetraacetic acid (EDTA) solution.
The decalcified femurs were subjected to paraffin embedding and
then cut into 5 μm sections by a microtome (HM 355S; Thermo
Fisher Scientific, MA). Hematoxylin (H) & Eosin (E) staining was
conducted to identify different tissues inside the specimens, which

FIGURE 1
Schematic illustration of the study design. A coral-based graft was prepared by hydrothermal treatment (T-Coral). After conversion, the chemical
and physical properties including the phase composition, surface morphology and porosity were analysed by FITR, SEM, and micro-CT, and compared
with natural coral (N-Coral) and commercialized hydroxyapatite (HAp) product. Biological properties were further determined by cellular compatibility
and bone defect healing after implantation in a segmental bone defect animal model.
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further semi-quantitatively measured by ImageJ (NIH,
United States). Expression of osteogenic marker, osteocalcin
(OCN), was determined by immunohistochemistry staining with

primary antibodies to OCN (1:200, Santa Cruz, TX) followed by
counterstaining with hematoxylin. The positive stained area in the
specimen were measured by ImageJ.

FIGURE 2
Fourier transformed infra-red spectroscopy (FTIR) spectra showing signature waveforms of CO2

−3, PO4
3−, andOH− of the porous scaffolds, including

nature coral (N-Coral), hydrothermally treated coral (T-Coral), hydroxyapatite (HAp).

FIGURE 3
Surfacemorphology andmicrostructure of the porous scaffolds. (A) SEM images in 200-foldmagnification ormicro-CT 3D reconstructed images of
the scaffolds. (B) Pore size as determined by SEM. (C) Porosity as determined by ethanol immersion method. Data were presented as mean ± SEM, n = 3.
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2.8 Statistical analysis

Sample size in animal study was determined by a priori
power analysis (G*Power, Universität Düsseldorf). All the
quantitative data were presented as mean and mean ±
standard error of the mean (SEM), and the level of

significance was set at p < 0.05. For mechanical testing,
contralateral femurs were used to normalize the parameters.
Data were analysed using GraphPad PRISM® (GraphPad
Software, CA). One-way ANOVA was used for comparisons
and Tukey’s HSD was used for the post hoc test. Statistical
analysis was performed with SPSS (Version 20).

FIGURE 4
Cell proliferation on the surface of porous scaffolds. (A) Cellular fluorescent images of GFP expressing MSCs 5 days or 10 days after seeded on the
porous scaffold and cell proliferation results as measured by Alamar Blue assay on day 5 (B) or day 10 (C) scale bar: 200 μm. Data were presented as
mean ± SEM, n = 4.

FIGURE 5
SEM images of GFP expressing MSCs seeded on the porous scaffolds on day 5. Red arrows indicate attached cells and M represents material.
Magnification: ×200.
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3 Results

3.1 Phase constituents

From the results of FTIR (Figure 2), internal mode of CO2
−3

(713, 875, 1,454 cm−1) were identified in the N-Coral samples.

However, after hydrothermal conversion treatment, the presence
of PO4

3− groups at 603 and 565 cm−1 (bending mode) and
1,047 cm−1 (stretching mode), and the presence of OH− group of
HAp were also observed at 3,570 cm−1, which patterns are nearly the
same as HAp. A tiny peak of CO3 groups of the T-Coral at
1,454 cm−1 indicates the presence of residual carbonates.

FIGURE 6
Gene expression of osteogenic markers of the MSCs seeded on the porous scaffolds. After confluent, the cells were induced with osteogenic
medium for 0, 3 or 7 days. The RNA expressions of Runx2 (A), Ocn (B), and Opn (C) were measured. Data were presented as mean ± SEM, n = 6.

FIGURE 7
Repair effect of different porous scaffolds implanted in femoral shaft in rat for 8 weeks. (A) Representative cross-sectional images of micro-CT
reconstruction (top), H & E staining (middle), and expression of osteocalcin (OCN, bottom). Areas within white dashed lines indicate the implant sites or
region of interest for quantitative measurement. Red S indicate scaffold area after decalcification. (B) Semi-quantitative percentage of bone area
measured by ImageJ from the histological results. (C) Semi-quantitative percentage of OCN positive areameasured by ImageJ from the histological
results. Scale bar: 500 μm. Data were presented as mean ± SEM, n = 10.
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3.2 Morphology and porosity

As shown by the images of SEM and micro-CT, interconnected
porous structure was found in all the scaffolds (Figure 3). The mean
pore size was 157.0, 178.8 or 159.0 μm (Figure 3B) as determined by
SEM in N-Coral, T-Coral, or HAp group, showing no significant
difference among the groups. Regarding the surface morphology,
N-Coral had many micro-dots on the surface, while T-Coral showed
microcracked surface after hydrothermal treatment. As measured by
the ethanol immersion method, the porosity was 49.28%, 51.35%,
48.12% (Figure 3C), showing no significant differences among the
group.

3.3 Cell proliferation and differentiation

Bone marrow derived MSCs expressing GFP were seeded onto
the surface of the porous scaffolds, and the proliferation of MSCs
were measured within 10 days (Figures 4, 5). Interestingly, as shown
by the results of Alarma Blue assay, the cells proliferated much more
vigorously in the T-Coral group, showing significantly higher cell
proliferation rate than N-Coral (339.1% vs. 285.5%, p = 0.015) or
HAp (339.1% vs. 217.5%, p = 0.0049) on day 5 (Figures 4A, B), and
significantly higher cell proliferation rate than N-Coral (421.0% vs.
323.2%, p = 0.0056) or HAp (421.0% vs. 438.7%, p = 0.0456) on day
10 (Figures 4A, C) than the N-Coral or HAp group. The SEM images
also confirmed that much more cells attached to the surface of
T-Coral than other two groups (Figure 5). The gene expression
results showed a significantly higher expression of Runx2 (p = 0.031
& p = 0.014) after 3 days, and higher expression of Ocn (p =
0.001 and p = 0.039) after 7 days of osteogenic differentiation in
the T-coral, comparing to the N-coral and HAp groups (Figure 6).

3.4 Bone repair in animal model

After 8-week of implantation, bone repair in the mid-shaft were
determined by micro-CT analysis and histological examination. The
cross-sectional 3D reconstructed image of the bone tissue
demonstrated a continuous structure, with seamless integration
between the implant and the bone tissue in all the groups
(Figure 7A). Because of a confront effect of mineral composition
in the scaffolds, quantitative micro-CT analysis was not sufficient to

compare the differences in new forming bone among the groups.
New bone formation was evidenced by H & E staining, showing
much higher bone area in the T-Coral group comparing to the
N-Coral (59.2% vs. 48.7%, p = 0.0189) or HAp group (59.2% vs.
44.8%, p = 0.0001) (Figures 7A, B). In addition, expression of bone
formation marker osteocalcin (OCN) was significantly increased in
the T-Coral group comparing to the N-Coral (27.8% vs. 15.4%, p =
0.0011) or HAp group (27.8% vs. 15.7%, p = 0.0014) (Figures 7A, C).

More importantly, results from four-point bending mechanical
test reveal that significantly higher maximum load in the T-Coral
group than the N-Coral (219.2 vs. 199.7, p = 0.0478) or HAp group
(219.2 vs. 189.1, p = 0.0018) (Figure 8A). And a significantly higher
Young’s modulus could be found in the T-Coral group than the HAp
group (436.1 vs. 338.9, p = 0.0119) (Figure 8B). However, there is no
significant differences in the energy absorption among the groups
(Figure 8C).

4 Discussion

In this study, we have synthesized a hydrothermally treated coral
scaffolds (T-Coral), which showing comparative components as
pure HAp, suggesting a successful conversion of nature coral to
HAp after hydrothermal treatment. Moreover, the microporosity
and interconnection were retained in the T-Coral. Interestingly, the
T-Coral took advantages in cellular biocompatibility and bone
repair in the bone defect model to HAp as well as N-Coral,
indicating a potential alternative in the clinical application to
pure HAp.

An ideal bone graft for bone tissue engineering should possess
exceptional biocompatibility, which is considered a fundamental
prerequisite. Recent effort has been made on improving the
biocompatibility of bone grafts to enhance their effectiveness in
tissue engineering and regenerative medicine application (Liu et al.,
2022; Xu et al., 2022). Natural materials such as collagen, chitosan,
and silk fibroin exhibit favorable biocompatibility by promoting cell
adhesion, tissue regeneration, and integration within the body.
Additionally, their biodegradability allows for tissue remodelling
(Joyce et al., 2021). Besides of natural materials, surface medication
techniques (Qiu et al., 2014) or nanotechnology-based approaches
(Mohammadi et al., 2018) have also been adopted to improve
biocompatibility of synthetic bone grafts by increasing the cell-
graft interaction and tissue-graft integration. Coral is a ceramic form

FIGURE 8
Results of bone biomechanics including maximum load (A), Young’s modulus (B), and energy absorption (C) in the affected femurs. Data were
presented as mean ± SEM, n = 10.
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of natural matrix (Nandi et al., 2015), which may also provide
biological cue for cell adhesion (Lalzawmliana et al., 2019). In this
study, we found stem cells grew vigorously on the surface of
N-Coral, T-Coral, and HAp. Superior cell proliferation was
specially observed in the T-Coral group, suggesting a
hydrothermal treatment may enhance the biocompatibility of the
natural coral. One of the key changes that occur during
hydrothermal treatment is the removal of organic components
and impurities present in the coral scaffold. This process
effectively eliminates potential sources of immunogenicity and
cytotoxicity, reducing the risk of adverse reactions when the graft
is implanted in the body.

Moreover, the hydrothermal treatment alters the surface
topography of the coral graft, creating a roughened or porous
structure. The positive effects of biomaterial surface roughness on
cellular response, such as enhanced cell adhesion, proliferation, and
differentiation, are widely recognized (Kazimierczak and Przekora,
2020; Stepanovska et al., 2020). To create porous and rough surfaces
on bone implants, subtractive methods are commonly employed.
Previous evidence showed that microcracked HAp specimens
exhibit much more osteoblast attachment than non-cracked HAp
(Shu et al., 2014), suggesting that microcracked surface on the
T-Coral induced by hydrothermal modification may contribute to
the enhanced cell attachment and proliferation. Here, we also
observed a higher osteogenic differentiation potential of MSCs
seeded on the surface of T-Coral comparing to the N-Coral or
HAp. In addition, histological results from animal study showed a
significantly higher bone area in bone defect sites. Previous study
demonstrated that mineral deposition observed under confocal laser
scanning microscope exhibited preferential mineralization at
microcrack indentation sites of HAp (Shu et al., 2014). Another
study showed that carbon fiber-reinforced polyetheretherketone-
nanohydroxyapatite composite with optimal surface roughness
favored osteogenesis in vitro and osseointegration in vivo (Deng
et al., 2015). These results suggest that T-Coral may have a better
osteoconductive properties than either N-Coral or pure
HAp. However, previous study indicated that hydrothermal
treatment can alter the Ca/P ratio, which may impact its
biological performance (Onoda and Yamazaki, 2016). Further
study is needed to evaluate the changes in Ca/P ratio, which is
crucial for optimizing the material’s properties and suitability for
biomedical applications.

As stated above, due to the many uncontrollable factors of
natural coral materials, researchers currently study ways to
improve the material’s composition by modifying the
components or loading with cells or growth factors. Similar
studies have also suggested that coral materials could be a
potential bone grafts after modifications. An early report
suggested that coral scaffold only could not repair cranial bone
defect in a canine model, however, additional adipose derived stem
cells could significantly increase the bone repair area (Cui et al.,
2007). Ben-Nissan et al. reported a two-stage approach to attain
nano-coated coralline HAp (Ben-Nissan et al., 2004). First, natural
coral was completely converted to pure HA. Second, the micro- and
nano-pores within the porous material were covered by a so-gel
derived HAp, while large pores were maintained. Results from
mechanical test showed biaxial strength was improved in the
nano-coated scaffold. However, they did not-test any biological

response. Roh et al. found that a mixture of silicon-substituted
coral HAp with β-tricalcium phosphate in special ratios (60:40 or 50:
50) significantly enhanced calvarial bone repair in a rat model (Roh
et al., 2016). The silicon-substituted coral HAp was made from HAp
converted from nature coral composed of 99% calcium carbonate,
which further substituted by silicon. Recently, Decambron et al.
reported the treatment of sheep bone defect model by applying coral
granules with bone marrow derived MSCs or with additional BMP-
2, and the results suggest that bone regeneration in critical-size bone
defects could be achieved using coral-based tissue-engineered
constructs (TECs) in the sheep model, however, nonunion still
occurred in nearly half of the bone defects, suggesting further
refinement of this therapeutic strategy is needed (Decambron
et al., 2017a; Decambron et al., 2017b). Nandi et al. compared
bone regeneration potency among hydrothermally converted
coralline HAp scaffolds without growth factor, or with insulin
like growth factor-1 (IGF-1) or bone morphogenetic protein-2
(BMP-2) (Nandi et al., 2015). The findings indicate that coralline
scaffolds incorporating IGF-1 and BMP-2 facilitated the ingrowth of
osseous tissue, initiation of bone healing and achieved complete
integration between implants and natural bone.

The advantages of coral for cell growth and the extension of new
blood vessels are due to its porous network structure, which is similar to
that of bone tissue (Kang and Chang, 2018). This allows new bone to
fuse tightly with the host bone tissue, facilitating the rapid restoration of
normal bone tissue structure (Green et al., 2014). This study has shown
that coral treated with hydrothermal modification maintains a porous
structure with a uniform and interconnected pore distribution, similar
to native bone. Although some microcracks were observed on the
surface of the T-Coral, they did not compromise the overall structure of
the coral material, suggesting that hydrothermal modification is a safe
and effective approach. The clinical potential of hydrothermally treated
coral scaffolds is extensive, including bone defect repair, oral
implantology, and periodontal regeneration. The scaffold’s porous
structure and bioactivity facilitate cell infiltration and bone tissue
regeneration, promoting both bone defect healing and implant stability.

With approximately 70% of the Earth’s surface being covered by
oceans and containing 90%–95% of the biosphere’s volume of living
organisms, the ocean offers an extensive array of biological diversity
and resources (Macha and Ben-Nissan, 2018). Despite its numerous
advantages, coral stands out as a distinctive natural biological
organism and plays a crucial role in sustaining marine
ecosystems by providing habitats for various marine organisms
(Keller et al., 2009). How to keep a balance between marine
ecosystem and development of marine-based healthcare product
becomes an important issue (Vicki, 2003; Rhyne et al., 2014).
Sustainable collection practices help to minimize the impact on
natural coral populations and maintain ecological balance in coral
reef ecosystems.

5 Conclusion

In conclusion, this study suggests that hydrothermal
modification enhances the cytocompatibility and therapeutic
capacity of coral without altering its physical properties, showing
superior effectiveness to synthetic HAp, highlighting the
translational potential in promoting bone defect healing.
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