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Spotted seals, a protected species, face multifaceted threats to their habitat,

which in turn impact the closely associated trophic networks. These threats

will lead to irreversible structural variations within the ecosystem. Therefore,

investigating the topological variability of trophic networks in spotted seals is

important. Applying environmental DNA methods, field sample collection

was conducted in 2021 during both the sea fishing moratorium period and

the fishing period to decode fish diversity. Assessing the current status of fish

resources by using the multivariate statistics approach. Applying dietary

information establishes the spotted seals’ trophic network. Selecting 12

network indexes to analyze the spatiotemporal patterns of network

topological attributes. As a result, about 51 families, and 76 genera species

were identified. During the sea fishing moratorium and the fishing period,

there are 12 and 18 different food resources available for spotted seals,

respectively. The diversity index revealed that the FP had greater species

richness and diversity than the SP. Comparatively, the Fishing period

exhibited higher species richness and biodiversity, likely influenced by

habitat heterogeneity and anthropogenic activities. Additionally, the

topological features of networks reflected the high clustering coefficients

(CC=0.35) and the proportion of omnivorous species (O≈60%), indicating

that the network structure in this region tends to form higher trophic-level

clustering patterns, which facilitate the formation of weaker interactions

between clusters, enhancing the robustness of the network. The higher

connectivity complexity index during the fishing period (SC=12.3)

supported that the spotted seal’s trophic network was relatively more

stable in this period. Thus, during the fishing period, it is crucial to pay

more attention to the intensity of human fishing on mid-to-high trophic-

level omnivorous fish resources to ensure the sustainability of these potential

food resources for spotted seals. This comprehensive study achieved three
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key objectives: (a) utilizing eDNA to characterize fish diversity during distinct

periods, (b) establishing trophic networks of spotted seals, and (c) discerning

topological attributes and spatiotemporal patterns within the ecological

network. Overall, this study can provide technical and data support for

integrated ecological network management and propose suggestions for

protecting and recovering spotted seals.
KEYWORDS

eDNA metabarcoding, spotted seals, trophic network, biodiversity, ecological
network analysis, Liaodong bay
1 Introduction

The spotted seal (Latin name: Phoca largha), a marine pinniped

mammal belonging to the Phocidae family, primarily preying on

fish, inhabits mid to high-latitude nearshore regions of the North

Pacific (Lowry et al., 2000). Since the 16th century, extensive human

hunting activities have pushed it to the brink of extinction. Despite

conservation efforts, such as the implementation of CITES

(Convention on International Trade in Endangered Species of

Wild Fauna and Flora) in 1975 (Huxley, 2013), which effectively

curbed hunting and contributed to population recovery, and being

elevated to first-class national protected species in China, the

species still confronts multiple external disruptions (Hendrix et

al., 2021). These external disturbances pose severe threats to its

habitat and survival (Zhu et al., 2000). Research indicates that

nearly 50% of marine species in high-latitude regions are on the

brink of extinction (Karlson et al., 2020). First and foremost, the

issue of ocean acidification resulting from climate change has led to

a reduction in water pH, directly impacting foundational organisms

in the marine food chain (i.e., phytoplankton and zooplankton),

and subsequently affecting other spotted seal prey resources

through trophic cascades (Fassbender et al., 2017; Guzzo et al.,

2017). Furthermore, the ongoing expansion of fishing activities not

only results in accidental bycatch of spotted seals and habitat

disruption but also impacts their foraging resources, diminishing

the food resources availability, consequently causing irreversible

alterations in the structure and functioning of the nutritional

network (Farriols et al., 2016; Pires et al., 2016; D’Alessandro and

Mariani, 2021). There is a high probability of inducing resource

homogenization within the food web, significantly increasing the

system’s vulnerability and diminishing its stability (Xu et al., 2023).

Therefore, the conservation and attention to the spotted seal are

urgently needed.

Being regarded as top predators, spotted seals play a pivotal and

intricate ecological role within food webs (Albouy et al., 2017).

Ecosystems facilitate the flow of energy, information transmission,

and material cycling through food webs (Trussell et al., 2006). Top

predators, in turn, regulate the population of lower-level prey,

influencing the flow of material energy within the food web
02
(Danger et al., 2022). This contributes to maintaining material

energy balance within ecosystems. Through these trophic cascades,

top-down effects prevent overpopulation of prey and excessive

harm to primary producers. From an evolutionary perspective,

top-level predators promote species’ adaptive evolution within

prey populations, as exemplified by the interaction between the

Atlantic flounder and cod (Orio et al., 2020). In recent years, the

role of top predators in food webs has garnered increasing attention

from researchers (Avila et al., 2018). Some studies have suggested

the use of the dynamics of top-level predators as one of the

indicators for assessing the health of marine ecosystems (Bossart,

2011; Parsons et al., 2015). However, relying solely on population

dynamics can be challenging in revealing the state of nutritional

networks and interspecies interactions. Hence, network-based

systematic analysis methods have emerged as a valuable tool

(Brose and Dunne, 2009). Previous research has shown significant

quantifiable functional relationships between the topological

metrics of different nutritional networks and species richness

(Riede et al., 2010; Marina et al., 2018). This relationship aids in

identifying both local and overall system states. By quantifying the

topological attributes of networks, it has been observed that

nutritionally complex networks, such as the food web of Beagle

Channel, exhibit less local stability (Rodriguez et al., 2022). It is

contributes to verify the diversity-stability debate in ecosystems

(McCann, 2000; Bascompte, 2009). Therefore, studying the

spatiotemporal patterns of diversity and topological attributes

within the trophic network of spotted seals can serve as a

reflection of the ecosystem state characteristics. It also provides

valuable data support and theoretical guidance for the

development of system-based marine biodiversity conservation

and management strategies.

The objective of this study is to identify the spatiotemporal

patterns of diversity and topological attributes within the trophic

network of spotted seals (Phoca largha) and quantify the network

state. We selected 6 typical spotted seal habitats considered as

our study area, located in Liaodong Bay, China. Applying

environmental DNA (eDNA) methods, field sample collection

was conducted in 2021 during both the sea fishing moratorium

period (SP) and the fishing period (FP), with the collection of three
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samples from different locations surrounding each habitat. In total,

36 samples and part of the biological samples were collected. Fish

diversity was decoded through PCR amplification and high-

throughput sequencing techniques. Calculating biodiversity in the

study area and assessing the current status of fish resources by using

the PCA approach. Additionally, dietary information for species

was obtained through database research and stomach content

analysis, enabling the construction of the spotted seal’s nutritional

network. 12 network topological metrics were selected to analyze

the spatiotemporal patterns of network topological attributes.

This study enhanced the traditional method in terms of (a)

characterizing fish diversity during different periods using eDNA,

(b) establishing the high-resolution nutritional network of

spotted seals, and (c) discerning the topological attributes and

spatiotemporal patterns within the ecological network. The above

improvements have overcome the shortcomings of time-

consuming, cumbersome and costly sampling faced by traditional

sampling.At the same time, Edna has less wear and tear on the

col lected samples , making i t sui table for long-term

monitoring.Overall, this research can provide technical and data

support for integrated ecological network management and propose

recommendations for the conservation and recovery of

spotted seals.
2 Materials and methods

2.1 Sampling sites and collections

The Liaodong Bay spotted seal (hereinafter referred to as the

“spotted seal”), also known as the Western Pacific spotted seal, is a

species that migrates to the Bohai Sea and Liaodong Bay region of
Frontiers in Marine Science 03
China (Han, 2009). It is the only marine pinniped species that

breeds in China. Each year (Zhuang et al., 2023). During the winter

and spring seasons, the spotted seals migrate to the Liaodong Bay

region for overwintering and breeding (Barman et al., 2020). The

region has several habitats that support spotted seal populations,

with larger populations found in areas like Panjin and Lvshun

(Zhuang et al., 2023).

In this study, we employed environmental eDNA technology to

monitor fish resource diversity (Kda et al., 2015; Yates et al., 2021).

Compared to traditional taxonomic identification-based

monitoring methods, the eDNA approach offers advantages such

as high sensitivity and detection rates (Yang et al., 2021).

Additionally, for endangered species like the spotted seal, the

eDNA method reduces the risk associated with lethal biological

sampling (Rourke et al., 2022).

According to the migration route and main habitats of spotted

seals, six sampling areas (P1: Lvshun nearshore, P2: Fuzhou River

estuary, P3: Daliao River estuary, P4: Liao River estuary, P5:

Xiaoling River estuary, P6: Penglai nearshore) were designated for

this study, as shown in Figure 1. A total of 36 samples were collected

from May to June (the sea fishing moratorium period, SP) and

September to October (the fishing period, FP) in 2021, with the

collection of three samples from different locations surrounding

each habitat. Surface environmental water samples (5L per sample)

were collected at each sampling area using a water collector. Prior to

each sample collection, the water collector was washed with surface

water three times. The collected water was then poured into a clean

wide-mouth bottle and immediately stored in a vehicle refrigerator

at a low temperature (Qu et al., 2020).

To prevent contamination by exogenous eDNA, the following

measures were taken: (1) All water bottles and filtration devices

were cleaned with a 10% bleach solution between each sampling
FIGURE 1

The location of the study area and distribution of sampling regions, Bohai Bay, China. (P1: Lvshun, P2: Fuzhou River, P3: Daliao River, P4: Liao River,
P5: Xiaoling River, P6: Penglai).
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(DiBattista et al., 2017); (2) Researchers changed disposable gloves

between different samples during the collection process; (3) A

negative control was included in all sampling areas, using 3L of

deionized water as the sample. Within 24 hours after sampling,

eDNA was enriched on a filter membrane with a pore size of

0.45mm using a vacuum pressure pump (Liu et al., 2021). After

filtration, the filter membrane of each sample was carefully folded

inward with tweezers, placed in a 50ml centrifuge tube, labeled, and

stored in separate plastic bags at -20°C until eDNA extraction. The

geographic coordinates of each sampling area were recorded using a

handheld GPS device, and water quality parameters such as total

dissolved solids (TDS), oxidation-reduction potential (ORP),

salinity (S), pH, temperature (T), and dissolved oxygen

concentration (O) were measured using a HQ30d portable water

quality tester for subsequent analysis and research.
2.2 DNA extraction and PCR amplification

Total DNA in the sample was extracted using the FastDNA®

Spin Kit for Soil (MP Biomedicals) extraction kit. DNA extracts

were validated on 1% agarose gel and DNA concentration and

purity were determined using a NanoDrop 2000 UV-vis

spectrophotometer. ABI GeneAmp® 9700 PCR thermocycler

using primers MiFish - U - F(5 ’- GTCGGTAAAACT

CGTGCCAGC - 3’) and MiFish - U- R (5’- CATAGTGGGGTA

TCTAATCCCAGTTTG - 3) PCR amplification was carried out on

the variable region. The reaction system is 5×FastPfu Buffer 4mL,
2.5mM dNTPs 2mL, forward primer (5µM) 0.8mL, reverse primer

(5µM) 0.8mL, TransStart FastPfu DNA polymerase 0.4mL, BSA
0.4mL, 10ng template DNA supplemented with ddH2O to 20mL.
The reaction parameters were as follows: initial denaturation at 95 °

C for 5 min, denaturation at 94 °C for the 30s, annealing at 51 °C for

30s, extension at 72 °C for 32 times, then stable extension at 72 °C

for 18 min, and finally preservation at 10 °C. There were 3 replicates

per sample, and the products of the 3 replicates were mixed. PCR

products were extracted from 2% agarose gel and purified using the

AxyPrep DNA Gel Extraction Kit. The recovered products were

quantified by Quantus™ Fluorometer.
2.3 High throughput sequencing and
species annotation

We further sent the samples to Majorbio Bio-Pharm

Technology Co. Ltd. (Shanghai, China) for high-throughput

sequencing. We used an Illumina MiSeq PE300 platform/

NovaSeq PE250 platform and pool purified amplicons in an

equimolar fashion and sequenced them paired-end. We used

FASTP version 0.20.0 (Chen et al., 2018) (https://github.com/

OpenGene/fastp) to control the original sequencing sequences

quality; used FLASH version 1.2.7 (Magoc and Salzberg, 2011)

(http://www.cbcb.umd.edu/software/flash) for assembling; used

UPARSE version 7.1 (Edgar, 2013) (http://drive5.com/uparse) to

perform OTU clustering of sequences according to 97% similarity

and eliminate chimeras. There were 3 parallel samples in each
Frontiers in Marine Science 04
sampling area. In the statistical process, the three sequence results of

a sampling area are added together, and the total sequence value

obtained is taken as the final sequence result of the sampling area.

The subsequent analysis is based on this value. Species classification

annotation was performed for each sequence using RDP Classifier

version 2.2 (Wang et al., 2007) (http://rdp.cme.msu.edu).

Subsequently, referring to the Fishbase database (https://

www.fishbase.se) and the related literature (Liu, 2019) to record

and refer to relevant historical documents, further annotate the fish

data, screen and improve the taxonomic information of fish, and

finally sort out and obtain the list of fish resources in the habitat of

spotted seals in Liaodong Bay.
2.4 Statistical analyses

Since there are some sequences in the collected samples that do

not match the sequences in the library, we need to eliminate them

and calculate the percentage of valid sequences out of the total

sequences. Here, we calculated the percentage of each fish’s effective

sequences in each sample, and the histogram of fish composition at

each sampling region was drawn. We calculated Alpha diversity

such as Richness, Chao1 index, ACE index, Shannon index, Pielou

index, Invisimpson index, and Coverage index to assess and

evaluate the degree of fish diversity at various sampling sites. See

Appendix A1 for the exact calculation formula. These indexes

reflected community richness, diversity, and community coverage,

respectively. Additionally, based on the corresponding abundance

data of OTU in each sample, this study estimated the Bray-Curtis

distance to explore community composition difference and

similarities between various groups of collections, calculated and

mapped the principal coordinates PCOA (Principal Co-ordinates

Analysis). Besides, this study calculated t-test to recognize the

similarity between communities in different regions. RDA

(Redundancy analysis) was used to explore the primary

environmental elements influencing where fish communities are

found. All analyses were performed and visualized on the Excel,

Origin, and Tutools platform (https://www.cloudtutu.com). In

addition, the dominance index (Y) of the fish community in two

periods was calculated by the dominance formula (Yang et al.,

2022), the equation as follow:

Y =
Ti

T
� ni

N
(1)

where Ti is the number of sample points where the fish i

appears; T is the total number of sample points; ni is the

sequence abundance of the fish i; N is the total sequence abundance.
2.5 Biological network

2.5.1 Establishing trophic network
We established trophic networks by analyzing eDNA

metabarcoding data obtained from our sampling. To achieve a high-

resolution feeding web for spotted seals, we refrained from species

aggregation. To identify consumer-resource interactions, we conducted
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a comprehensive literature review using various web databases

including Web of Science (https://www.webofscience.com) and

Google Scholar (https://scholar.google.com). We identified 52

scientific papers that provided trophic interaction information at the

species level. During the sampling process, we collected a subset of

biological samples and conducted stomach content analysis using

traditional microscopic examination methods. To address concerns

about the limitations of our sampling data, we supplemented our

findings with stomach content data referenced from relevant literature.

Furthermore, additional feeding data were sourced from the World

Fish Database website (www.fishbase.de). After sorting out data, we

revealed that the diet of spotted seals in the region consisted of 19 fish

species belonging to 4 orders, 7 families, and 15 genera (Supplementary

Table S1).

Next, we categorized all the data, with species data serving as

nodes and trophic relationships as links. We constructed a trophic

network determined by an interaction adjacency matrix consisting

of S rows and S columns, where S represents the total number of

species and taxa involved in the study, and the order of species

among rows corresponds to that among columns. The value at the

intersection of the ith row and jth column in the food web matrix is

either 0 or 1, denoted as aij, indicating whether species j preys on

species i, where aij=0 signifies the absence of a feeding relationship

between i and j. From this matrix, a directed graph with L trophic

links connecting S nodes can be derived, and visualized graphs by

Cytoscape (version 3.9.1) (Shannon et al., 2003).

To analyze highly connected clusters of interaction networks in

the constructed food web, we utilized the program ‘Molecular

Complex Detection’ (MCODE) (Liu et al., 2017). MCODE is a

graph-theory-based clustering algorithm that employs the vertex-

weighting method to filter out regions of high density by using the

density of a map as a weighting factor. This algorithm is commonly

used to identify large molecular complexes within protein structures

(Nomura et al., 2021). In the graph G=(V, E), |V| represents the

number of nodes in the graph, and |E| represents the weight of the

interacting connected edges. The network consists of |V| nodes, and

the maximum weight of |E| is defined as:

Ej jmax=
Vj j( Vj j + 1)

2
(2)

The density of the graph is defined as follows:

DG =
Ej j

Ej jmax
(3)

MCODE efficiently identifies sections of interaction networks

that are highly linked based solely on connectivity data (Bader and

Hogue, 2003) to find highly interconnected areas, which reflect the

density of nodes and surrounding nodes with the score value of

nodes. Besides, we selected the high-score value sub-network and

considered it as the stable core sub-network in a food web.
2.5.2 Topological network analysis
To describe the complexity and structural characteristics of a

food web (Rodriguez et al., 2022; Cordone et al., 2020), we chose the

following 12 topological indexes:
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(1) Species (S): total number of species and groups;

( 2 ) L inks (L ) : t o t a l number o f in t e ra c t i on s o r

nutritional linkages;

(3) Linkage density (D): the number of interactions for each

species;

D =
L
S

(4)

(4) Connectance (C): connectivity or trophic links divided by

the total number of possible interactions;

C =
L
S2

(5)

(5) Percentage of top species (T): percentage of species with

prey but without predators;

T =
ST
S
� 100% (6)

Where ST is the number of top species;

(6) Percentage of intermediate species (I): percentage of species

with prey and predators;

I =
SI
S
� 100% (7)

Where SI is the number of intermediate species;

(7) Percentage of basal species (B): percentage of species with

predators but without prey;

B =
SB
S
� 100% (8)

Where SBis the number of basal species;

(8) Percentage of omnivorous species (O): percentage of species

that eat prey from more than one trophic level;

O =
S0
S
� 100% (9)

Where SO is the number of omnivorous species;

(9) Mean trophic level (MTL): weighted average of trophic

levels for all species;

TTLj = 1 +o
S

i=1
lij
TTLi

nj
(10)

MTL = o
S
i=1TTLi

S
(11)

Where TTLj and TTLi represent the trophic levels of species j and

i; for column j and row i, lij is the connection matrix of row S and

column S. If species j prey on species i, lij= 1; If species j do not prey

on species i, lij= 0; nj is the number of species j capture food species;

(10) Connection complexity index (SC): describing food web

stability;

SC = S� 2L
S2 − S

(12)

(11) Characteristic path length (ChPath): the average shortest

path length between all species pairs;
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ChPath =
2

S(S − 1)o
S

i=1
o
S

j=1
ChPatmin(i, j) (13)

(12) Clustering coefficient (CC): the average number of species

pairs connected to the same species and to each other to describe

the clustering coefficient of species nodes in the food web.

CCi =
2Ei

Ki(Ki − 1)
(14)

CC =
1
So

S

i=1
CCi (15)

Where Ki represents all the edges connecting node i to other Ki

nodes, if all Ki are neighbors, the maximum is Ki(Ki − 1), Ei

represents the actual number of neighbors.
3 Results

3.1 Species diversity

3.1.1 Fish species composition monitored
by eDNA

In this study, 85 fish species from 16 orders, 51 families, and 76

genera were identified by eDNA metabarcoding (Supplementary

Table S2). The total number of species detected in different

sampling regions in the two periods is shown in Figure 2. It was

found that more fish species were monitored in the FP than in

the SP.
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From Figure 3A, 54 fish species were present throughout the SP,

and they belonged to 51 genera, 36 families, and 11 orders.

Perciformes (25 species) comprised around 46.3% of all fish

species on the level of order, followed by Scorpaeniformes (7

species), which accounted for roughly 13% of the species richness.

While other families were discovered with fewer species,

Engraulidae and Carangidae had 4 species (7.4%) found on the

family level. According to Table 1, the top 15 species represented

95.11% of all sequences and had the highest relative abundance.

Trichiurus lepturus, which made up 45.43% of the series in the SP,

was the most frequently observed species, followed by Protosalanx

chinensis (15.49%) and Remorina albescens (8.67%).

From Figure 3B, the biodiversity was higher during the FP when

74 species, 68 genera, 49 families, and 17 orders were detected. On

order level, 33 species from Perciformes were identified, occupying

44.6% of the total species richness, followed by 8 species (10.8%)

from Clupeiformes. On the family level, Gobiidae and Engraulidae

each had 6 species (8.1%), while the remaining families had fewer

species (1-3). Table 1 showed that the top 15 species’ relative

abundance accounted for 93.03% of total sequences. Trichiurus

lepturus (37.11%) still had the highest relative abundance in the

environment, 19.27% and 7.81% of sequences were identified as

Engraulis japonicus and Seriola lalandi.

According to Equation 1, the index of dominant species Y was

used to identify the predominant fish species communities during

the two time periods, the results (Y>0.2) are shown in Table 2.

During the SP, we regarded 5 species as dominant species, the top 3

species were Trichiurus lepturus, Protosalanx chinensis, and

Remorina albescens, respectively. There were 8 dominant species
FIGURE 2

The species line chart for the number of fish species detected by eDNA metabarcoding in different sampling areas in the two periods. (1: Lvshun
nearshore, 2: Fuzhou River estuary, 3: Daliao River estuary, 4: Liao River estuary, 5: Xiaoling River estuary, 6: Penglai nearshore).
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found in the FP, and Trichiurus lepturus, Engraulis japonicus, and

Seriola lalandi outcompeted other species. Moreover, we found that

3 species were dominant in both periods: Protosalanx chinensis,

Coilia mystus, and Seriola lalandi.

3.1.2 Spatial and temporal patterns of
fish biodiversity

A total of 43 (50.59%) species were found through both two

periods, while 11 (12.94%) and 31 (36.47%) species were detected in

the SP and the FP, respectively (Figure 4A). Besides, we found 5 fish

species in all samples: Coilia mystus, Protosalanx chinensis, Seriola

lalandi, Trichiurus lepturus, and Scomber japonicu (Figure 4B). The
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sequence of the fish species abundance in the top five were

Trichiurus lepturus, Engraulis japonicus, Protosalanx chinensis,

Seriola lalandi, Coilia mystus. In particular, the amounts of their

sequences showed spatial and temporal differences (Figure 4C).

Alpha diversity of the fish community was compared between

the SP and the FP. All samples’ coverage ranged from 0.988-0.999

(Supplementary Table S3), demonstrating that sequencing covered

all species so that the results could reflect the actual community.

Chao1 ranged from 14 to 54.17, while ACE ranged from 14 to 55.81.

These two indices showed a similar trend. The results of Shannon’s

(0.36-2.57) and Simpson’s range (0.12-0.89) also show a

resemblance. The highest species richness was found in the
frontiersin.o
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FIGURE 3

The number and proportion at the taxonomic level of order and family in two periods: (A) SP; (B) FP.
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Daliao River estuary (52) in the FP, and the lowest in Lvshun

nearshore (14) in the SP. The t-test results of diversity are shown in

Supplementary Table S4. Overall, different samples, including 6

indexes, Richness, Shannon, Simpson, Pielou, Invsimpson, and

Coverage, showed no significant differences (p>0.05). It means

there is no difference between samples for all of them, showing

consistency. However, there is a significant value for Chao1 and

ACE indexes in the samples (p<0.05). For these two indexes, the

average value of the FP was higher than that of the SP. These
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findings showed that there were more species overall during the FP

than during the SP, indicating a higher level of community variety

during the FP.

Based on all sampling sites’ sequence abundance, the Bray

standardized similarity coefficient matrix Bray-Curtis distance was

used for PCoA analysis to compare similarity and differentiation

within samples. Bray standardized similarity refers to the

application of the Bray-Curtis distance metric to assess

the similarity and differentiation within samples based on the
TABLE 1 The top 15 fish in the percentage of abundance in the Sealing period and the Fishing period, respectively.

No. Scientific Name Order level Abb Percentage of abundance Occurrence rate

Sealing period

1
2
3
4
5

Trichiurus lepturus
Protosalanx chinensis
Remorina albescens
Acanthogobius hasta

Coilia mystus

Perciformes Trle 45.43% 100%

Osmeridae Prch 15.49% 100%

Perciformes Real 8.67% 50%

Perciformes Acha 5.21% 33%

Clupeiformes Comy 3.98% 100%

6
7
8
9
10
11

Seriola lalandi
Johnius belangerii
Seriola dumerili

Scomberomorus niphonius
Parastromateus niger
Engraulis japonicus

Perciformes Sela 3.38% 100%

Perciformes Jobe 2.29% 50%

Perciformes Sedu 1.85% 83%

Perciformes Scni 1.67% 67%

Perciformes Pani 1.64% 67%

Clupeiformes Enja 1.40% 67%

12
13
14
15

Takifugu rubripes
Scomber japonicus
Sillago sihama

Konosirus punctatus

Tetraodontiformes Taru 1.28% 50%

Perciformes Scja 1.25% 100%

Perciformes Sisi 0.86% 67%

Clupeiformes Kopu 0.72% 83%

Fishing period

1 Trichiurus lepturus Trichiuridae Trle 37.11% 100%

2 Engraulis japonicus Engraulidae Enja 19.27% 83%

3 Seriola lalandi Carangidae Sela 7.81% 100%

4 Coilia mystus Engraulidae Comy 6.98% 100%

5 Sillago sihama Sillaginidae Sisi 5.22% 100%

6 Nibea albiflora Sciaenidae Nial 3.38% 83%

7 Protosalanx chinensis Salangidae Prch 3.06% 100%

8 Konosirus punctatus Clupeidae Kopu 2.54% 100%

9 Acanthogobius hasta Gobiidae Acha 1.88% 100%

10 Johnius belangerii Sciaenidae Jobe 1.75% 100%

11 Takifugu rubripes Tetraodontidae Taru 1.10% 83%

12 Cheilopogon cyanopterus Exocoetidae Chcy 0.84% 100%

13 Remorina albescens Echeneidae Real 0.79% 83%

14 Anguilla japonica Anguillidae Anja 0.70% 67%

15 Hippocampus coronatus Syngnathidae Hico 0.59% 83%
Abb refers to the abbreviation of the Scientific Name; Percentage of abundance refers to the proportion of sequence abundance; Occurrence rate refers to the frequencies of fish detected in the six
sampling regions.
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abundance of sequences across various sampling sites. It’s a way to

measure how samples compare to each other in terms of their

composition. The result shows that two principal coordinates

explained 52.39% of the differentiation, and some separate trends

can be found between the two periods (Figure 5A). The results

showed that the sampling regions were more dispersed during the

SP, indicating that the species differences within the community

were large. The opposite is true for the sampled data during FP.For

almost all sampling areas, some distance also can be found between

the two periods, reflecting seasonal differences in species

composition. However, SP1 (Lvshun nearshore in the SP) and

FP1 (Lvshun nearshore in the FP) were close in the PCoA

analysis, indicating that the composition of fish species in P1

(Lvshun nearshore) was similar in the two periods.

Differences in the regional and temporal distributions of the

species were shown by the heatmap of their relative sequencing

abundances (Figure 6A). Briefly, the composition of the community

differed among samples. Trichiurus lepturus and Engraulis

japonicus had the highest relative abundance and most extensive

distribution, whereas Cynoglossus graciliss, Larimichthys polyactis,

and Collichthys niveatus distributed narrower. Each sampling site

had some specialists, for example, Rachycentron canadum (Raca)

only appeared in FP1(Lvshun nearshore), and Acanthogobius hasta

(Acha) had a higher abundance in SP4 (Liao river estuary)

compared to other samples.

The diagram based on sequence abundance showed the

distribution of fish species is similar at some sites with actual

differences (Figure 6B). In Lvshun nearshore (P1), high similarity

fish compositions that Trichiurus lepturus dominated, as same as

the trend reflected by the results of PCoA analysis. However, the

Daliao River estuary (P3) showed a considerable discrepancy

compared to Lvshun nearshore, Protosalanx chinensis (Prch) and

Remorina albescents (Real) were the dominant species during the

SP, which switched to Trichiurus lepturus (Trle) and Engraulis

japonicus (Enja) in the FP. Besides, Protosalanx chinensis (Prch)
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was the main species during the SP, while the FP showed high

diversity in Xiaoling River estuary (P5).

3.1.3 Relationship of fish diversity with
environmental factors

In this study, 8 different environmental factors were collected,

such as total dissolved soil (TDS), the potential of hydrogen (pH),

oxidation-reduction potential (ORP), salinity (S), dissolved oxygen

(DO), conductivity (C), dissolved oxygen saturation (O) and

temperature (T). The measurement results of environmental

factors are shown in Supplementary Table S5. The water

temperature in each area ranges from 23.6-26.8 °C with an

average value of 25.52 °C during the SP and ranges from 18.9°C

to 23.6 °C with an average value of 21.73 °C during the FP. The

comparison of environmental factor t-test results (mean ± standard

deviation) between sampling areas is shown in Supplementary

Table S6. It can be seen from the test results that the average

values of TDS, S, C, and O in the SP are higher than those in the FP,

but ORP, pH, and DO are opposites. The two periods had no

significant difference in the above environmental factors. Still, the

water was substantially warmer during the SP than it was during the

FP (p<0.01).

Using data from the top 8 abundant species found in the two

periods and the set offive environmental parameters, RDA analysis was

used to highlight the correlations between the environmental factors

and the fish species. From Figure 5B, the two RDA axes can explain

39.07% of the structural differences. By studying this figure, it can be

found that the samples in the SP and the FP show high dispersion, and

there is no consistent relationship between environmental conditions

and species distribution. The first-ranking axis and each of the five

environmental factors were adversely connected, however, the second-

ranking axis was positively correlated. DO has the longest ray arrow,

the strongest correlation with the distribution of fish community, and

the greatest influence on it, so it is the key environmental factor

affecting fish assemblage. This axis is closely related to C, O, and TDS.

Furthermore, DO has a strong negative correlation with samples in the

FP, but a strong positive correlation with some sampled areas in the SP.
3.2 Trophic network of spotted seals

3.2.1 Network structure analyzing
As shown in Figure 7, the total food webs in the SP and the FP

were respectively constructed. Through the food web structure

chart, it was clear that the network structure of the FP was more

complex than that of the SP, with a high number of connections

between Cephalopods and fishes. During the SP period, the total

number of nodes in the network was 68, with a total of 353 links. In

the FP period, the total number of nodes increased to 88, with a

total of 535 links. Among the detected fish species, spotted seals

(Phoca largha) preyed on 12 species during the SP, constituting

17.64% of the total node count; and 18 species during the FP,

accounting for 20.45% of the total node count. Among them, 11

species existed in both periods.

According to Equations 1, 2, we selected the sub-network with a

high score value and considered it as the stable core sub-network in
TABLE 2 Dominance index of dominant species in two periods.

Sealing period Fishing period

Scientific
Name

Dominance
index(Y)

Scientific
Name

Dominance
index(Y)

Trichiurus
lepturus

0.4534
Trichiurus
lepturus

0.37111

Protosalanx
chinensis

0.1546
Engraulis
japonicus

0.16060

Remorina
albescens

0.0432 Seriola lalandi 0.07806

Coilia mystus 0.0397 Coilia mystus 0.06978

Seriola lalandi 0.0338 Sillago sihama 0.04353

Protosalanx
chinensis

0.03063

Nibea albiflora 0.02815

Konosirus
punctatus

0.02541
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a food web from 12 food webs in two periods based on the use of the

Cytoscape MCODE program (Figure 8). Through these sub-

networks, we discovered that the core sub-network scores in the

SP higher than these in the FP. Overall, based on the 12 food webs’

partially stable structures, Cephalopods (Ceph) were identified as

keystone species 3 times and Coilia mystus (Comy) two times,

which were the species that Phoca largha preyed on. Spatially, Comy

could be found in the stable structures from P1 and P6, while Ceph

appeared in P5, these two species both play critical roles in P2 and

P3. Whereas, P4 showed a fluctuation and caused no species could

become the critical prey in the food web during two periods.

3.2.2 Topological network analysis
According to Equations 4–15, from Table 3, we detected the

structural characteristics and complexity of the spotted seals’ food

webs. The food web in the SP contained 68 species, while 88 species

during the FP. On the one hand, the number of links during the FP

(L=535) is almost 1.5 times that of the SP (L=353), but the
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connectance of the former (C=0.076) is higher than that of the

latter (C=0.069); On the other hand, the mean trophic level of the

food web in the FP (MTL=3.00) was higher than that in the SP

(MTL=2.92). It is worth noting that although the two food networks

contain different numbers of species, the proportions of species

assigned to the two food webs were very similar: top species (T%,

13% during the SP; 14% during the FP), intermediate species (I%,

83.8% the SP; 83.0% the FP), basal species (B%, 2.9% the SP; 2.3%

the FP) and omnivorous species (O%, 58.8% the SP; 61.4% the FP).

Intermediate species far outnumber top and basal species, meaning

most species were both predators and prey. Besides, the network

topological attributes: the characteristic path length (ChPath, 1.98

during the SP; 1.96 during the FP) and the clustering coefficient

(CC, 0.345 during the SP; 0.352 during the FP) were similar.

Through t-test results of network parameters (Supplementary

Table S7), we discovered that the number of food web nodes in two

periods did not differ significantly (P=0.074). However, the mean

number of nodes in the FP was higher (51.33 ± 13.98) than in the SP
B

C

A

FIGURE 4

The number of fish species identified during the SP and the FP. (A) Venn diagrams of FP and SP; (B) Venn diagrams of points in both periods;
(C) chord diagrams based on sequence abundance.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1305763
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Xu et al. 10.3389/fmars.2023.1305763
BA

FIGURE 5

(A) The result of PCoA analysis shows the diversity of fish communities between the two periods. (B) The heatmap showed the relative abundance of
fish species at each sampling region.
B

A

FIGURE 6

(A) The RDA diagram of the relationship between fish and six environmental factors for two periods. (B) The relative abundance (%) of fish species in
different seasons detected in every sampling site.
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(38.33 ± 7.63). For the number of food web links (the distribution

range was 100-335), there were noticeable temporal variations in

the quantity of food web links (P=0.034), links found in the FP

(267.00 ± 82.09) were significantly higher than that in the SP

(169.33 ± 52.94).

The number of links generally increased as node counts

climbed, except at Xiaoling River estuary (P5) where they

declined during the FP. Similar to the number of links (P=0.034),

the distinct link density characteristics (P=0.026) of food webs at

different times also showed significant differences, ranging from

3.57 to 5.54. In comparison to the SP (4.34 ± 0.61), the mean

number of food web links during the FP (5.15 ± 0.46) was higher.

Although there was no statistically significant difference between

the two periods (P=0.544), the distribution of food web connectance

ranged from 0.072 to 0.136, with the lowest and highest values

observed during the FP.
4 Discussion

In this study, we focused on the habitats of spotted seals (Phoca

largha) in Liaodong Bay and analyzed fish biodiversity during the

closed fishing season (SP, May to June) and the fishing season (FP,

September to October) in 2021, based on 36 samples. The results

revealed the identification of a total of 85 fish species, with 54

species detected during SP and 74 species during FP. The primary

prey species targeted by spotted seals included 12 species during the

SP period, constituting 17.64% of the total node count. In the FP
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period, they consumed 18 species, accounting for 20.45% of the

total node count. Comparison with historical records (Cheng, 2004;

Liu et al., 2015) showed minimal differences in dominant fish

species in the study area, underscoring the utility of eDNA

technology. Moreover, the number of fish species discovered

during FP significantly exceeded that observed during SP, as

reflected in the biodiversity analysis results. A previous study by

Wang et al. (2021) had already confirmed the positive impact of the

fishing prohibition policy on promoting the recovery of fish

populations. Furthermore, variations in fish biodiversity may also

be attributed to differences in the habitat heterogeneity of fish

species or manifestations of spatial niche differentiation. Notably,

Bray-Curtis similarity analysis results indicated significant

differences in fish biodiversity between sampling points P1

(Lvshun nearshore) and P6 (Penglai nearshore), revealing that the

estuarine habitat environments offer more diverse and stable food

resources for spotted seals, Figure 6. In other words, the spatial

distribution pattern offish resources is determined by the long-term

influences of habitat heterogeneity, to which spotted seals have

adapted through their evolutionary history.

Based on fish resource data, a trophic network for spotted seals

was established. We selected 12 network topological measures to

analyze the spatiotemporal patterns of network topological

properties, describing the complexity characteristics of the

network structure. Comparing with network parameters of food

webs in other regions (Supplementary Table S8), it was found that

the average trophic level (MTL) and clustering coefficient (CC) in

the Liaodong Bay nutritional network were both higher than 87.5%
B

A

FIGURE 7

(A) The total food web in the SP. (B) The total food web in the FP. The darker the node color indicated the higher the degree value of species; red
nodes represented the feeding species of spotted seals.
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of other food webs. Additionally, the intermediate species ratio (I)

was also relatively high (Supplementary Table S8). This indicates

that the network structure in this region tends to form higher

trophic-level clustering patterns, which facilitate the formation of

weaker interactions between clusters, enhancing the robustness of

the network. Furthermore, the proportion of omnivorous species

(O) contributes to forming more links with limited nodes,

increasing node degrees, and enhancing the topological

importance of omnivorous nodes, which significantly benefits the

stability of food webs (Norkko et al., 2007; Xu et al., 2020).
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Specifically, during both periods, the proportion of omnivorous

species (O) reached approximately 60%, with slightly higher values

during FP. Overall, the closure of fishing activities appears to have

primarily contributed to the recovery of higher trophic-level

omnivorous predators in the local fish resources (T increased by

1.6%), which largely fall within the prey category of spotted seals,

promoting the complexity of the trophic network. This conclusion

is supported by the significantly higher connectivity complexity

index during FP (SC=12.3) compared to SP (SC=10.54). Previous

studies have suggested that higher food web diversity leads to
FIGURE 8

The core of stable sub-network selected with a high score value of the trophic network.
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greater stability (McCann, 2000), indicating that the spotted seal’s

trophic network is relatively more stable during FP.

We also found that the food web in Liaodong Bay has a longer

characteristic path length compared to most food webs. This

suggests that there are longer material energy flow paths and

higher ecosystem assimilation efficiency. As a result, the food web

has increased redundancy and resistance to disturbances (Marina

et al., 2018). The structural analysis of sub-networks revealed that

food resources related to spotted seals are often part of highly

connected and hierarchical sub-net units, which consist of various

omnivorous predators (Figure 8). These sub-net units tend to have

higher stability scores. This could be attributed to the fact that

species with numerous associations in the food web are linked to

specific species, forming multiple interacting clusters (Delmas et al.,

2019). In conclusion, our findings suggest that the sources of food

for spotted seals in different seasons are not significantly affected by

the current fishing ban policy. When winter arrives and spotted

seals migrate to the Liaodong Bay area for overwintering and

breeding, the network structure they form with local species

remains relatively stable. This stability contributes to the recovery

of the spotted seal population. However, during the fishing period

(FP), it is crucial for the government and species conservation

organizations to pay more attention to the intensity of human

fishing on mid-to-high trophic-level omnivorous fish resources.

This attention is necessary to ensure the sustainability of these

potential food resources for spotted seals during the winter season.

In our study, we acknowledge several limitations. Firstly, the

degradation process of eDNA can be influenced by various
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environmental factors, which may potentially affect the

experimental results (Mauvisseau et al., 2022). Secondly, we

encountered difficulties in identifying many detected sequence

fragments through eDNA barcoding, possibly due to insufficient

data in the genetic databases. Thirdly, we did not consider predation

differences due to age structure, such as the fact that adults and

juveniles often feed on different prey, which could impact the

network topology. To address these limitations, our future plans

include conducting long-term monitoring of the food web structure

in Liaodong Bay and expanding the existing database. Additionally,

we aim to investigate the effects of network structure variations on

spotted seals. Furthermore, we intend to expand the ecological

database through long-term field surveys.
5 Conclusion

In conclusion, we conducted in Liaodong Bay, China, using

environmental DNA (eDNA) methods and high-throughput

sequencing techniques revealed significant findings about the

spotted seal habitats and their associated fish diversity.

(a) We identified 85 fish species in total, with Perciformes

dominating at 46%. During the sea fishing moratorium period (SP),

54 species were identified, while the fishing period (FP) recorded 74

species, indicating higher species richness in FP across all

sampling areas.

(b) The study also constructed and analyzed spotted seals

trophic networks, highlighting a more complex structure during
TABLE 3 Network metric values in the Sealing period (SP) and the Fishing period (FP).

S L D C T(%) I(%) B(%) O(%)
MTL

SC ChPath CC

SP1 28 100 3.57 0.128 14.3 78.6 7.1 42.9 2.68 7.41 1.87 0.46

SP2 47 229 4.87 0.104 14.9 80.9 4.3 53.2 3.07 9.96 1.91 0.34

SP3 47 232 4.94 0.105 12.8 83.0 4.3 53.2 3.02 10.09 1.89 0.36

SP4 36 173 4.81 0.133 11.1 83.3 5.6 50.0 2.83 9.89 1.82 0.33

SP5 39 148 3.79 0.097 15.4 79.5 5.1 53.8 2.96 7.79 1.98 0.44

SP6 33 134 4.06 0.123 18.2 75.8 6.1 45.5 2.96 8.38 1.85 0.35

SP 68 353 5.19 0.076 13.2 83.8 2.9 58.8 3.23 10.54 1.98 0.35

FP1 33 148 4.48 0.136 15.2 78.8 6.1 42.4 2.74 9.25 1.82 0.34

FP2 59 329 5.58 0.095 11.9 84.7 3.4 61.0 3.08 11.34 1.90 0.34

FP3 66 313 4.74 0.072 15.2 81.8 3.0 59.1 3.20 9.63 1.99 0.37

FP4 54 299 5.54 0.103 16.7 79.6 3.7 59.3 3.09 11.28 1.88 0.39

FP5 61 335 5.49 0.090 9.8 86.9 3.3 57.4 3.10 11.17 1.93 0.38

FP6 35 178 5.09 0.145 14.3 80.0 5.7 48.6 2.80 10.47 1.77 0.36

FP 88 535 6.08 0.069 14.8 83.0 2.3 61.4 3.26 12.30 1.96 0.35
frontiers
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the percentage of omnivorous species; MTL represents the mean trophic level; SC represents the connection complexity index Price category of scientific species; ChPath represents the
characteristic path length; CC represents the clustering coefficient.
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FP with increased connections between Cephalopods and fishes.

Phoca largha preyed on 12 species during SP and 18 species

during FP. The network analysis indicated high clustering

coefficients for both periods, suggesting the formation of

higher trophic-level clustering patterns, enhancing network

robustness. The proportion of omnivorous species (O=60%)

contributed to increased stability by forming more links with

limited nodes.

(c) Structural analysis of sub-networks revealed that food resources

related to spotted seals were part of highly connected and hierarchical

sub-net units, consisting of various omnivorous predators. The study

emphasized that the spotted seal’s trophic network is relatively more

stable during FP, supported by a significantly higher connectivity

complexity index. The conclusion emphasized the importance of

attention to human fishing intensity on mid-to-high trophic-level

omnivorous fish resources during FP for the sustainability of spotted

seals’ winter food sources. Overall, the research provides valuable

insights for integrated ecological network management and

suggestions for the protection and recovery of spotted seals.
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