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The first formal consensus diagnostic criteria for myelin oligodendrocyte

glycoprotein antibody-associated disease (MOGAD) were recently proposed. Yet,

the distinction of MOGAD-defining characteristics from characteristics of its

important di�erential diagnoses such as multiple sclerosis (MS) and aquaporin-

4 antibody seropositive neuromyelitis optica spectrum disorder (NMOSD) is still

obstructed. In preclinical research, MOG antibody-based animal models were

used for decades to derive knowledge about MS. In clinical research, people

with MOGAD have been combined into cohorts with other diagnoses. Thus,

it remains unclear to which extent the generated knowledge is specifically

applicable toMOGAD. Translational research can contribute to identifyingMOGAD

characteristic features by establishing imaging methods and outcome parameters

on proven pathophysiological grounds. This article reviews suitable animal

models for translational MOGAD research and the current state and prospect of

translational imaging in MOGAD.

KEYWORDS

myelin oligodendrocyte glycoprotein associated disease, imaging, translational research,
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1 Introduction

Myelin oligodendrocyte glycoprotein (MOG) is a minor transmembrane glycoprotein
located in the outermost membranes of the myelin sheath (1) that has long been an
important target molecule for animal models of demyelinating diseases. Only in recent
decades, antibodies against MOG (MOG-IgG) have been identified in people who were
previously diagnosed with various other autoimmune-neurological diagnoses such as
multiple sclerosis (MS), aquaporin-4-antibody (AQP4-IgG) seronegative neuromyelitis
optica spectrum disorder (NMOSD), and acute disseminated encephalomyelitis (ADEM),
as well as in isolated and recurrent optic neuritis (ON) and transverse myelitis (TM) (2–6).
Furthermore, MOG-IgG can be discovered “false positively” in several other conditions, as
demonstrated in several cases of peripheral neuropathy (7, 8) and tumor/lymphoma (9–11).
Thus, care needs to be taken as to when MOG-IgG measurement should be performed as
well as to the interpretation and consideration of possible differential diagnosis thereof, as
has been pointed out in the formal consensus diagnostic criteria for MOG-IgG-associated
diseases (MOGAD) that were recently established for the first time (12). Yet, clinical features
of MOGAD partly overlap with its differential diagnoses, most importantly NMOSD and
MS, delaying the time required until the correct treatment is applied, thus increasing
relapse probability. Clinical and imaging studies until now also often included MOGAD
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patients grouped together with MOG-IgG seronegative patients
(for example, as AQP4-IgG seronegative NMOSD), further limiting
the discovery of MOGAD-specific features. This is not only
true for clinical research: MOG-induced animal models, such as
experimental autoimmune encephalomyelitis (EAE), have been
widely used as models of demyelinating diseases in general and MS
in particular. With the definition of MOGAD as a separate disease
entity, it needs to be reevaluated to which extent the generated
knowledge from MOG-induced models is specifically applicable to
MOGAD versus what should be considered valid for its differential
diagnosis (13).

Imaging can significantly aid differential diagnosis early
in the disease course and guide the application of cell-based
MOG-IgG assays (if available) (14–16). By using a back-
translational approach to investigate disease-specific imaging
features in preclinical models, imaging can also be used to
improve the understanding of (A) distinct pathophysiology
by using methods with single-cell resolution and (B) the
pathophysiological basis of distinct imaging characteristics by using
feature-specific histopathology. This article reviews translational
imaging techniques in MOGAD and its animal models. It also
discusses the current and potential future relevance of MOGAD-
specific animal models and translational imaging for defining
distinct pathophysiological features in MOGAD compared with
important differential diagnoses, especially MS (17) and AQP4-IgG
seropositive NMOSD (18).

2 The pathophysiology of MOGAD

There is very little autopsy and/or biopsy material that
documents MOGAD pathology specifically (13, 19–22).
Furthermore, these studies were conducted mostly on cerebral
samples; there is only one case with spinal cord pathology
reported (22). Optic nerves are missing in these evaluations.
From the presented material, it can be deduced that there are
clear histopathological differences discerning MOGAD from both
NMOSD and MS, including a CD4+ dominated infiltrate, with
fewer B cells, a moderate number of granulocytes (eosinophils and
neutrophils), and many/abundant macrophages, some containing
early myelin degradation products. While AQP4 and AQP1 were
preserved in MOGAD, reactive astrogliosis and even scarring in
and around the demyelinating lesions were observed. Axons and
oligodendrocytes were unaffected or variably destructed, with a
moderate number of axons showing disturbed fast axon transport
and axonal spheroids, especially at the lesion rim. Demyelinating
lesions occur usually in white matter in a mixed perivenous and
confluent pattern of several perivenous lesions, with affection
of cortico-medullary junctions and leptomeningeal areas of
the cortex as well as the cerebral white matter. Furthermore,
there are no “smoldering” radially expanding lesions with
microglial/macrophage rim, as would be seen in progressive MS.
A meningeal inflammation in 86% of biopsy cases could be seen.
The studies, however, do not agree about complement deposition,
one describing complement deposition/activation in white matter
lesions (13) and the other describing only occasional perivascular-
activated complement and IgG deposition (19). In the latter study

and the study by Spadaro et al., MOG-dominated myelin loss
with preserved oligodendrocytes was observed (20), whereas the
previous one did not discern preferential loss of MOG (13). The
pathology of one patient with a fulminant MOGAD-like disease
including meningoencephalitis and leptomeningeal enhancement
and positive MOG-IgG in the cerebrospinal fluid only showed
relative axonal sparing, primary confluent demyelination, reactive
gliosis, and CD4+ dominated inflammatory infiltrates (22).

There have also been attempts to define the cytokine profile
in patients with MOGAD. A study by Nakajima et al. found
elevated levels of serum IL-1ra, IL-5, and TGF-α as compared
to MOG-negative patients (23). IL-6 was found to be elevated in
the CSF of MOG-IgG seropositive children (24). In the study by
Bauer et al., serum cytokine levels of MOG-IgG positive/AQP4-IgG
positive NMOSD were compared to those measured in MS patients
(25). They discovered 36 analytes being increased from MOGAD
compared with MS (IL-8, SDF-1a, MCP-1, GRO-a, IL18, MIP-
1b, Fractalkine, HGF, IP-10, SCF, VEGF-A, BAFF, IL-7, TWEAK,
MIP-3a, M-CSF, CD40L, MMP-1, IL-27, MIG, LIF, MIP-1a, IL-
17A, IL-23, TNF-β, IL-1a, IL-6, IL-21, IL-5, MDC, IL-9, FGF-2,
Eotaxin-3, IL-10, Eotaxin-2, and IL-31). Only five cytokines differed
between AQP4-IgG seropositive NMOSD and MOGAD, all being
lower expressed in MOGAD (APRIL, TNFR2, TRAIL, MCP-2,
and CD30). No differences were found in MOGAD/NMOSD
with regard to disease activity (relapse/remission and amount
of relapses), disease course (monophasic/relapsing), treatment
modality, sex, or age; however, the availability of clinical data
were incomplete.

3 Clinical features and clinical
imaging in MOGAD

MOGAD affects pediatric and adult patients and shows no sex
or ethnic predominance (26). Typical clinical attacks include ON,
TM, and, to a lesser extent, cranial neuropathies, brainstem and
cerebellar demyelinating attacks, tumefactive brain lesions, mono-
and polyfocal CNS deficits, and white matter leukodystrophy-like
damage, as well as encephalitis with seizures and neuropsychiatric
symptoms (27–30). The most common first manifestation in
adults is ON (>55%), whereas the most common first pediatric
manifestation is ADEM (with or without ON, >45%) (31–33).

In contrast to the recurrent disease course in MS and NMOSD,
MOGAD can be monophasic (∼22–56%) (4, 13), preferentially in
children (16, 34–36), or recurrent. The current estimation is limited
by the short follow-up lengths of published studies, but only one
in three MOGAD patients seems to have a relapse within a year
after their initial manifestation (3, 4, 37). The risk is higher with
steroid tapering and shortly after the initial attack (3, 4, 38, 39).
Other longer studies with a small sample size suggest that the
long-term risk for recurrent attacks is higher and that attacks
can still occur up to >40 years after onset (40, 41). The risk
of relapse is lower in pediatric patients; only one in five kids is
affected (16, 31, 42, 43). In contrast to MS, clinical progression
independent of attacks has not been widely reported in MOGAD
so far (41, 44, 45). Histopathological analysis of autopsies/biopsies
did not reveal “smoldering” (i.e., slowly expanding) lesions in
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patients with MOGAD, suggesting a different etiology, if there was
a clinically progressive, meaning an attack-independent, disease
course in MOGAD as compared to MS. Yet, the current state
of research cannot shed light on the possibility of clinical or
subclinical progression in MOGAD (46, 47). In a few cases in
our outpatient clinic, we observed that patients experience relapse-
free worsening of their symptoms over time; however, a thorough
investigation on this matter is still needed.

3.1 Brain and brainstem

Cerebral manifestations and imaging findings in MOGAD are
diverse. In adults with MOGAD, brain MRI findings are usually
sparse and rarely occur in isolation without cerebral syndrome
or concurrent optico-spinal lesions (3, 48). Silent lesions are seen
in <5% of adult MOGAD patients and even those are usually
associated with subsequent relapses (49). Cortical and infratentorial
lesion locations are the most common, but large T2-hyperintense
white matter lesions can occur (13, 48). In rare cases, tumefactive
lesions with a risk for herniation are seen (50).

People with MOGAD have a higher frequency of cortical
and juxtacortical lesions compared with people with AQP4-IgG
seropositive NMOSD. Yet, the number of lesions in MOGAD
is usually lower than in MS, especially at onset (3). Matthews,
Juryńczyk and colleagues specifically proposed that lesions close
to the lateral ventricle and/or in the inferior lobe, subcortical U-
fiber lesions, and Dawson’s finger-type lesions strongly suggest a
diagnosis of MS vs. MOGAD (51, 52). For infratentorial lesions,
the brainstem, especially the pons, close to the 4th ventricle
and the middle cerebellar peduncle, are the most common
locations in MOGAD — lesions can be found in up to 30% of
patients (3, 48, 53, 54). Lesion demarcation is usually poor and
lesions can disperse over time (4, 48). Particularly, lesions in the
middle cerebellar peduncle can distinguish MOGAD from MS and
AQP4-IgG seropositive NMOSD (54). Area postrema syndrome,
however, is less common in MOGAD compared with AQP4-
IgG seropositive NMOSD (55–57). In contrast to MS and AQP4-
IgG seropositive NMOSD, the application of gadolinium rarely
reveals a lesion enhancement pattern in MOGAD but can lead
to unspecific leptomeningeal enhancement around the brainstem
or in uni- or bilateral cortical areas, especially in MOGAD with
cortical encephalitis.

In pediatric patients, the most common onset syndrome is
ADEM, which typically presents on MRI with large asymmetric
and diffuse, supra- and infratentorial T2-hyperintense white
matter lesions (58–60). ADEM can also rarely occur in adults—
with similar MRI features. Compared with MOG-IgG seronegative
ADEM, MOGAD-ADEM more often involves the thalamus
(61). MOG-IgG-associated autoimmune encephalitis, a second
common pediatric manifestation, presents with large subcortical
and/or cortical lesions (31, 62). In contrast to autoimmune
encephalitis with other antibodies, normal MRI findings
in MOG-IgG-associated autoimmune encephalitis are rare
(63). A leukodystrophy-like phenotype of MOGAD, a rarer
pediatric manifestation, also presents with large symmetric
confluent white matter lesions, yet they are usually clinically
progressive (47).

AdvancedMRI techniques have been used for a limited number
of MOGAD studies so far. Combining fluid-attenuated inversion
recovery sequences (FLAIR) with traditional MRI metrics,
hyperintense cortical lesions and numerous T2-hyperintense
lesions in various locations were identified, respectively, in a
subgroup of MOGAD referred to as FLAMES (FLAIR-hyperintense
lesions in anti-MOG-associated encephalitis with seizures) (29, 64,
65). FLAMES can further be characterized by hyperperfusion
of lesions on single photon emission computed tomography
(SPECT) (56). Using diffusion-tensor imaging (DTI) and resting
state functional MRI, reduced axial diffusivity in line with
microstructural white matter damage, and interhemispheric
functional connectivity changes of the motor, sensorimotoric and
frontal lobe networks, respectively, were identified in MOGAD
compared with healthy controls (66, 67). Applying volumetric
analyses, no loss of gray or white matter was observed in adult
MOGAD patients compared with healthy controls (66, 68). In
pediatric ADEM, however, the brain volume as well as the
expected brain growth were reduced (69). So far, no advanced
MRI marker has been suggested to distinguish MOGAD from its
differential diagnoses.

3.2 Spinal cord

TM in MOGAD can manifest as sensory, motor, and sphincter
dysfunctions (70). It can occur in isolation or combined with
other manifestations such as ADEM or ON. Despite often severe
impairment in the acute stage, most patients have a good recovery.
Yet, especially sexual, bladder, and bowel dysfunction can remain
(44, 71). Persisting pain or spasms are uncommon and seen more
often in AQP4-IgG seropositive NMOSD than in MOGAD. The
MOGAD-associated spinal cord involvement in adult and pediatric
patients is largely comparable (72).

Initial spinal cord MRI can be normal in 10% (73, 74). The
most common finding on spinal cord MRI in MOGAD, however,
is the so-called longitudinally extensive transverse myelitis (LETM)
presenting as a hyperintense T2-lesion spanning over three or
more segments and mainly affecting the cervical and/or thoracic
cord (Figures 1A–D) (74–77). LETMs rarely occur in MS (78).
While LETMs can also be seen in AQP4-IgG seropositive NMOSD,
MOGAD patients present more often with multiple lesions and
conus involvement (75, 79–81). Also, shorter TM, as typical for
MS, can be seen in MOGAD and is more common compared with
AQP4-IgG seropositive NMOSD (77, 79, 82).

Up to 75% of lesions in MOGAD are centrally located and
up to 50% of lesions are restricted to gray matter, which can
often be identified as the characteristic H-sign on axial scans
(Figures 1C, D) (73, 79, 81). This is particularly interesting since
MOGAD is a highly inflammatory condition primed to the white
matter. As discussed below, data from rodent models suggest
that this severe white matter inflammation correlates with gray
matter hypoxia and increased variation in oxygenation in the gray
matter potentially leads to gray matter damage (83), as has been
similarly suggested inMS (84, 85). Still the pathomechanism of gray
matter damage remains to be elucidated and more autopsy/biopsy
samples, especially in MOGAD, need to be analyzed to this end.
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FIGURE 1

MR imaging of the spinal cord in people with MOGAD. Sagittal T2-weighted MRI showing hyperintense lesions in line with (A) an LETM and (B)

shorter lesions. Axial T2-weighted MRI showing (C) a centrally located lesion and (D) the characteristic H-sign. LETM, longitudinally extensive

transverse myelitis; MOGAD, myelin oligodendrocyte glycoprotein antibody associated disease; MRI, magnetic resonance imaging.

In contrast to both MS and AQP4-IgG seropositive NMOSD,
gadolinium-enhancement is less common in MOGAD (∼50%)
(72, 75). However, contrast enhancement of the pia and cauda as
well as contrast enhancement and thickening of dorsal nerve roots
can occur (28, 72).

The application of advanced spinal cord imaging in MOGAD
has so far been very limited. Spinal cord atrophy as measured
by volumetric MRI has been only seen after severe attacks (86,
87). Silent spinal cord lesions can occur during an attack of the
brain or optic nerve but are extremely rare outside of attacks in
MOGAD, making spinal cord involvement outside of acute attacks
unlikely (49).

3.3 Retina and optic nerve

Optic neuritis (ON) is the most frequent onset feature in adults
and one of themost commonmanifestations ofMOGAD in general
(88). Thus, imaging of the visual system is a promising approach
for diagnosis and differential diagnosis (89, 90). In MOGAD, ON is
often bilateral and mostly located in the anterior segment causing
severe edema (39, 91, 92). Although single ON attacks often do not
lead to tremendous retinal neurodegeneration, the high frequency
of attacks inMOGAD can accumulate significant damage (92). Due
to its severe symptoms, silent ON is uncommon in MOGAD, yet a
bilateral ON can remain unrecognized due to stronger symptoms
in one eye.

Lesions on optic nerve MRI usually show T2-hyperintensity
and gadolinium enhancement on T1-weighted imaging
(Figure 2A). In MOGAD, drastic nerve swelling and characteristic
perineural/periorbital gadolinium enhancement are often seen

(93, 94). Hemorrhages can occasionally occur, particularly in
peripapillary regions. Optic nerve lesions are also extensive,
involving more than half of the pre-chiasmic optic nerve, which
distinguishes optic nerve lesions in MOGAD from shorter lesions
in MS (95, 96). The optic nerve MRI can show the characteristic
anterior involvement, which distinguishes optic nerve lesions in
MOGAD from the also often extensive but mostly posterior lesions
in AQP4-IgG seropositive NMOSD (96, 97). Simultaneous bilateral
involvement is more common in MOGAD than in both MS and
AQP4-IgG seropositive NMOSD (98).

ON leads to retrograde retinal neurodegeneration, which can
be monitored using spectral domain optical coherence tomography
(OCT). OCT is a non-invasive imaging method using the
interference of low coherent light to produce high-resolution
images of the retina (99). Neurodegeneration after ON is quantified
by OCT measuring the peripapillary retinal nerve fiber layer
(pRNFL) and the combined ganglion cell and inner plexiform
layer (GCIPL), which contain the axons and cell bodies of retinal
ganglion cells, respectively (Figures 2B, C) (99, 100). Whereas, the
pRNFL usually undergoes swelling during the acute phase before
experiencing volume loss due to subsiding edema and concurrent
degeneration; the GCIPL is less affected by swelling and undergoes
a steadier volume loss due to neurodegeneration. According to
the current consensus, the majority of retinal neurodegeneration
happens within the first 6 months after the acute ON attack
independent of the underlying disease. Yet, the acute pRNFL
swelling inMOGAD is described to bemore severe and is suggested
as a diagnostic marker distinguishing MOGAD from MS (101).
This might lead to a prolonged (more than 6 months) pRNFL
reduction in MOGAD (102, 103).

To diagnose a history of ON, the use of the absolute or relative
differences in pRNFL and GCIPL between both eyes of patients,
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FIGURE 2

Clinical imaging of retina and optic nerve. T2-weighted MRI of the optic nerve (A) showing a longitudinal lesion with edema. OCT quantifying retinal

neuroaxonal content measured by pRNFL around the optic nerve head in a retina without a history of ON (B) and with a history of ON (C) in MOGAD:

scanning laser ophthalmoscopy (B.1, C.1), color-coded comparison with a healthy control cohort (B.2, C.2) and cross-sectional B-scans showing

pRNFL atrophy in (C.3) compared with (B.3). MOGAD, myelin oligodendrocyte glycoprotein antibody associated disease; MRI, magnetic resonance

imaging; OCT, optical coherence tomography; ON, optic neuritis; pRNFL, peripapillary retinal nerve fiber layer.

the so-called inter-eye-difference (IED), has been suggested (104).
Due to a higher frequency of unilateral ON, the diagnostic value of
IED is very high in MS and reasonable in NMOSD (105–108). Yet,
the use of IED has not been investigated in MOGAD and seems
limited due to the high frequency of bilateral ON.When comparing
absolute values of pRNFL and GCIPL after ON, MOGAD patients
usually have more severe retinal neurodegeneration (ergo thinner
pRNFL and GCIPL) than patients with MS. pRNFL and GCIPL
after ON are comparable in people with MOGAD and AQP4-
IgG seropositive NMOSD (109). Yet, several publications suggest
that the neuronal loss per ON is lower in MOGAD, and only the
higher frequency of ONs leads to damage that is comparable with
AQP4-IgG seropositive NMOSD patients with less frequent but
more severe ONs (109, 110). Despite the neuroaxonal loss being
comparable, people with MOGAD often have a better long-term
visual outcome compared with AQP4-IgG seropositive patients
— the pathophysiological explanation for this difference is still
pending (111–115).

Retinal and optic nerve damage independent of ON has
been shown in MS, where it can also be used to predict
disease activity (116–120) and, to a lesser extent, in AQP4-
IgG seropositive NMOSD (121–126). Advanced OCT imaging
suggests that ON-independent retinal changes in AQP4-IgG
seropositive NMOSD are related to primary astrocytopathy
(127). So far, no ON-independent neurodegeneration
above aging-related standard and no primary and/or outer
retinopathy has been shown in MOGAD, potentially aiding
differential diagnosis (102, 103, 128). First applications of OCT
angiography showed a significant decrease in vessel density
after ON in MOGAD, which exceeded the changes in AQP4-
IgG seropositive NMOSD (129, 130). A new generation of
advanced OCT imaging methods including 3D-shape analyses
and feature recognition can potentially contribute to a better
understanding of ON-dependent and -independent changes
in MOGAD and their use for differential diagnoses in the
future (131–134).

4 Are MOG and MOG-IgG-induced
animal models good models for
MOGAD?

Animalmodels that induce encephalitis tomimic autoimmune-
mediated disease in the CNS include approaches of active
immunization, passive transfer, antibody (co-)mediated
disease induction or exacerbation as well as transgenic/genetic
modifications to mention the most common ones. MOG-mediated
disease is one of the most commonly used to model MS and
has been used in many variations that have been described and
reviewed extensively elsewhere (135–164). However, with the
emergence of MOGAD as a separate disease entity and considering
that these models do present drawbacks in reproducing MS
characteristics (mainly CD4+ mediated, no MOG-IgG present
in any form of MS, etc.) (2, 12, 35, 165–168) the issues in their
translation into new therapeutic modalities for MS could be viewed
in a new light (169–171). In this chapter, we will discuss to what
extent (some selected) MOG-induced animal models as well as
some non-MOG-induced models resemble human MOGAD
disease and to what extent they could be employed for diagnostic,
prognostic, and therapeutic approaches (135).

4.1 MOG-induced animal models

The course and development of EAE are dependent on many
different factors and their ratio to each other (172) including the
conformation, concentration, solubility, specificity of the antigen
used (135), age, species and genetic background of the experimental
animals (139, 173–175), the adjuvant (176–179), and timing of
immunizations/transfer to name just some variable instances. It
has been shown, for instance, that the disease course—monophasic,
relapsing, primary/secondary progressive, or chronic progressive
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(with disability accrual)—can be regulated by the immunization
protocol of Lewis (LEW.1AV1) rats with MOG (135).

4.2 MOG-IgG-mediated models

In patients, MOG-IgG was shown to be present during very
early stages of disease onset and to persist over long periods of
time even during remission. The MOG-IgG titer is dependent
on disease activity; however, the antibodies cannot independently
induce the disease. In contrast, MOG-IgG has been found in
early, intermediate, and late stages of EAE; however, the titer
was not disease activity-dependent, being low at the beginning
and higher in the end, with the amount being similar during
the acute and remission phases (135). Complement-mediated
pathology/demyelination could be induced in EAE (180, 181) in
line with findings of complement deposition in MOGAD autopsy
material. In a constitutively MOG-IgG-producing transgenic
mouse model, EAE could be induced in the absence of B cells but
required T cells (182).

Experimental studies suggest that MOG-IgG mediates a
pathogenic effect in EAE (181, 183, 184). It seems, however,
that circulating MOG-IgG require the presence of complement,
cytokines, and/or a (T cell-induced) inflammatory milieu to trigger
demyelination/enhance inflammation via CDC/antibody mediated
cellular cytotoxicity (ADCC), as alone, they are not able to do
so (152, 185–187). It was shown in naive recipient animals that
primary demyelination restricted to CNS nerve fibers could be
induced via injection of a monoclonal MOG-IgG (the 8-18C5)
into their cerebrospinal fluid. In adult Sprague-Dawley rats, an
association between antibody titer and degree of demyelination
could be demonstrated after infusion of sera from Hartley guinea
pigs previously immunized with homologous spinal cord lysate in
adjuvant into their subarachnoid space. The presence of MOG-
IgG in injected sera was demonstrated via an anti-MOG ELISA
(185). The direct translational value of these experiments seems
tenuous as the blood-brain barrier (BBB) was circumvented
in these experiments. The demyelinating effect of antibodies
directed against MOG was also demonstrated in a Sprague-
Dawley animal model in which monoclonal MOG-IgG-producing
B cell hybridomas were implanted into the right lateral ventricle
(188). MOG-IgG titers could not be linked to disease outcome
in MOGAD patients to this date (189); however, a longitudinally
persistent MOG-IgG positivity seems to be associated with a higher
risk for relapse (16, 34, 42, 190, 191). Furthermore, it was shown
that children with monophasic ADEM lose MOG-IgG over time
(192). This is mirrored in animals as high frequencies of relapses are
associated with permanent damage. MOG-IgG injection was lethal
when injected into SJL mice repeatedly challenged with passive
MBP-specific T cell transfers (mimicking a relapsing disease course)
that had not yet completely recovered from the previous relapse as
opposed to no negative effect of the antibody if the disease score was
zero (193). In another experiment with repeated passive transfer
of T cells and subsequent antibody application, formation of large
demyelinating lesions accompanied by lack of remyelination could
be observed, with pronounced astrocytic scar formation traversed
by “naked” axons, both characteristic of MS, and not described

thus in the available MOGAD autopsy/biopsy cases (194). In mice
engineered to produce high MOG-IgG titers, pathology could
only be seen after immunization with MOG antigen, without
regard to the genetically more (SJL) or less (C57BL/6) EAE-
susceptible background (195). This is in line with experiments
showing that B cells are not critical for the development of MOG-
induced EAE (B cell-deficient muMT mice on C57BL/10 and
DBA/1 genetic backgrounds and X-linked immunodeficiency (xid)
mice on DBA/1 background) but contribute to the severity, i.e.,
demyelination rather than inflammation (196). However, the effect
of the autoantibodies seems to differ regarding their enhancing
characteristics of demyelination/inflammation depending on the
agent EAE was induced with. Thus, MOG-specific T-cell-mediated
inflammation can be enhanced via augmented antigen presentation
(197), whereas in EAE induced by non-MOG-specific T-cells,
demyelination is triggered but no enhancement of inflammation is
observed (184).

4.3 Animal models targeting MBP

In the passive transfer EAE model (transfer of antigen-
specific T cells propagated in vitro) with intravenous injection
of MBP-specific T cells and subsequent intravenous (i.v.) MOG-
IgG injection at the onset of the disease, a massive augmentation
of clinical affection as well as primary demyelination could be
observed in Lewis rats. Similarities to MOGAD include lesions
located predominantly in the spinal cord and medulla oblongata
at circumventricular organs (BBB is more transmissible at these
points), predominantly mononuclear cell infiltrate with some
granulocytes, perivascular, or focal confluent demyelinated lesion
formation (75% of T cells infiltrate to the parenchyma), depending
largely on the amount of injected T cells, extensive gliosis,
preservation of axons, and remyelination of demyelinated lesions
(20, 151, 198). There is a clear macrophage-dominated infiltrate
seen in MBP EAE (macrophage: T cell ratio of approximately
6:1); in some cases of MOGAD histopathology, the amount of
both cell types seems to be near to equal (1:1.2, respectively) (19),
while in others, T cells seem to be somewhat outnumbered by
macrophages, especially in the parenchyma [no ratios given, (13,
22)]. Furthermore, the relevance of complement involvement, in
the form of membrane attack complex (MAC) formation as well as
ADCC, was demonstrated in this model as well as MAC formation
in PVG/c rats (±C6 complement component, immunized with
guinea pig myelin basic protein (gpMBP) and Complete Freund’s
Adjuvants (CFA) containing Mycobacterium tuberculosis H37Ra)
(199), which is in line with findings of complement deposition, to
varying degrees, inMOGADpatients‘ biopsies/autopsies (200, 201).

Active EAE to MBP immunization has been induced in
Lewis rats with subsequent MOG-IgG injection (MoAb 8-18C5)
10 days after sensitization. Antibody injection led to significant
worsening of clinical and histopathological observations compared
to the disease course without the addition of antibody (193, 202),
granulocytic infiltrate, perivascular complement deposition, and
inflammatory cuff formation, which could be observed similarly
to histopathology found in MOGAD patients. The disease course
after MBP immunization, with or without subsequent antibody
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injection, wasmonophasic; progression or relapse was not recorded
after an observation period of 13 weeks (193).

4.4 Animal models induced by
MOG-specific T cells

In animals (Lewis rat) with passive MOG-EAE (T cells raised
against the MOG35−55 peptide, with and without MOG-IgG
transfer), inflammatory changes were induced in the spinal cord
without producing an according clinical correlate of typical EAE
symptoms (tail tonus loss, gait instability, and severe weight
loss) (173, 203). The macrophage: T cell ratio was clearly shifted
toward T cells (1:6, respectively), and a few cells (7–20%)
of the inflammatory perivascular infiltrate left the perivascular
space toward parenchymal infiltration. Contrary to all previously
analyzed passive EAE models [induced with MBP, S100β, PLP
nicely reviewed in (140, 204, 205)], no peripheral affection was
noted. Severe blood-brain barrier dysfunction was induced by
passive MOG-EAE and subsequent intravenous injection of a
demyelinating MOG-specific monoclonal antibody that induced
severe clinical disease. Furthermore, it has been shown that the
location of lesions was dependent on the antigen used to raise the T
cells (204).

4.5 Animal models induced by MOG
peptide immunization

Immunization (active MOG-EAE) in Lewis rats via a highly
purified recombinant protein, mMOG, spanning its N-terminal
domain (a.a 1–125 + CFA) failed to activate immunodominant
T cell epitopes, producing an inflammatory non-demyelinating
phenotype as seen previously with passive transfer EAE (206). No
clinical symptoms could be observed, at least partly attributed to
reduced macrophage recruitment as compared to immunization
with MBP/PLP protein/peptide (173). Antibodies to MOG1−25

were induced by mMOG immunization and production could
be enhanced by repeated immunization (booster) after 4
weeks; however, this epitope does not seem to produce a
demyelinating phenotype. Again, extensive perivascular and
subpial demyelination could be produced by co-injection of
the MOG-specific mAb 8-18C5 on day 10 post-immunization.
Thus, immunization with mMOG seems to reproduce MOGAD
histopathology rather poorly. Contrary to these findings,
immunization with MOG isolated from human/rat brain tissue
as well as immunization with MOG35−55 peptide were able
to induce a severe relapsing-remitting disease course in Lewis
rats presenting with inflammatory demyelinating lesions and
perivascular cuffs (mononuclear, including myelin debris) with
accompanying MOG specific IgG production (in the former)
(207). Different rat strains (BN, DA, Lewis.1N, Lew1AV1, and
Lew1A) were challenged with different MOG compositions
[soluble or precipitated in complete or incomplete Freund’s
Adjuvants (CFA/IFA)] and varying immunization protocols
(205). This study shows a very good reproduction of core

MOGAD characteristics, more or less expressed depending
on strain/regime/immunogen composition, in all the animals.
These include the development of a chronic relapsing disease
course in 111/156 animals, 16/156 developed chronic progressive
disease, 17/156 showed stable course with neurological deficit.
Development of predominant or selective ON was seen in
some animals. Neuropathology (in 133/156 animals) featuring
perivenous inflammation, confluent demyelinating plaques
with complement deposition at sites of active demyelination,
relative axonal sparing, inflammatory perivenous infiltrates,
and meninges with parenchymal infiltration adjacent to the
pia mater with predominant T cell/macrophage infiltration as
well as polymorphonuclear infiltrates (mostly in animals with
ON/spinal cord affection) and frequent remyelination. Of the
observed pathology, glial scar formation is not readily found in
current reports of MOGAD histopathology. Acute disseminated
leukoencephalomyelitis was seen in the other 23 animals, which
is about ∼15 of animals; in comparison, in human children
ADEM occurs in >45% cases and in adults in ∼10%, featuring
severe perivenous inflammation and little/absent demyelination.
Major patterns of lesion distribution across the CNS (optic
nerve/spinal cord, isolated ON, spinal type, cerebellar type,
periventricular type, acute disseminated leukoencephalomyelitis
type, and destructive transverse myelitis) go along well with
lesion distribution seen in MOGAD (classified by these authors
at that time as neuromyelitis optica). In this study, the authors
showed that optic nerve involvement was independent of MHC
genes; in addition, it was shown by others that MHC haplotype
seems to influence disease susceptibility to a certain amount
(174, 208). Differences in these models compared to MOGAD
were seen in relation to sex-associated characteristics, specifically
in DA rats. It could be observed that female rats had a high
incidence of ON, whereas none was seen in male rats. In a study
by the Mayo Clinic, the authors observed that of the 87 MOGAD
patients presenting with ON, 57% were female (92). Another clear
sex difference was seen in eosinophilic granulocyte infiltration,
which was seen only in female rats; however, this phenomenon
was not mentioned by any of the MOGAD autopsy/biopsy
studies cited above. In a transgenic mouse study with MHC
II-restricted animals, immunodominant MOG epitopes were
identified and EAE could be induced (209). This is in line
with findings that CD4+ T cells (HLA class II) dominated cell
infiltrates in MOGAD patients’ lesions. In a Dutch and UK study,
no negative association of MOGAD to an HLA subtype could
be discerned to date, whereas a Chinese study suggested an
association of DQB1∗05:02-DRB1∗16:02 alleles to pediatric-onset
MOGAD (210–212). Notably, to this date, no definite genetic
association could be shown in MOGAD; specifically, no strong
HLA dependence, which is in contrast to what has been suggested
in MS (210–212).

One of the most widely used EAE animal models to date is
the C57BL/6 mouse MOG35−55 EAE (213, 214). Similar to MOG-
induced EAE in Lewis rats, injection with only MOG35−55 peptide
(and CFA, with and without pertussis toxin PT) was able to induce
neurological impairment in C57BL/6J mice featuring a chronic,
non-remitting disease course and mild clinical presentation usually
restricted to paralysis in the tail and hind legs. Mice did not
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recover after immunization even after long-term observation (3
months), which, however, could not be observed in other studies
(215). Lesions included perivascular infiltration of mononuclear
cells and secondary demyelination. PT was observed to enhance
EAE moderately and lead to earlier disease onset, however, PT is
not needed to induce overt clinical disease per se (213).

It was shown in active C57BL/6 mouse MOG35−55 EAE (with
CFA and PT) that natural killer cells (NK-cells) are involved in
preventing EAE development, as Th1 response (including Th1
specific cytokine production, IFN-γ, and TNF-α) seemed to be
elevated in NK-cell depleted animals (216). However, a reduced
amount of NK-cells could only be seen in NMOSD but not
MOGAD when compared to each other (217).

There have been some attempts to define the cytokine profile
in patients with MOGAD (see above). In a study using actively
induced MOG35−55-EAE in mice (induced with MOG35−55, CFA,
PT) changes in cytokine production largely overlapping with
MOGAD (IL-4, IL-6, IL-10, IL-12, IL-17, IL-23, TNF-α, IFN-
γ and TGF-β) were observed (218). In EAE, the involvement
of IL-6 has been extensively studied. It has been shown that
IL-6 (conditionally) deficient mice are resistant to EAE (219–
221), that IL-6 is involved in the induction phase of EAE (222)
(MOG35−55 induced), that IL-6 inhibits T cell conversion to the
Treg phenotype (Foxp3+) (223), and is (224, 225) or is not
(223) involved in conversion to Th17 type T cells. It has been
shown that tissue damage occurs preferentially at sites of IL-6
production (226, 227) and that induced antibodies against IL-6 are
protective against EAE (228). Interestingly, PT which is often used
to enhance EAE has been shown to induce IL-6 (229). In a mouse
line deficient in the IL-6 gene (129/SvXC57BL/6), immunization
with MOG35−55 peptide showed abrogated EAE induction (230).
These findings are in line with the seemingly beneficial effect
of Tocilizumab/Satralizumab (recombinant, monoclonal antil-IL6
receptor antibodies) on relapse prevention in MOGAD patients
(231–236). IL-23 involvement was shown in EAE induction (237),
as well as the development of Th1 and Th17 cells (238–240) but is
not necessary in the effector phase of the disease.

It was demonstrated in different rodent animal models
that IL-10 is involved in EAE via increased disease severity
when deleted, and IL-10 contributed to disease course duration
(shorter) and recovery (241, 242). In a passive transfer EAE
with anti-MOG T cells into MyD88 animals, it was shown
that resistance to EAE was mediated via the secretion of IL-
10 by recipient T cells (243). Further, it was shown that
immunization with MOG35−55 in susceptible (SJL and NOD)
vs. resistant strains (B10.S or III) differed in the amount of
cytokines produced, resistant strains secreting primarily IL-4/IL-
10 and transforming growth factor (TGF)-β, vs. susceptible
strains with predominant IFN-γ production (244). In contrast,
129/Sv mice knocked out for the gene coding for the ligand-
binding chain of the IFN-γ receptor developed severe EAE
(129/Sv are resistant to MOG-induced EAE), indicating that IFN-
γ was involved in ameliorating EAE during both the effector
and induction phase (245, 246). IFN-γ involvement in the
determination of lesion location was shown in passive MOG-EAE
induced in C57BL/6 mice lacking the IFN-γ receptor (IFNγR)
(247) and it was shown that CFA/PT alone do not induce

IFN-γ production, but immunization together with MOG is
necessary (248).

The above-described patient cytokine profile points toward
the direction of TH17 involvement (IL-17A, IL-23, IL-6, and IL-
21) in the pathogenesis/disease course of MOGAD (249). The
involvement of Th17 T cell subsets has been under discussion
since their discovery in 2005 (250, 251), allocating a role for
them in EAE induction/autoimmunity (252–256) or not (257) in
different MOG-induced animal models [reviewed elsewhere (249)],
going so far as to implicating the intestinal microbiome to EAE
resistance of mice deficient in IL-17A and IL-17F (258). In a
passive transfer model withMOG-specific T cells derived from 2D2
mice, it was shown that both Th1/Th17 cells are able to induce
EAE; however, Th17 induce an atypical phenotype in half the
cases (beginning with ataxia instead of paralysis, only developing
paralysis later). Interestingly, histopathology [severe immune
cells infiltration (CD4+ T cells and macrophages), astrogliosis,
microglia activation, demyelination, and axonal damage] as well
as lesion location (throughout the CNS as well as inflammatory
infiltrates/demyelination in the PNS) were similar in both Th1 and
Th17 recipients (259). A higher frequency of ataxia was found in
children with ADEM positive for MOG-IgG compared to MOG-
IgG negative cases (60). No involvement of IL-5 could be detected
in the initiation or effector phases after immunization of C57BL/6J
(or IL5−/−) mice with MOG35−55 (260). Likewise, IL-21 was found
irrelevant for Th17 induction (261).

Cerebral cortical encephalitis is one of the core clinical
demyelinating events suggested by Banwell et al. in the diagnostic
criteria for MOGAD (12). Current models of EAE do not reflect
cortical demyelination ideally. One model trying to recapitulate
these lesions targeted the cerebral cortex by stereotactical injection
of pro-inflammatory mediators into Lewis rats challenged with
MOG1−125 (262). Inflammatory, demyelinating lesions were
induced including complement deposition, and as seen inMOGAD
autopsy cases, ready remyelination was observed. In a model of
Dark Agouti rats immunized with MOG, inflammatory agents
were injected into the subarachnoidal space to avoid parenchymal
damage. Here as well, IgG and complement deposition were
observed, the amount of inflammatory infiltrate was little and
mostly limited to meninges, and as in the model described by
Merkler et al., repair was rapid (263).

4.6 Transgenic animal models

There is a wealth of genetically modified/transgenic/humanized
animal models that have been reviewed in more detail elsewhere
(264–266). We will discuss some of those models in this review in
regard to their similarities as models for MOGAD. In MOG35−55-
induced active EAE in non-obese diabetic (NOD) mice, some
groups showed that a switch from relapsing-remitting (RRMS)
to secondary progressive (SPMS) can be induced and this model
is considered to reflect the pathology of SPMS well (267, 268).
Other groups could not observe the switch of clinical symptoms
to a progressive disease course (269). When disease was induced
in NOD mice via immunization with MOG35−55 and CFA/PT,
inflammatory/demyelinating lesions developed preferentially in
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brain white matter (fimbria/internal capsule) and also in the spinal
cord with macrophage infiltration. Microglia/astrocyte activation
could be observed (268). Interestingly, disease development and
progression could be prevented via anti-IL-12 antibodies in
this model (270). NOD mice with transgenic TCR recognizing
MOG35−55 were generated (1C6 TCR) (267) and showed
development of spontaneous optic neuritis/EAE in around 1% of
the animals, distributed similarly in both male and female animals.
Upon passive transfer EAE, these mice developed preferentially
spinal cord lesions and optic neuritis. When immunized with
MOG35−55 and CFA, these mice developed chronic disease after
the second relapse with CD4+ T cells predominating over CD8+
T cells at a ratio of 30:1 in the lesions, with elevated production
of IFN-γ and IL-17. In following experiments, 1C6 TCR mice
were crossed with Ig heavy-chain knock-in mice (IgHMOG or Th
mice) on a C57BL/6 background (195). IgHMOG mice harbor
autoreactive B cells producing anti-MOG antibodies with the
heavy chain of the 8.18C5 demyelinating MOG-specific antibody;
however, they do not develop spontaneous disease but were shown
to both accelerate and exacerbate EAE irrespective of the inducing
agent. The frequency of spontaneous disease was higher in 1C6
x IgHMOG mice (45% males, 79% females), CD4+ T cells still
outnumbering CD8+ T cells 7:1, the amount of CD8+ T cells,
however, being higher compared to 1C6 TCR mice. Lesions were
located mostly in the spinal cord, with around 40% of the mice
showing optic nerve lesions, and no formation of ectopic follicle-
like structures was observed in the CNS of the animals. A large part
(75%) of asymptomatic 1C6× IgHMOG animals showed exclusively
cerebellar lesions upon histopathological examination.

Also, in the Biozzi EAE model (271), chronic relapsing disease
could be induced via subcutaneous injection at days 0 and 7 in both
hind flanks with an emulsion spinal cord homogenate and CFA
complemented withM. Butyricum. In these animals partial closing
of the BBB, meningeal ectopic lymphoid tissue with adjacent
subpial demyelinating lesions and a switch from T cell, to B cell,
predominance and serum MOG-IgG generation in later chronic
disease stages could be observed (272).

Another study in a transgenic mouse model, GFAPγR11,
induced EAE by active immunization with MOG35−55 to gain a
progressive phenotype with sustained inflammation and increasing
clinical disease. This study suggests that tumor necrosis factor
(TNF) is predominantly produced by CNS infiltratingmacrophages
rather than microglia after the acute disease stage (273). Contrary
to promising preclinical results of TNF blockade, however, the
success of TNF suppression in MS patients did not yield uniformly
positive results (274). For MOGAD in relation to TNF treatment,
little is known and data from a small retrospective study (n =

5) is inconclusive regarding negative effects, however also no
clear positive outcome is documented (275). Primary progressive-
EAE (PP-EAE) was further established in A.SW mice sensitized
with MOG92−106 and SJL/J mice sensitized with MOG92−106 and
curdlan (276). A.SW mice develop large areas of demyelination,
immunoglobulin deposition, and neutrophil infiltration in the
absence of a T cell infiltrate (14, 16) while SJL mice show T cell
infiltration and paralysis. Both models generated an anti-MOG
antibody response (276).

Another model is the “genetic 2D2” EAE model (TCRMOG)
in which mice were generated with a TCR that is directed against
MOG35−55 (with a C57BL/6 background), about 5% of the animals
develop EAE spontaneously with inflammatory/demyelinating
lesions in brain, spinal cord, and optic nerves (277). Furthermore,
a large proportion of non-clinically symptomatic mice showed
ocular abnormalities, and around 15% of the 2D2 transgenic
mice developed isolated optic neuritis in the absence of
clinical/histological signs of EAE. These lesions showed
macrophage infiltration, demyelination, and axonal damage.
Interestingly, the challenge with PT alone was sufficient to induce
clinical EAE in 39% and histological EAE in 56% of 2D2 mice.
The GF-IL23 model, with astrocyte-specific IL-23 secretion on a
2D2 background (most CD4+ have TCR specific for MOG35−55),
showed a spontaneous EAE induction with chronic disease course,
clinical affection (ataxia/paraparesis), and a high proportion of B
cells. A pronounced B cell accumulation and B cell follicle-like
infiltrates have not been reported as such in MOGAD yet (160).

To generate double transgenic opticospinal EAE (OSE) mice
(277–280), 2D2 mice were then crossed with IgHMOG (with a
transgenic B cell receptor to MOG, described above). The offspring
of these mice spontaneously develop ON and severe inflammatory
spinal cord lesions, whereas the brain remains relatively spared,
which is very similar to NMOSD/MOGAD disease in humans.
A gene expression profiling study sought to discern whether
spontaneous OSE or MOG-induced EAE reproduced the genetic
contribution to MS pathogenesis more closely, and concluded that
the OSE model is probably linked more closely to human MS
risk genes due to differentially higher expressed Th1 genes (281).
A thorough gene expression profile for MOGAD still needs to
be generated; however, the cytokine profile (see above) is rather
indicative of a predominant Th17 response in MOGAD, which
needs to be verified.

It has been suggested that most axonal damage in MOGAD
happens during the initial attack, measuring neuroinflammatory
biomarkers (such as MBP, sNFL, GFAP, and Tau), and relapses
are associated with increased myelin damage (282). It has been
suggested that antineurofascin antibodies contribute to axonal
pathology in a passive transfer MOG-EAE model (283). It has
been shown in double-transgenic OSE mice that when MOG is
knocked out, the autoimmune response of MOG TCR-specific T
cells is redirected toward the medium-sized neurofilament (NF-M)
(278). Subsequently, the same group was able to demonstrate that
due to inefficient exposure to two self-antigens, these bi-specific
T cells managed to escape tolerization (284). Interestingly, there
are only few reports of MOG-IgG/AQP4-IgG double positivity in
MOGAD/NMOSD patients (285–287), and peripheral involvement
in MOGAD is rarely reported (288).

The major drawback of TCR transgenic 2D2 mice and
double transgenic OSE mice is that there is no complement
deposition or granulocyte recruitment present (277, 279). Several
humanized models have been established (265). It was shown in
a transgenic mouse line that was generated to express human
fragment crystallizable gamma receptors (hFcgRs) that recognize
Immunoglobulin G antibodies, nicely reviewed in (289), that FcgRs
but not complement activation contribute to EAE and that the
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exacerbation is dependent on MOG recognition by the human-
derived antibodies (290). However, it is currently unclear which
disease should be mimicked with this model, as it was shown
that MS does not harbor anti-MOG autoantibodies and MOGAD
probably has a complement-activating component driving lesion
formation (13, 35) although the extent of complement involvement
in human pathology is under debate.

Other transgenic mouse models investigated the relevance of
IL-6, TH17 cells, oligodendrocytes, Nrf2, and CXCR3 (225, 227,
240, 291–293). The presence of MOG-IgG in MOGAD patients
suggests B cell involvement that could be mirrored in several
EAE models (294–297). SJL/J mice expressing a MOG92−106-
specific transgenic TCR1640 with high frequency (99% proportion
of transgenic Vα8.3+/Vβ4+CD4+ T cells) spontaneously produced
pathogenic MOG-specific IgG1 antibodies (162).

4.7 MOG induced EAE in non-human
primates

Different EAE models in monkeys have been reviewed
elsewhere (298–300). EAE models developed in the rhesus
macaque (Macaca mulatta) and the cynomolgus monkey
(Macaca fascicularis) tend to replicate acute disseminated
(leuko)encephalomyelitis well (301). In all non-human primates
(NHP) the disease course varies with a more acute/relapsing or
chronic disease course depending on the adjuvant used, complete
or incomplete Freund’s Adjuvants, respectively.

In the common marmoset monkey (Callithrix jacchus),
extensive cortical demyelination could be induced upon
immunization with rMOG1−125 and CFA (302). Lesions
were dominated by macrophage/microglia activation and T
cell infiltration (mostly perivascular) with few B cells, the
cellular infiltrate was generally lower than in the parenchyma.
Furthermore, IgG infiltration and complement deposition were
observed. No subpial demyelination could be observed which
is in contrast to patients with MOGAD, as well as in another
study that observed subpial lesions in all experimental animals
(303). Another study with marmoset monkeys immunized with
rMOG1−125 and CFA found inflammatory lesions in cerebral white
matter with some animals being affected also in the spinal cord
and optic nerve. Lesion composition was similar with activated
macrophage/microglia, T cell infiltrate, few B cells, IgG and
complement deposition, and large confluent demyelinating lesions
with some perivascular preference. The authors mentioned some
axonal damage and indications for early remyelination (304). The
encephalitogenic epitope inducing EAE in marmosets in mixed
human myelin and CFA-induced immunization was shown to
be MOG14−36 and not MBP (305); however, it could be shown
that EAE could also be induced with myelin (from both WT and
MOG−/− C57BL/6 mice) but severity/disease progression were
dependent on the presence of MOG-IgG (306). IL17-A production
was found to be elevated compared to IFN-γ when marmoset
monkeys were challenged with synthetic MOG34−56 peptide
alone (307), which is in line with the cytokine profile suggested
in MOGAD; however, although treatment with an anti-IL17-A
antibody delayed onset of EAE, it did not abrogate its development

(308). Another study found elevated levels of IL-6, G-CSF, IL-8,
and IFN- γ in cynomolgus macaques immunized with rhMOG
and IFA which was similar to CSF analyzed from children with
acquired autoimmune disease positive for anti-MOG antibodies
who had elevated levels of IL-6 and G-CSF (309).

4.8 Infection-induced animal models—Are
they relevant models for MOGAD?

MOGAD has been associated with preceding infection or
vaccination (310, 311) in ∼20% of cases although a causal
relationship to any specific agent has not been discerned yet.
Recently, cases of MOGAD after infection or vaccination with
COVID-19 vaccines (bothmRNA and vector-based) were reported,
some with detectable persistent long-term MOG-IgG (311–323).
Different types of coronaviruses have been used extensively to
induce EAE, resembling different aspects of MS/MOGAD in
different species over the last six to seven decades to just give a few
examples (205, 324–329). Biphasic disease with a short fulminant
acute phase and a 1-month long chronic phase characterized by
ongoing inflammatory demyelination can develop in mice infected
with Theiler’s murine encephalomyelitis virus (TMEV), which is
not the case in all species (330–332). Similar to MOGAD, TMEV
infection in mice features perivascular immune cell infiltrates,
leptomeningeal and white matter mononuclear cell infiltrates in
the spinal cord, and primary demyelination around day 15 after
viral intracerebral inoculation (333–336). Spontaneously occurring
ADEM-like disease could be observed in a Japanese macaque (JM)
colony at the Oregon National Primate Research Center (ONPRC)
that has been linked to infection by a gamma-herpesvirus, JM
rhadinovirus (JMRV) (337). A case report from Japan with
high titer MOG-IgG links influenza-A infection to longitudinally
extensive TM (338).

Besides M. tuberculosis (339) and Pertussis toxin (induces IL-
6 and reduces Treg compartment) (340) that are usually used
for immune stimulation to induce EAE in mice, other infectious
agents have been used prior or post-immunization with MOG33−35

like SEB (341) or LPS (342), exacerbation of MOG-induced EAE
by intraperitoneal injections of a viral mimetic, polyinosinic-
polycytidylic acid (PIC) (343), Cytomegalovirus infection (344)
which induces susceptibility to EAE in resistant BALB/c mice
(345), Influenza virus infection (346) by enhanced type I T
cell infiltration. 2′-5′ oligoadenylate synthetase-like 1 (OASL1)
deficient (Oasl1−/−) mice are resistant to viral infections, as
OASL1 specifically inhibits the translation of interferon regulatory
factor 7 (IRF7), the master transcription factor for interferon-
1 (IFN-I). Thus, IFN-I production is negatively regulated upon
viral infection and (Oasl1−/−) mice seem to have an enhanced
resistance toward MOG-induced EAE (347). Protective effects
toward EAE were also shown in a model of sepsis (348) and some
malaria strains (349). Interestingly, it could be seen in a study
by Nourbakhsh et al. that predominantly children seronegative
for EBV presented with MOG-IgG (44%) compared to only 5.5%
MOG+ in EBV+ children (350); likewise, no correlation between
MOG+/EBNA+ was found in children in another study (351),
suggesting that if infectious agents were involved/associated in
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the development of both diseases, they would be distinct. Cases
linking LETM to M. tuberculosis infection have been reported
(352, 353). Molecular mimicry between MOG18−32 and Semliki
Forest Virus (SFV) could be demonstrated after demyelination-
inducing immunization of C57Bl6/J mice (354). Infection with S.

pneumoniae was shown to upregulate IL-6 and TNF-α in mice
immunized with MOG35−55 (355).

In several animal models [Brown Norway rats challenged with
MOG (356), rats challenged with replication-deficient adenovirus
vector carrying IL-1β cDNA (AdIL-1β) (357)] a beneficial effect
on EAE outcome was demonstrated with IFN beta-1a. It was
also demonstrated in a mouse model (TMEV-infected SJL/J
mice) that a shorter duration of treatment was associated with
remyelination, whereas long-term treatment seemingly promoted
demyelination (358).

5 Preclinical imaging in MOGAD
animal models

Many clinical imaging methods can be applied to preclinical
research in animal models with minimal adaptations. Additional
methods beyond what is possible in clinical research allow imaging
with higher, up to single-cell, resolution and better labeling of
key players in pathophysiological processes. There are several
applications for preclinical imaging: Firstly, comparing imaging
features between MOGAD and its potential animal models can be
used to validate the model’s suitability. Secondly, imaging can be
useful in traditional animal research investigating disease cause and
pathophysiology by allowing longitudinal high-resolution analyses
and the definition of time points based on imaging features,
thereby reducing the number of needed animals. Thirdly, it can
aid image marker development: New imaging methods can be
tested in animal models for potential clinical application, especially
regarding their safety, sensitivity, and correlation with histological
features. When clinically established imaging methods are used to
describe new distinct features in a disease, assumptions are often
made about their pathophysiological origin. By back-translating
these imaging methods and findings into an animal model, these
assumptions can be tested using histology or molecular analyses.
Finally, during drug development and testing, translatable methods
can be extremely useful since future clinical trial endpoints can
already be tested early on.

5.1 Brain and brainstem

As described above, actively induced MOG35−55-EAE (induced
by MOG35−55, CFA, and PT) only has a low affection of the
brainstem and cerebellum and mostly absent inflammation and
tissue damage in the forebrain. Although this picture closely
resembles the brain involvement of many MOGAD patients, it
limits the use of this model for the investigation of MOGAD brain
lesions. Using T1-weighted imaging with contrast enhancement,
the brain involvement in 2D2+ mice was also shown to be
little or non-existent (359). Only actively induced MOG35−55-
EAE (induced by MOG35−55, CFA, and PT) in non-obese diabetic

(NOD)mice, a model with relapsing-remitting disease course, leads
to MRI gadolinium-enhanced lesions in T1-weighted imaging,
located in corpus callosum, fimbria, and internal capsule (268).
Although promising, this lesion pattern is more in line with
MS pathology. In common marmoset monkeys, MOG1−125-
induced EAE causes small T2 hyperintensities within the white
matter with histopathologically confirmed demyelination, which
can subsequently develop into expanding confluent lesions. This
model might be suitable to model MOG-IgG seropositive ADEM,
but further confirmatory research is warranted (268, 360).

Absent microstructural brain damage in actively induced
MOG35−55-EAE in C57BL/6 mice (induced by MOG35−55, CFA,
and PT) was confirmed by a DTI study, which did not
detect differences in DTI parameters of anterior commissure,
corpus callosum, cerebral peduncle, and external capsule between
MOG35−55-EAE and controls (361). Similarly, the application of
magnetization transfer ratio (MTR), which is suggested to be a
sensitive method to detect demyelination, did not find any changes
in actively induced MOG1−125-EAE in C57BL/6 mice (induced by
MOG1−125, CFA, and PT) in line with absent histopathological
findings, which is in contrast to results in monkeys described above
(362). No in-depth diffusion-weighted MR studies in people with
MOGAD exist yet. Lesion load, volumetric analyses, and diffusion-
weighted imaging have also been applied in the preclinical testing
of new and established therapeutic agents (363–366). Although
easily translatable into clinical research, one has to be aware that
preclinical MRI markers are not well-validated in distinct models
so far.

However, some clinical imaging features of MOGAD
patients can be reproduced: using serial post-contrast FLAIR
(fluid-attenuated inversion recovery) sequences after gadolinium
administration in actively induced MOG35−55-EAE (induced by
MOG35−55, CFA, and PT) in C57BL/6 mice, Pol and colleagues
showed leptomeningeal contrast enhancement in all mice that
decreased during the chronic stage and correlated with the
leptomeningeal invasion of macrophages as well as T- and B-cells
in histology, which elucidates the leptomeningeal enhancement
described in many MOGAD patients (367). Furthermore, two
studies investigated the use of superparamagnetic iron oxide-
enhanced MRI in MOG-EAE rats, which were actively induced
by recombinant human MOG in 1AV1 congenic Lewis rats, and
showed a demarcation of lesions in the cerebellum, brainstem,
and periventricular regions, which were corresponding to
lesional iron-laden macrophages in histology, suggesting that
superparamagnetic iron oxide-enhanced MRI might be useful
for the detection and demarcation of inflammatory CNS lesions
(368, 369).

In the process of developing new imaging methods, preclinical
research can help to establish the pathophysiological grounds.
Especially when developing methods with potential side effects
for patients, such as testing new positron emission tomography
(PET) tracers, prior extensive preclinical research is warranted.
In the CNS, translocator protein (TSPO) is thought to be mainly
expressed in activated microglia cells, and TSPO ligands have
been used to detect inflammatory CNS processes. Widespread
accumulation of two different TSPO ligands was shown in actively
inducedMOG35−55-EAE in C57BL/6mice (induced byMOG35−55,
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CFA, and PT) with and without additional cuprizone treatment
including the spinal cord, cerebellum, cortex, striatum, and
hippocampus (370, 371). Neuropathological analyses confirmed
microglial activation and were correlated with tracer uptake,
thereby validating the method. In a similar approach, tracers
for CD19 and the cystine/glutamate antiporter were validated in
actively induced MOG-based animal models in C57BL/6 mice
(Hoehne et al.: MOG35−55, CFA, PT, Stevens et al.: MOG1−125,

CFA, PT) (372, 373). Fluorinated molecules might be another
promising and non-toxic option for MR-detectable tracers to study
neuroinflammation in the near future (374–378).

Going one step further, preclinical research allows more
invasive imaging approaches with up to single-cell resolution
such as real-time confocal imaging and two-photon excitation
microscopy. The latter uses the simultaneous non-linear excitation
by two photons of fluorophores to report on the sequential order
and interaction of different key players during a pathological
process. Particularly interesting is the application in adoptive
transfer models using autofluorescent lymphocytes, which can then
be tracked longitudinally throughout the disease. By transferring
MOG-sensitized lymphocytes isolated from green fluorescent
protein (GFP)-transgenic mice to C57BL/6 mice, Yura et al. were
able to track widespread invasion of these GFP-labeled CD4+ in
the brain and spinal cord using confocal imaging and detected
nearly exclusive production of T helper cell type 1 using real-
time PCR (379). In a different approach, Siffrin and colleagues
used the actively induced MOG35−55-EAE model (induced by
MOG35−55, CFA, and PT) in mice with enhanced GFP (eGFP)
expression in neurons and neuronal processes and red fluorescent
protein in bonemarrow-derived peripheral immune cells, as well as
adoptive transfer models (stimulation performed with MOG35−55),
to investigate neuron-immune cell interaction and to show that
Th17 cells induce early neuronal damage (380).

5.2 Spinal cord

So far, only a few studies implemented preclinical spinal cord
MRI: T1-weighted imaging with contrast enhancement was used
to characterize spinal cord involvement in 2D2+ mice showing
enhancement in half of the mice that correlated with histologically
confirmed immune cell infiltration (359). Employing in vivo

lumbar DTI, axial and radial diffusivity changes in line with
microstructural axonal and myelin pathology in the spinal cord,
respectively, have been shown in actively induced MOG35−55-EAE
in C57BL/6 mice (induced by MOG35−55, CFA, only) and in an
adoptive transfer model of MOG-reactive TH1 cells in C57BL/6
mice (stimulated with MOG35−55) (381, 382). In both models,
exploratory treatments were suggested to improve DTI parameters
toward control values, pointing toward a relative sensitivity of
these metrics.

Spinal cord MRI has also been performed in two studies ex vivo
post-fixation, potentially limiting morphometric analyses (383).
Derdelinckx and colleagues treated actively induced MOG35−55-
EAE in C57BL/6 mice (induced by MOG35−55, CFA, and PT) with
myelin antigen-presenting tolerogenic dendritic cells and observed
a stabilized EAE disability score and an inhibited T cell response

(32). In this study, ex vivo gadolinium-enhanced spinal cord MRI
was implemented post-fixation to confirm a reduced lesion load
after treatment and to localize lesional and non-lesional tissue for
histological analyses (32). Cahill and colleagues developed a new
PPARαmut/WT 2D2+ animal model with a mild relapsing-remitting
disease course and increasing hind limb clasping during the disease
process (384). Apart from histological analyses showing T cell and
microglial activation as well as axonal andmyelin damage at several
locations in the brain, brainstem, spinal cord, and optic nerve,
they also applied ex vivo post-fixation MRI analyses after 9 months
to confirm spinal cord atrophy compared with 2D2− littermates
(384). Neither study generated imaging data that can easily be
transferred/translated into clinical application.

In one recent study using advanced preclinical imaging,
two-photon excitation microscopy was applied to the spinal cord
in actively induced MOG35−55-EAE (induced by MOG35−55-EAE,
CFA and PT) for the first time: Steudler et al. used ODCmitoGFP-

Tomato mice, which have GFP-labeled mitochondria in
tdTomato-labeled oligodendrocytes (385). They applied two-
photon excitation microscopy to reveal the complex evolution
of the mitochondrial redox state with increased and decreased
oxidation at the preclinical and chronic stages, respectively,
suggesting an early involvement of oligodendrocyte mitochondria
in the inflammatory process in EAE (385).

5.3 Retina and optic nerve

Many techniques investigating the visual system in patients
can directly be translated to their application in animals with
only minimal technical adaptations, for example, to correct for
differences in refraction. When back-translating OCT imaging
to rodents, the inner retinal layer (IRL) is usually quantified,
instead of separating pRNFL and GCIPL, due to the lower retinal
neuroaxonal content and lower resolution in mice. Cruz-Herranz
et al. performed comparative OCT in different neuroinflammatory
mouse models: Actively induced MOG35−55-EAE (induced by
MOG35−55, CFA, and PT) in C57BL/6mice led to severe thickening
of the IRL with subsequent thinning; a 32% retinal ganglion cell
loss within 120 days (54% in 9 months) and T cell and microglia
invasion were later confirmed by histopathology (386). In contrast,
actively induced MBP-EAE (induced by MBP, CFA, and PT) led
to a much milder disease course with stable IRL measurements
and no retinal ganglion cell loss. Active MOG35−55 -EAE induction
in TCR2D2 mice (induced by MOG35−55, CFA, and PT) led to an
earlier IRL thinning without edema, yet the extent (49% within 120
days) was nearly comparable with C57BL/6 mice after MOG35−55

-EAE induction (386). Uninduced TCR2D2 mice also underwent
IRL thinning and thereby neurodegeneration within a 120-day
period suggesting an underlying process in the mouse line (386).
In a similar fashion, actively induced PLP139−151-EAE in SJL/J
mice (induced by PLP139−151, CFA, and PT) led to IRL atrophy,
yet wild-type uninduced SJL/J mice also showed IRL thinning
(386). This is most likely due to a homozygous Pde6brd1 mutation
for retinopathy these mice carry (386). In marmoset monkeys
actively induced with MOG1−125-EAE (induced by recombinant
rat MOG1−125 and CFA), only 50% have an ON at all (387).
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Taken together, Cruz-Herranz and other independent studies imply
a strong resemblance of actively induced MOG35−55-EAE in
C57BL/6 with adult MOGAD-ON, describing features such as early
edema and severe neuroaxonal loss over an extended period after
ON, while other models might closer resemble the milder course in
MS-ON (386).

Actively induced MOG-EAE models gained further stand as
a MOGAD model by a recent study confirming bilateral ON in
70% of MOG1−125-EAE in Brown Norway (BN) rats (induced by
MOG1−125, CFA only) using visually evoked potentials (VEPs)
(388). In Dark Agouti rats actively induced with MOG1−125-EAE
(induced by MOG1−125, CFA only), a VEP latency delay could
be observed even before first motor deficits were present, i.e.,
during an inflammatory state, demyelination and axonal loss were
observed at later disease stages (389). Severe ON was caused in BN
rats actively induced with the same model (390). Induced apoptosis
of retinal ganglion cells (RGCs) in this model in BN rats could
be seen as independent of optic nerve involvement (391). Two
additional studies employing OCT and histopathology measured
early, inflammation-preceding, RNFL thickness reduction in this
actively induced MOG1−125-EAE model in BN rats (induced by
MOG1−125, CFA only) (392, 393), respectively. Later, an increase
in oligodendrocyte alphaB-crystallin, a heat-shock protein induced
by cellular stress, was observed during the preclinical stages,
particularly in the optic nerve head in this actively induced
MOG1−125-EAE model in BN rats (induced by MOG1−125, CFA
only) (394). This is in line with measurements gained in an
MS study (395, 396). Contrary to these observations, RGC loss
induced in C57/B6 mice by actively induced MOG35−55 –EAE
(induced by MOG35−55, CFA, and PT) occurred only in late stages
of the disease (post-immunization day 42), whereas CD4+Tcell
infiltration, demyelination, microglial, and astrocyte activation
were induced in the optic nerve by PID 16 (397). Further late events
include degeneration of retinal neurites and synapses as well as
glial cell activation in the inner retina. Similarly, in actively induced
PLP139−151-EAE in SJL/J mice (induced by PLP139−151, CFA, and
PT), RGC loss was detected by PID14, which in this model was
however after cell infiltrates had been detected in the optic nerve
around PID 9, pointing toward inflammation preceding RGC loss
in this model (398).

As a potentially promising development for pediatricMOGAD-
ON, the OSE model shows good results: OCT in OSE mice
with spontaneous encephalomyelitis starting on day 26 after
birth showed retinal neurodegeneration, which was confirmed by
histopathology as 38% loss at 6 weeks of age (399). The functional
relevance of RGC loss was confirmed by electroretinogram
(ERG) (399).

Due to the close correlation between structural and functional
metrics, multimodal assessment including OCT and functional
assessments is common in rodents. Functional metrics back-
translated from clinical applications include ERGs and VEPs,
usually performed as flash-VEP. As a metric for vision in mice,
the optomotor response (OMR) is assessed, which quantifies the
compensatory head movement when the mouse is exposed to a
moving light-dark pattern. Despite being the current gold standard
for vision in mice, the OMR was critiqued for (A) the interference
of vision and motor function, (B) the overlay with the optokinetic

response, and (C) not depicting the (retina–lateral geniculate
nucleus—primary visual cortex)-pathway usually associated with
vision in humans. Outputs of VEP, ERG, and OMR have been
shown to correlate very well with the neuroaxonal content
measured by OCT and by histopathology, for example, in actively
induced MOG35−55-EAE in mice (induced with MOG35−55, CFA,
and PT) (400, 401).

Applying visual outcome parameters in animal research
currently serves two major purposes: Firstly, we can use animal
models to better understand the pathophysiological basis of our
functional metrics. Recently, VEP became an outcome parameter
for myelin in clinical trials investigating potentially remyelinating
agents. Although the measurement of conduction speed seems like
a feasible metric for myelin, the pathophysiological basis of this
assumption was never validated and the sensitivity of VEPs for
myelin content was never shown. Using different demyelinating
animal models including actively induced MOG35−55-EAE in
C57BL/6J mice (induced with MOG35−55, CFA, PT), Cordano
and colleagues now demonstrated that quantitative measurements
of myelination and remyelination correspond well with VEP
latency, thereby validating it as a tool (402). This VEP change
also correlates well with the dysregulation of potassium channels
around the nodes of Ranvier as shown during inflammatory
demyelination in actively induced MOG35−55−EAE (induced by
MOG35−55, CFA, and PT) (403, 404). So far, only one VEP study has
been performed in actively induced MOG1−125-EAE in marmoset
monkeys (induced by rat recombinant MOG1−125, CFA only).
Unfortunately, this study only reports a loss of amplitudes in line
with neurodegeneration in the later course of the disease but does
not report potential latency delays (405).

Secondly, functional outcome parameters can be used in animal
research to show functional relevance very early in the development
and testing of new therapeutic agents. The visual system is
especially suitable for early drug testing for neuroprotective agents
due to the clear association of one localized lesion in the optic nerve
with subsequent neurodegeneration in the retina and functional
decline (406–411). A single study also used the rodent visual system
in actively induced MOG35−55-EAE transgenic mice backcrossed
to a C57BL/6 background (induced with MOG35−55, CFA, and PT)
to investigate the functional effects of remyelinating with the agent
chloroindazole using VEP and ERG, yet the structure-function
correlation was less robust (412). The only study so far using the
rodent visual system in actively induced MOG35−55-EAE in mice
(induced with MOG35−55, CFA, PT) to investigate the effects of
anti-inflammatory treatment with anti-IL-17 antibodies showed
that retinal neurodegeneration as measured by OCT, but not motor
symptoms, was completely prevented by neutralizing IL-17 (413).
This is particularly interesting since MOGAD patients were shown
to have more IL-17-positive central memory cells than healthy
controls with a particular increase in IL-17-positive IFN- γ positive
central memory cells during relapses, again suggesting important
parallels between MOG-EAE and MOGAD (282).

Optic nerve MRI using T1- and T2-weighted imaging has been
validated in actively induced MOG35−55-EAE in C57Bl/6 mice
(induced with MOG35−55, CFA, and PT) but sparsely performed
(414). Qi et al. were able to establish volumetric optic nerve
analysis using T1-weighted 3D 4.7-tesla MRI (415). As suggested
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from clinical experience, they were able to show significant optic
nerve swelling and subsequent volume loss in an EAE model
induced by CFA and homologous spinal cord emulsion. Reducing
mitochondrial reactive oxygen stress by increasing SOD2 gene
expression using virally mediated gene transfer led to less edema
and prevented significant volume loss, which the analysis was
sensitive enough to detect (415). The involvement of the optic
nerve, optic tract, and chiasm was also shown for 2D2+ mice by
contrast-enhanced T1-weighted imaging.

Interestingly, DTI has been applied to the visual system in
rodents but not yet specifically in MOGAD patients. Manogaran
et al. performed a multimodal study including OCT, T2-
weighted imaging, and DTI in actively induced MOG35−55−EAE
in C57BL/6J mice (induced by MOG35−55, CFA, and PT). They
confirmed signal increase around the optic nerve in T2-weighted
MRI in line with significant inflammation. DTI showed a decrease
in axial diffusivity and an increase in radial diffusivity in the optic
nerve and optic tract compared with controls. These changes were
correlated with neuroaxonal parameters from OCT (416). DTI
changes were confirmed by other independent studies in actively
induced MOG35−55−EAE (induced by MOG35−55, CFA, and PT)
(361, 417). A newer diffusion MRI approach called diffusion basis
spectrum imaging (DBSI) was specifically developed to separate
axonal and inflammatory pathologies. In its first application
in actively induced MOG-EAE in C57BL/6J mice (induced by
unspecified MOG peptide, CFA, and PT), the DBSI data suggest
that axonal loss in ON occurs early and in parallel to the optic nerve
edema (417). The application of DTI to the visual system in people
with MOGAD is still pending.

The possibilities of retinal imaging in rodents exceed the
options in clinical research. One example is confocal scanning
laser ophthalmoscopy (CSLO), which is a non-invasive technique
for real-time imaging of autofluorescent targets in the retina.
In actively induced MOG35−55−EAE (induced by MOG35−55,
CFA, and PT), CSLO has been applied to track myeloid cells
in CX3CR1GFP/− mice (expressing a green fluorescent protein
under control of the endogenous CX3C locus chemokine receptor
1) (418, 419). CSLO was then used to characterize microglial
activation longitudinally during the course of actively induced
MOG35−55−EAE and to define time points of maximummicroglial
activation for further analyses (418). In the long term, this imaging
method might be used with different targets and animal models.
The more invasive alternative with better single-cell tracking
is two-photon excitation microscopy, which can nowadays also
be co-registered with OCT (420). Yet, it has been so far only
applied to actively induced experimental autoimmune uveitis in
CX3CR1eGFP/− mice [induced by IRBP1−20 (interphotoreceptor
retinoid-binding protein), CFA, and PT], an inflammation localized
in the iris and ciliary body (421). Uveitis also occurs in MOGAD
patients (422) and MOGAD-depicting animal models (292).
Histopathological findings in uveitis are comparable in actively
induced MOG35−55-EAE in (C57BL/6 x SJL) F1 and C57BL/6
mice (induced by MOG35−55, CFA, and PT) and mice with
passive transfer of T cells specific to MOG35−55, suggesting
a T-cell-mediated origin of autoimmune uveitis in MOGAD
(423). Translational imaging including co-registered OCT and
two-photon excitation microscopy can help to further elucidate
the cause.

6 Concluding remarks

Separating MOGAD as a disease entity presents a unique
challenge since researchers have investigated MOG-IgG-based
animal models and MOG-IgG seropositive patients for decades as
models for or as part of other conditions. This review is a first step
toward understanding how the generated knowledge is specifically
applicable to MOGAD. Translational imaging in MOGAD
has provided useful information on disease pathophysiology,
commonalities between animal models and disease, and potential
imagingmarkers. Yet, true translational imaging research including
clinical and preclinical aspects within the same study is still
warranted. Also, many open questions remain such as: (1)
Is the histopathology of the optic nerve and spinal cord
comparable between MOG animal models and MOGAD patients
(due to the lack of human pathology studies), and which
would be the closest to reflect human disease? (2) What
causes the gray matter involvement in MOGAD? (3) Is there
a relevant portion of MOGAD patients developing a clinically
progressive disease course and do we need a disease-specific
definition of neuropathological progression? and (4) Should
current treatment regimens for MOGAD be reevaluated because
(A) no adverse events to, e.g., Fingolimod/Natalizumab (as seen
in AQP4-IgG seropositive NMOSD) were observed in MOG-
IgG seropositive patients (217) and (B) many treatments have
been shown to be beneficial in MOG-induced EAE that are
less used in or have been unsuccessful in MS (160, 423–
425). In the future, translational and advanced imaging might
provide answers to these questions and support the development
of biomarkers for the diagnosis and monitoring of MOGAD.
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