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Graph states are versatile resources for
various quantum information processing
tasks, including measurement-based quan-
tum computing and quantum repeaters.
Although the type-II fusion gate enables
all-optical generation of graph states by
combining small graph states, its non-
deterministic nature hinders the efficient
generation of large graph states. In this
work, we present a graph-theoretical strat-
egy to effectively optimize fusion-based
generation of any given graph state, along
with a Python package OptGraphState.
Our strategy comprises three stages: sim-
plifying the target graph state, building a
fusion network, and determining the or-
der of fusions. Utilizing this proposed
method, we evaluate the resource over-
heads of random graphs and various well-
known graphs. Additionally, we investi-
gate the success probability of graph state
generation given a restricted number of
available resource states. We expect that
our strategy and software will assist re-
searchers in developing and assessing ex-
perimentally viable schemes that use pho-
tonic graph states.

Graph states represent a family of multi-qubit
states where qubits are entangled following a
specific structure determined by an associated
graph. Owing to their highly entangled na-
ture [1], graph states find applications in var-
ious quantum information processing domains,
such as measurement-based quantum comput-
ing (MBQC) [2, 3, 4, 5], fusion-based quantum
computing (FBQC) [6], quantum error correction
[7, 8], quantum secret sharing [9, 10], quantum
repeaters [11, 12, 13, 14], and quantum metrol-
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ogy [15]. Photonic qubit-based graph states are
particularly crucial in these applications, not only
because photons are predominantly used in quan-
tum communication but also because MBQC can
circumvent the need for in-line near-deterministic
multi-qubit gates that are challenging in photonic
systems [16].

All-optical methods for constructing photonic
graph states are commonly processed by merging
multiple smaller graph states into a larger one
using fusion operations of types I and/or II [17].
The failures of these operations are heralded, pre-
senting a significant advantage [18] over alterna-
tive methods such as the post-selected controlled-
Z (cz) gate [19, 20] and the post-selected fusion
gate [17]. Among the two fusion types, we focus
exclusively on type II. This is because, assum-
ing photodetectors with negligible dark counts, a
type-I fusion could potentially transform a pho-
ton loss into an undetectable computational error
[21], whereas any photon loss occurring before or
during a type-II fusion can be identified.

The non-deterministic nature of fusions is a
crucial consideration when investigating quantum
tasks using photonic graph states. When employ-
ing dual-rail-encoded qubits (such as polarization
qubits) and restricting the setup to linear-optical
devices and photodetectors, the success probabil-
ity of a type-II fusion is limited to 50% without
ancillary resources [22]. Higher success probabili-
ties can be achieved by utilizing ancillary photons
[23, 24], encoded qubits [25, 26], redundant graph
structures [27, 28, 21], or continuous-variable
techniques [29, 30, 31, 32, 33, 34]. Through these
methods, fault-tolerant linear-optical MBQC is
theoretically possible. For instance, our recent
research verified that high photon loss thresholds
of around 8% under a uniform photon loss model
can be attained by employing parity-encoded
multiphoton qubits [35].
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Despite these advancements, resource overhead
remains a significant challenge for generating
large-scale graph states. Specifically, the number
of required basic resource states (such as three-
photon Greenberger–Horne–Zeilinger states) or
optical elements like photodetectors increases ex-
ponentially as the number of fusions grows. Con-
sequently, it is essential to carefully design a pro-
cedure for generating a desired graph state from
basic resource states to minimize resource over-
head as much as possible. While several prior
studies [36, 37] have addressed this issue, they
only considered specific graph families and type-I
fusion. In our previous work [35], we proposed a
partial solution for general graphs and type-II fu-
sion using a fine-tuning strategy; however, there
is still considerable scope for improvement.

In this work, we introduce a graph-theoretical
strategy to effectively identify a resource-efficient
method for fusion-based generation of any given
graph state, building upon and generalizing the
strategies presented in Ref. [35]. A single trial
of our strategy comprises three main stages: (i)
simplifying the graph state through the process
of unraveling, (ii) constructing a fusion network
(a graph that dictates the required fusions be-
tween basic resource states), and (iii) determining
the order of fusions. A sufficient number of trials
are repeated with randomness and the one with
the smallest resource overhead is selected as the
outcome of the strategy. Although our approach
does not guarantee the most optimal method, we
provide evidence of its power and generality, mak-
ing it suitable for studying various tasks involv-
ing graph states. Our strategy is implemented in
an open-source Python package, OptGraphState,
which is publicly available on Github: https://
github.com/seokhyung-lee/OptGraphState.

This paper is structured as follows: In Sec. 1,
we review the definitions and basic properties of
graph states and type-II fusion. In Sec. 2, we de-
scribe our optimization strategy step by step with
examples. In Sec. 3, we compute the resource
overheads of various graphs using our strategy
and numerically verify its effectiveness by com-
paring it with alternative strategies that lacks
certain stages of the original strategy. We ad-
ditionally discuss the success probability of gen-
erating a graph state given a restricted number of
available basic resource states. We conclude with
final remarks in Sec. 4.
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Figure 1: Example of a local complementation (LC)
and the corresponding single-qubit Clifford opera-
tions. R̂X and R̂Z indicate a π/2 rotation around the
x- and z-axis, respectively, in the Bloch sphere; namely,
R̂P := exp

[
−i(π/4)P̂

]
for P̂ ∈

{
X̂, Ẑ

}
. For the pre-

sented five-qubit graph state, applying R̂†
X to vertex v1

and R̂Z to each of its neighbors is equivalent to trans-
form the graph by an LC with respect to v1.

1 Preliminaries
1.1 Graph states and their equivalence relation

For a given graph G = (V, E) with a vertex set V
and an edge set E, a graph state |G⟩V on qubits
placed at the vertices is defined as

|G⟩V :=
∏

{v1,v2}∈E

ÛCZ(v1, v2)
⊗
v∈V

|+⟩v ,

where ÛCZ(v1, v2) is the controlled-Z (cz) gate
between the qubits at v1 and v2 and |+⟩v is the
state |0⟩+ |1⟩ on v. (We omit normalization coef-
ficients throughout the paper unless necessary.)
The graph state |G⟩V has the stabilizer group
generated byŜv := X̂v

∏
u∈adj(v)

Ẑu

∣∣∣∣∣∣ v ∈ V
,

where X̂v and Ẑv are respectively the Pauli-X and
Z operators on v and adj(v) is the set of the ad-
jacent vertices of v. Namely, Ŝv |G⟩V = |G⟩V for
every v ∈ V .

An important problem regarding graph states
is whether two different graph states are equiva-
lent under a unitary operation, especially under a
sequence of single-qubit Clifford operations. For
a graph G = (V,E) and a vertex v ∈ V , we define
a Clifford operator

ÛLC(v) := ei π
4 X̂v

∏
u∈adj(v)

e−i π
4 Ẑu . (1)

A local complementation LCv with respect to a
vertex v ∈ V is defined as a graph operation
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Figure 2: Examples of various well-known families of graphs. See Sec. 1.1 for their descriptions and usages.

that, for every pair of adjacent vertices of v, con-
nect them if they are disconnected and disconnect
them if they are connected. As proved in Ref. [38]
and visualized in Fig. 1, ÛLC(v) transforms G by
a local complementation; namely,

ÛLC(v) |G⟩ = |LCv(G)⟩ .

Furthermore, it is known that two graph states
are equivalent under a sequence of single-qubit
Clifford operations if and only if one of their cor-
responding graphs can be obtained by applying a
sequence of local complementations on the other
[38].

The followings describe several well-known
families of graph states visualized in Fig. 2:

Star graph. The m-vertex star graph G
(m)
∗ is

a graph where one of the vertices (say, vroot) is
connected with all the other vertices that are not
connected with each other; see Fig. 2(a) for an ex-
ample. The vertex vroot is called the root vertex of
G

(m)
∗ and the other vertices are called its leaf ver-

tices. Note that the graph state
∣∣∣G(m)

∗
〉

is equiva-
lent to the m-qubit Greenberger–Horne–Zeilinger
(GHZ) state |GHZm⟩ := |0⟩⊗m + |1⟩⊗m and
the graph state of the m-vertex complete graph
G

(m)
cmpl (where all the vertices are connected) un-

der single-qubit Clifford gates; namely,

|GHZm⟩ =

 ∏
v∈Vleaf

Ĥv

 ∣∣∣G(m)
∗

〉
,

∣∣∣G(m)
cmpl

〉
= ÛLC(vroot)

∣∣∣G(m)
∗

〉
,

where Vleaf is the set of the leaf vertices of G(m)
∗

and Ĥv is the Hadamard gate on the qubit at v.
Star graph states are often used as basic resource
states of photonic MBQC [28, 21, 31, 39, 35] and
FBQC [6].

Cycle graph. A cycle graph consists of vertices
connected in a closed chain. In particular, the
graph state for the six-vertex cycle graph, which
is shown in Fig. 2(b), is used as a basic resource
state of FBQC [6].

Lattice graph. The (mx,my)-lattice graph for
integers mx,my ≥ 1 has a two-dimensional (2D)
square lattice structure where the vertices are re-
peated mx (my) times along the x-axis (y-axis).
See Fig. 2(b) for an example. Lattice graph states
are particularly useful for 2D MBQC [2, 3], which
is universal but not fault-tolerant [4]. Any single-
qubit rotation and the controlled-not gate can
be implemented by measuring qubits of a lattice
graph state in appropriate single-qubit bases.

Accepted in Quantum 2023-12-03, click title to verify. Published under CC-BY 4.0. 3



Raussendorf-Harrington-Goyal (RHG)
lattice. The (Lx, Ly, Lz)-RHG lattice graph is
composed of unit cells stacked Lx, Ly, and Lz

times along the x-, y-, and z-axis, respectively.
Each unit cell is cube-shaped and it consists of
vertices locating at the faces and edges of the
cube, as visualized in Fig. 2(d). RHG lattices
are utilized in fault-tolerant three-dimensional
(3D) MBQC [4, 5]. Logical qubits encoded in
a surface code can be embedded into a lattice
and logical operations and measurements can
be done only by single-qubit measurements and
state injection. A specific operator on each unit
cell serves as a parity-check operator, whose
measurement outcome is used to detect and
locate errors.

Tree graph. A tree graph is defined as a con-
nected acyclic graph. We particularly define
the (b0, b1, b2, · · · )-tree graph for positive integers
b0, b1, b2, · · · as a tree graph where a vertex (des-
ignated its root vertex) has b0 neighbors called
1st-generation branches and each ith-generation
branch (i ≥ 1) has bi+1 neighbors that are (i+1)-
generation branches except for one. As an exam-
ple, see Fig. 2(e) for the (4, 2, 2)-tree graph. One
important usage of tree graphs is counterfactual
error correction; by attaching tree graph states
on qubits for 2D MBQC, qubit loss up to 50%
can be tolerated [40]. Such a technique also can
be employed for 3D MBQC to suppress the ef-
fects of failed entangling operations during the
construction of an RHG lattice [21].

Repeater graph. The 4m-vertex repeater
graph (m ≥ 1) consists of 2m completely-
connected vertices and other 2m vertices that are
respectively connected with them; see Fig. 2(f)
for the case of m = 3. A repeater graph state can
be used for all-optical quantum repeaters [13],
which distribute entanglement over a long dis-
tance by recursive entanglement swapping. m de-
termines the number of Bell-state measurements
(BSMs) required per single trial of entanglement
swapping, which succeeds if any one of these m
BSMs succeed.

1.2 Type-II fusion operation
The type-II fusion operation (hereafter referred
to simply as “fusion”) [17] is a two-qubit opera-
tion that consists of applying a Hadamard gate

(a)

(b)
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Figure 3: Type-II fusion operation. (a) Example of
merging two graph states by a type-II fusion, which is
composed of a Hadamard gate (Ĥ) and a Bell-state mea-
surement (BSM). msign and mlett respectively denote
the sign and letter outcomes of the BSM. If msign or
mlett is −1, several Pauli-Z gates need to be applied
on the resulting state to get the graph state. (b) BSM
scheme for single-photon polarization qubits with polar-
izing beam splitters (PBSs), 90◦ and 45◦ wave plates,
and four (A–D) photodetectors. A PBS transmits (re-
flects) horizontally-polarized (vertically-polarized) pho-
tons. The scheme distinguishes |ψ±⟩: |ψ+⟩ if both A
and C or both B and D detect a single photon respec-
tively, and |ψ−⟩ if both A and D or both B and C detect
a single photon respectively. If otherwise, the scheme
fails. Two distinguishable Bell states can be selected by
putting or removing wave plates before the first PBS.

(Ĥ) to one of the qubits, followed by a BSM, and
finally erasing the qubits. In other words, fusion
indicates a destructive measurement of two Pauli
operators X̂⊗Ẑ and Ẑ⊗X̂ on a pair of qubits. By
applying a fusion on an unconnected pair (v1, v2)
of vertices in a graph state, we can connect (dis-
connect) every adjacent vertex of v1 with every
adjacent vertex of v2 up to several Pauli-Z opera-
tors if they are unconnected (connected); see the
example in Fig. 3(a).

More formally, for two unconnected vertices v1
and v2 of a graph G, Fv1,v2 is defined as a graph
operation that, for every u1 ∈ adj (v1) and u2 ∈
adj (v2), connect (disconnect) u1 and u2 if they
are unconnected (connected) and delete v1 and
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v2 from the graph. When v1 and v2 undergo a
fusion for which the Hadamard gate is applied on
v1, the resulting state is

∏
u1∈adj (v1)

Ẑ
1−msign

2
u1

∏
u2∈adj (v2)

Ẑ
1−mlett

2
u2 |Fv1,v2(G)⟩ ,

where (msign,mlett) is the outcome of the BSM.
Here, we denote the Bell basis as

|ϕ±⟩ := |00⟩ ± |11⟩ , (2)
|ψ±⟩ := |01⟩ ± |10⟩ , (3)

and the outcome of a BSM as (±1, 1) if |ϕ±⟩ is
obtained and (±1,−1) if |ψ±⟩ is obtained. Note
that fusion was originally defined as a BSM in
Ref. [17]. Nevertheless, we consider its variant
(differing only by a Hadamard gate) since it is
more suitable to generate arbitrary graph states
due to its aforementioned property.

For single-photon polarization qubits with the
basis of horizontally and vertically polarized
single-photon states (|h⟩, |v⟩), the BSM can be
done with linear optical devices and photodetec-
tors [41], as visualized in Fig. 3(b). This BSM
scheme can distinguish only two among the four
Bell states, thus the fusion succeeds with the
probability of

psucc(η) = (1− η)2

2

when each photon suffers loss with probability
η and the input state is maximally mixed. See
Ref. [35] for a discussion on how failed fusions
affect the resulting graph state.

2 Strategy for identifying a method for
graph state generation
In this section, we present our main result: a
graph-theoretical strategy to effectively identify a
resource-efficient method for generating an arbti-
rary graph state via fusions. Our basic resource
state is the three-qubit star graph state∣∣∣G(3)

∗
〉

= | ⟩ := |+0+⟩+ |−1−⟩ , (4)

where |±⟩ := |0⟩ ± |1⟩. Hence, our goal is to find
an efficient way to build a desired graph state |G⟩
by performing fusions on multiple

∣∣∣G(3)
∗

〉
states.

We take an approach that, whenever a fusion

fails, we discard the photons that were entangled
with the photons involved in the failed fusion, re-
generate the state of the discarded photons with
new photons, and retry the fusion. This process
does not necessarily have to proceed in order; that
is, we may parallelly generate multiple identical
states and post-select only the ones with success-
ful fusions.

The resource overhead of a method to generate
|G⟩ is quantified by the expected value Q of the
number of

∣∣∣G(3)
∗

〉
’s required to generate one |G⟩

state. For example, a
∣∣∣G(4)

∗
〉

state can be gener-

ated by fusing two
∣∣∣G(3)

∗
〉
’s, thus this process has

the resource overhead of four if psucc = 1/2. Fus-
ing it again with another

∣∣∣G(3)
∗

〉
state gives the

resource overhead of 2× (4 + 1) = 10. In reality,
the success probability may vary for each fusion
due to different lengths of delay lines, but we sim-
plify the problems by neglecting this fact in the
following investigations. Note that, by definition,
having Q basic resource states does not guarantee
the successful generation of the graph state. The
exact success probability is worth investigating,
which will be covered later in Sec. 3.4.

The basic resource state
∣∣∣G(3)

∗
〉

can be gen-
erated with a success rate of 1/32 (in a loss-
less case) by using linear optical devices, single-
photon sources, and photodetectors [42]. Fur-
thermore, its deterministic generation is possi-
ble with matter-based methods [43, 44], which
is experimentally demonstrated in several recent
works [45, 46, 47].

The key concept of our strategy is a fusion net-
work, which is a graph where vertices correspond
to individual

∣∣∣G(3)
∗

〉
states and edges indicate fu-

sions between the states required to generate |G⟩.
Since fusion networks are not unique, selecting an
appropriate fusion network is the first challenge.
The second challenge is to determine the order of
the fusions; although the final state is regardless
of the order as long as all the fusions succeed,
the non-deterministic nature of fusions makes it
severely affect the resource efficiency.

The strategy is summarized as follows:

1. Simplify the graph of the desired graph
state by unraveling subgraphs of specific
types (bipartitely-complete subgraphs and
cliques). (Sec. 2.1)

2. Construct a fusion network from the simpli-
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𝑣!𝑣"

Fusion

Figure 4: Example of an unraveling process of a
bipartitely-complete subgraph. The vertices of the
two parts are colored in blue and yellow, respectively.
The original graph state can be constructed by perform-
ing a fusion on v1 and v2 of the unraveled graph state.

fied graph by decomposing it into multiple
star graphs and replacing each star graph
with multiple

∣∣∣G(3)
∗

〉
states. (Sec. 2.2)

3. Determine the fusion order with the min-
weight-maximum-matching-first method.
(Sec. 2.3)

4. Iterate the above steps (which contain ran-
domness) a sufficient number of times and
select the best one. (Sec. 2.4)

We cover these steps in the following four subsec-
tions one by one.

2.1 Simplification of graph by unraveling
If the graph G = (V,E) of the desired graph
state |G⟩ contains specific types of subgraphs,
it is posible to generate |G⟩ by applying single-
qubit Clifford operations and/or fusions on the
graph state of a simplified graph. Unraveling
means the process to build such a simplified graph
Gunrv = (V ′, E′) (referred to as an unraveled
graph) and specify the information

(
ÛC,F

)
nec-

essary to recover |G⟩ from |Gunrv⟩, where ÛC is
the product of single-qubit Clifford operations
and F ⊂ V ′×V ′ is the set of pairs of vertices that
undergo fusions. We currently have unraveling
schemes for two types of subgraphs: bipartitely-
complete subgraphs and cliques.

2.1.1 Unraveling bipartitely-complete subgraphs

Definition 2.1 (Bipartitely-complete
graph/subgraph). A graph G = (V,E) is an
(n,m) bipartitely-complete graph for an integer
n,m ≥ 2 if V can be split into two disjoint
subsets V1 and V2 such that |V1| = n, |V2| = m,
and each vertex of V1 is connected with each
vertex of V2 (namely, {v1, v2} ∈ E for any

v1 ∈ V1 and v2 ∈ V2). If a subgraph of a graph is
an (n,m) bipartitely-complete graph, it is called
an (n,m) bipartitely-complete subgraph (BCS).

Note that a bipartitely-complete graph allows
edges between vertices in one part, thus it is dif-
ferent from a complete bipartite graph. The pa-
rameter (n,m) of a bipartitely-complete graph
may not be uniquely determined.

If G has an (n,m) BCS, its two parts can be
disconnected by adding two vertices (v1, v2) that
are respectively connected with all the vertices
in one of the two parts and adding (v1, v2) to F ,
which replace nm edges with n+m edges and one
fusion; see Fig. 4 for an example. This process is
called unraveling the BCS.

In our strategy, we repeat the cycle of find-
ing non-overlapping BCSs (that do not share any
vertices) via Algorithm 1 and unraveling them
as above until no new BCSs are found. The
time complexity of Algorithm 1 is O

(
|V |d4

max
)

in the worst case, where dmax is the largest de-
gree1. Note that the iterations in Algorithm 1
are done in random orders because the final un-
raveled graph may vary depending on the orders
and we want to suppress any possible bias dur-
ing iteration (Step 4 of the strategy). All the
randomness appearing from now on exist for the
same reason.

2.1.2 Unraveling cliques

Definition 2.2 (Clique). A clique of a graph
G is a subgraph of G where every vertex is fully
connected with each other. A clique is maximal
if it cannot be enlarged by adding a new vertex.

If G contains a clique, it can be simplified by
using a local complementation. For a maximal
clique of size greater than two, the unraveling
process is conducted as follows (see Fig. 5 for an
example):

1. Let us define Vcl as the set of the vertices in
the clique and Vno.outer ⊆ Vcl as the set of
the vertices in the clique that are connected
only with vertices in the clique.

2. If Vno.outer is not empty, select a vertex v0
randomly from Vno.outer.

1The degree of a vertex is the number of its adjacent
vertices.
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Algorithm 1: Finding non-overlapping bipartitely-complete subgraphs (BCSs)
Input: A graph G = (V,E).
Output: A set S of BCSs of G that do not share any vertices.

1 S ← ∅;
2 Vin.bcs ← ∅; // Vertices included in any BCS found so far
3 Echecked ← ∅; // Edges checked so far
4 foreach v ∈ V (in a random order) do
5 if v /∈ Vin.bcs then
6 Vadj.unchecked ← {vadj ∈ adj(v) | {v, vadj} /∈ Echecked};
7 foreach unordered pair {v1, v2} of elements in Vadj.unchecked (in a random order) do
8 if v1, v2 /∈ Vin.bcs then
9 V1 ← adj (v1) ∩ adj (v2); // First part of BCS, which includes v

10 V2 ←
⋂

u∈V1 adj(u); // Second part of BCS, which includes v1 and v2
11 if |V1| > 1 and |(V1 ∪ V2) ∩ Vin.bcs| = 0 then
12 S ← S ∪ {(V1, V2)};
13 Vin.bcs ← Vin.bcs ∪ V1 ∪ V2;
14 end
15 foreach vadj ∈ adj(v) \ Vin.bcs do
16 Echecked ← Echecked ∪ {{v, vadj}};
17 end
18 end

𝑣! 𝑣"

𝑣!

𝑣#

Fusion

𝑣"

𝑣!

𝑣#𝑅#$
%

𝑅#&𝑅#&

𝑅#&

(a) (b) (c)

Figure 5: Example of an unraveling process of a maximal clique. The process is done through three steps:
(a) selecting a random vertex v0 in the clique, (b) separating v0 from the clique by adding two vertices v1 and v2,
and (c) applying a local complementation with respect to v1. Vertices in the clique are colored in blue and the
new vertices are colored in yellow. The original graph state can be constructed by performing single-qubit Clifford
operations (R̂P := exp

[
−i(π/4)P̂

]
for P̂ ∈

{
X̂, Ẑ

}
) and a fusion on the unraveled graph state in (c).

3. If Vno.outer is empty, do:

(a) Select a vertex v0 randomly from Vcl.

(b) Separate v0 and its neighbors that are
not in Vcl from the clique and add a new
vertex v1 at the original position of v0.

(c) Add another new vertex v2 and connect
it with v0.

(d) Add (v1, v2) to F .

4. Transform the graph by a local complemen-

tation with respect to v1 and update ÛC ←
ÛLC(v1)ÛC.

In our strategy, we repeat the cycle of find-
ing non-overlapping maximal cliques (that do
not share any vertices) and unraveling them as
above until no new cliques are found. Listing
all maximal cliques of a graph is an important
problem in the graph theory and known to take
exponential time in the worst case [48]. How-
ever, there exist algorithms to list them in poly-
nomial time per clique [49, 50], thus the prob-
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lem can be efficiently solved if the graph does
not contain many cliques. Our Python pack-
age OptGraphState uses Graph.maximal_clique
method from Python package python-igraph [51],
which implements a more advanced algorithm in
Ref. [52].

2.1.3 Additional notes

It is a subtle problem which of bipartitely-
complete graphs and cliques to unravel first. We
randomly choose it since we currently have no
basis for judging which one is better.

One may expect that BCSs and cliques are
quite non-trivial and not very common. However,
the smallest BCS and clique that are concerned
for unraveling are cycles with four vertices and
with three vertices, respectively. These are sim-
ple enough and appear in various graphs such as
square and triangular grid graphs and RHG lat-
tices. Moreover, large bipartitely-complete sub-
graphs may appear when converting a logically
encoded graph state into a graph state with phys-
ical qubits. For instance, a three-qubit linear
graph state with the (n,m) parity encoding con-
tains at most (n,m) bipartitely-complete sub-
graphs in the physical level; see Sec. 3.3 and
Ref. [35] for more details.

2.2 Construction of fusion network
After unraveling a graph G, we obtain an un-
raveled graph Gunrv along with the information(
ÛC,F

)
that identifies the operations needed to

to restore |G⟩ from |Gunrv⟩. In particular, the fu-
sions specified by F are called external fusions to
distinguish them from the fusions used to gener-
ate the unraveled graph state. We now deal with
the problem of building a fusion network from
result.

We first formally define fusion networks as fol-
lows:

Definition 2.3 (Fusion network). A graph
Nf = (N,L) is a fusion network of a graph
state |G⟩ (where vertices and edges are refer-
eed to as nodes and links) for root indicators
{rl,n ∈ {0, 1} | ∀l ∈ L, ∀n ∈ l} if |G⟩ can be gen-
erated by the process:

1. Prepare a state
∣∣∣G(3)

∗
〉

for each node n. Let

q
(n)
root denote its root qubit and Q

(n)
leaf denote

the set of its leaf qubits.

2. For each link l = {n1, n2}, iterate the follow-
ing:

(a) Let q1 be q(n1)
root if rl,n1 = 1 and an ar-

bitrary unmeasured qubit in Q
(n1)
leaf if

rl,n1 = 0. Define q2 analogously for n2.
(b) Apply appropriate single-qubit Clifford

operations on q1 and q2, if required.
(c) Perform a fusion on q1 and q2.

3. Apply appropriate single-qubit Clifford op-
erators on the remaining qubits, if required.

We say that a link l = {n1, n2} has the type
of root-to-root, root-to-leaf, or leaf-to-leaf, when
both rl,n1 and rl,n2 are equal to 1, only one of
them is equal to 1, and both of them are equal
to 0, respectively.

We now describe how to build a fusion network
Nf and the corresponding root indicators {rl,n}
from the unraveled graph Gunrv and the external
fusions F . The main idea is to decompose a graph
state into multiple star graph state, each of which
is again decomposed into multiple

∣∣∣G(3)
∗

〉
states.

Anm-qubit star graph state
∣∣∣G(m)

∗
〉

can be con-
structed by conducting fusions on m − 2 copies
of

∣∣∣G(3)
∗

〉
, which leads to a fusion network with

m − 2 nodes connected linearly with root-to-leaf
links; see Fig. 6(a) for an example when m = 5.
Note that there is an ambiguity in positioning the
root qubit (marked as “R”) of

∣∣∣G(m)
∗

〉
as depicted

in Fig. 6(a) with (1) and (2). The node for the∣∣∣G(3)
∗

〉
state containing the root qubit of

∣∣∣G(m)
∗

〉
is called the seed node (marked as “S”) of the node
group that consists of these m− 2 nodes.

A general graph state |G⟩ can be generated
by conducting fusions on leaf qubits of multiple
star graph states, where each star graph is origi-
nated from a vertex in G with degree larger than
one. Consequently, its fusion network can be con-
structed by connecting the fusion networks of the
individual star graphs (which respectively form
one node group) with leaf-to-leaf links. An ex-
ample is illustrated in Fig. 6(b), where root-to-
leaf links and leaf-to-leaf links are represented by
black single lines and orange double lines, respec-
tively. If an external fusion exists, it also creates
a link (blue dashed line) between nodes of dif-
ferent star graphs, as shown in Fig. 6(b). Such
a link may belong to any one of the three types,
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Figure 6: Examples of the construction of fusion networks. (a) A five-qubit star graph state
∣∣∣G(5)

∗

〉
and (b)

a general graph state |G⟩ are considered. In (a),
∣∣∣G(5)

∗

〉
is decomposed into three

∣∣∣G(3)
∗

〉
states, which leads to a

three-node linear fusion network that forms one node group. The process varies depending on the selection of the
seed node (marked as “S”), which determines the root vertex of G(5)

∗ (marked as “R”). A leaf vertex vf of the star
graph can be any of the four vertices (1–4) after the decomposition. In (b), |G⟩ is decomposed into multiple star
graph states, where each of them is again decomposed into

∣∣∣G(3)
∗

〉
states and forms one node group in the fusion

network. The line styles of the links in the fusion network indicate their origins: black solid lines for fusions inside a
star graph, orange double lines for fusions between star graphs, and a blue dashed line for an external fusion.

depending on the vertices involved in the external
fusion. Note that external fusions always appear
between different star graphs, considering the un-
raveling processes in Figs. 4 and 5.

It is important that the above process contains
two types of ambiguity for each star graph (which
are determined randomly in our strategy): which
node in the node group to select as its seed node
and which node to include each leaf vertex in.
To illustrate the latter factor with the example
of Fig. 6(a), the leaf vertex vf in G

(5)
∗ can be

any of the four vertices (1–4) after the decompo-
sition. Such ambiguity matters if G(5)

∗ appears
during the decomposition of a larger graph state.
In other words, if vf participates in a fusion, the
resulting fusion network may vary depending on
this selection. For example, G(5)

∗ appears in the
decomposition of Fig. 6(b), and in this case, ver-
tex 3 in (1) is selected to be vf ; thus, the link for
the fusion is connected to node n2.

We lastly note that the single-qubit Clifford op-
erators required in the process of generating a
graph state can be identified from ÛC, the prod-
uct of single-qubit Clifford operations obtained
from the unraveling process, and the fusion out-

comes.

2.3 Determination of fusion order

We now have one stage left: how to determine the
order of fusions. Let us regard a fusion network
as a weighted graph where each node indicates
a group of entangled qubits and each link repre-
sents a fusion between these groups that needs to
be done. The weight of each node w(n), which
is initialized to 1, is defined as the resource over-
head of the process of generating the correspond-
ing entangled states. Namely, w(n) is the average
number of required

∣∣∣G(3)
∗

〉
states to generate the

state.
Upon the above setting, the action of a fusion

can be treated as the contraction of a link l, which
means to merge two endpoints (n1, n2) of the link
into a new node nl and reconnect the links con-
nected to the original nodes with nl. The weight
of nl is updated as

w(nl) :=
{

[w(n1) + w(n2)]/psucc if n1 ̸= n2,

w(n1)/psucc if n1 = n2,

(5)
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where psucc is the fusion success probability.
Hence, if the order of the fusions is given, the re-
source overhead Q of the entire process can be ob-
tained as the summation of the weights of the last
remaining nodes after contracting all the edges in
the order. Note that an intermediate fusion net-
work during this process may have loops (links
connecting a node to itself) or multi-links (links
incident to the same two vertices).

For a fusion network Nf = (N,L), the num-
ber of possible fusion orders is |L|!; thus it is
extremely inefficient to randomly sample fusion
orders and find the best one unless there are very
few links. Instead of it, our strategy is based on
the following two intuitions:

1. It is preferred to contract links with small
weights first, where the weight of a link l
is defined as w(nl) in Eq. (5). It is be-
cause, defining f(x, y) := (x+ y)/psucc for
two numbers x and y,

f(f(w1, w2), w3) < f(w1, f(w2, w3))

when w1 < w2 < w3.

2. Links that do not share endpoints can be
contracted simultaneously and it is preferred
to contract links as parallelly as possible.
For example, let us consider a four-node lin-
ear fusion network where the node set is
{n1, n2, n3, n4} and ni and ni+1 are con-
nected with a link li,i+1 for each i ∈ {1, 2, 3}.
Provided that psucc = 1/2, we obtain Q = 16
if l1,2 and l3,4 are first contracted in parallel,
but obtain Q = 22 if l2,3 is contracted first.

Based on these intuitions, we introduce the
min-weight-maximum-matching-first method to
determine the fusion order. For each round of
the link contraction process, we first identify the
set of links with the smallest weight and get
the subgraph Nmin.wgt of the intermediate fusion
network induced by these links. We then find
a maximum matching of Nmin.wgt, which is the
largest set of links that do not share any nodes,
and contract these links in parallel. By repeat-
ing this procedure until no links remain, we can
determine the fusion order and calculate the re-
source overhead Q. We illustrate an example
in Fig. 7. To compute a maximum matching,
our software uses max_weight_matching func-
tion from Python package NetworkX [53], which

4

1

411

1

1 11

1

1

22 1064

1

1

10 10

Figure 7: Example of the determination of the fusion
order with the min-weight-maximum-matching-first
method. We assume psucc = 1/2. Each step is an inter-
mediate fusion network after contracting links (orange
bold lines) in the previous step. The numbers inside
the nodes indicate their weights. The obtained resource
overhead is Q = 64, which is the weight of the last re-
maining node.

is based on the algorithm in Ref. [54] and takes
time of O

(
|number of nodes|3

)
.

2.3.1 Note on the average number of fusions

One may want to use the average number of re-
quired fusion attempts to quantify resource over-
heads instead of the average number of required∣∣∣G(3)

∗
〉

states. In such a case, Eq. (5) should be
modified to

w(nl) :=
{

[w(n1) + w(n2) + 1]/psucc if n1 ̸= n2,

[w(n1) + 1]/psucc if n1 = n2,

and the weights of nodes should be initialized
to 0. All the other parts of the strategy remain
the same. OptGraphState provides an option to
use this alternative resource measure instead of
Q.

2.4 Iteration

Since the method introduced above has random-
ness in several stages, it may produce a different
outcome each time it is attempted. We thus iter-
ate the method a sufficient number of times and
choose the best one.

Our software uses an adaptive method to deter-
mine the iteration number: Denoting the process
to iterate the strategy m times as R(m), we first
perform R(minit) for a given integer minit ≥ 1
and obtain Q

(1)
opt, which is the minimal value of

Q obtained from the samples. We then perform
R(2minit) and obtain Q

(2)
opt. If Q(1)

opt ≤ Q
(2)
opt, we
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stop the iteration and return Q
(1)
opt. If otherwise,

we perform R(4minit), obtain Q(3)
opt, and stop the

iteration if Q(2)
opt ≤ Q

(3)
opt, which returns Q(2)

opt. If
Q

(2)
opt > Q

(3)
opt, we perform R(8minit), obtain Q(4)

opt,
and so on. Here, we refer to this method as the
adaptive iteration with the given value of minit.

We emphasize that our strategy does not guar-
antee that the obtained generation method is
strictly optimal. As elaborated above, our ap-
proach involves simulating sufficiently many ran-
dom samples and selecting the best performing
one.

3 Applications of the strategy

In this section, we present the numerical re-
sults obtained by applying our strategy to var-
ious graphs. We first analyze the distribution
of resource overheads for random graphs, show-
ing its tendency with respect to the numbers of
vertices and edges. We then provide numerical
evidence indicating that each step of our strat-
egy can significantly contribute to lowering the
resource overhead. Additionally, we show the cal-
culated resource overheads of various well-known
graphs described in Sec. 1.1. We lastly investi-
gate the probability of successfully generating a
graph state given a restricted number of available
basic resource states and present the results for
several graph states.

Throughout the section, |V | and |E| for a given
graph indicate the numbers of vertices and edges,
respectively, and |E|max is defined as the maximal
possible number of edges for a given value of |V |
(under the assumption that there are no loops
and multi-edges): |E|max = |V |(|V | − 1)/2.

3.1 Analysis of random graphs

To sample random graphs, we use the
Erdős–Rényi model [55], where all graphs
that contain given fixed values of |V | and |E|
have an equal probability. Figure 8 visualizes the
distributions of the obtained resource overheads
optimized by our strategy for various values of
|V | and |E| when psucc = 0.5 or 0.75. Here, we
sample 100 random graphs for each combination
(psucc, |V |, |E|) and use the adaptive iteration
method of minit = 600. Several observations
from the results are as follows:

0.0 0.2 0.4 0.6 0.8 1.0
|E|/|E|max
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Q
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psucc = 0.5

0.0 0.2 0.4 0.6 0.8 1.0
|E|/|E|max

psucc = 0.75
|V| = 24
|V| = 18
|V| = 12
|V| = 6

Figure 8: Distribution of the optimized resource
overhead Qopt for random graphs. Random graphs
are sampled with fixed numbers of vertices (|V |) and
edges (|E|) by the Erdős–Rényi model [55]. Two dif-
ferent fusion success rates are considered: psucc ∈
{0.5, 0.75}. |E|max = |V |(|V | − 1)/2 is the maximal
possible number of edges for the given vertex num-
ber. For each combination of (psucc, |V |, |E|), we sample
100 random graphs and obtain the distribution of Qopt
through the adaptive iteration method of minit = 600.
The median of the distribution is indicated as a dot and
its total range is shown as a shaded region.

• Qopt increases exponentially (or super-
exponentially) as |V | grows when |E|/|E|max
is fixed.

• For a fixed value of |V |, Qopt is maximal
when |E| ≈ 0.6|E|max. Qopt is inversely cor-
related with |E| for large values of |E| since
bipartitely-complete subgraphs and cliques
are more likely to appear for when |E| is
large.

• The fusion scheme with psucc = 0.75 may
greatly reduce the order of Qopt, compared
to the one with psucc = 0.5, especially when
|V | is large. Note that, to achieve psucc =
0.75 with linear optics, we require an ancil-
lary two-photon Bell state [23] or four ancil-
lary unentangled photons [24] per fusion and
photon-number resolving detectors that can
discriminate at least four photons. On the
other hand, the scheme with psucc = 0.5 re-
quires only on-off detectors and no ancillary
photons.

3.2 Performance analysis

We now show that our strategy is indeed effective
by comparing it with two “deficient” strategies in
which a certain stage is missing from the original
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Figure 9: Comparison of the distributions of the optimized resource overhead Qopt for different optimization
strategies. Three strategies are considered: the strategy without unraveling (s1), the strategy with random selection
of the fusion order (s2), and our full strategy. The subplots correspond to different values of |V | ∈ {12, 18, 24} and
|E|/|E|max ∈ {0.2, 0.6}. For each setting, 100 graphs are sampled by the Erdős–Rényi model and 1200 iterations
are done for each graph. (The adaptive iteration method is not used for fair comparisons.) The distribution of Qopt
is visualized as a box plot, where the red line indicates the median, the box extends from the first quartile (Q1) to
the third quartile (Q3), and the whisker covers the entire range of the values.

“full” strategy. In detail, we consider the following
two alternative strategies:

(s1) The strategy without the unraveling process,
where the original graph is directly used for
generating a fusion network. The other steps
are the same as the full strategy.

(s2) The strategy where the fusion order is
randomly selected without using the min-
weight-maximum-matching-first method.
The other steps are the same as the full
strategy.

In Fig. 9, the distributions of Qopt optimized by
these three strategies for random graphs are pre-
sented as box plots. Each box extends from the
first quartile (Q1) to the third quartile (Q3) and
the corresponding whisker covers the entire range
of the values. It clearly shows that the full strat-
egy is significantly more powerful than the defi-
cient ones, especially when there exist many ver-
tices and edges. In other words, each step in the
full strategy contributes to reducing the resource
overhead.

Logical qubit

×	𝑚

𝐻

×	(𝑚 − 1)

×	(𝑛 − 1)

Physical qubit

Figure 10: Rule for converting an (n,m) parity-
encoded graph state into a physical-level graph
state. A dashed box with a text “×N” (for an integer
N) indicates a bundle of recurrent subgraphs. Namely,
the subgraph inside the box is repeated N times and,
for each edge crossing the border of the box, an edge of
the same format exists for every repeated subgraph. See
Ref. [35] for more details.

3.3 Applications to well-known graphs

We here investigate the resource overheads of the
graph states in Sec. 1.1, which are utilized in vari-
ous quantum tasks such as MBQC, FBQC, quan-
tum repeaters, and quantum error correction. Be-
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Table 1: Results of resource overhead analyses for various well-known graphs. See Fig. 2 for the visualization of
these graphs. |V | and |E| indicate the numbers of vertices and edges. |E|max = |V |(|V |−1)/2 is the maximal possible
number of edges. The optimized resource overheads Qopt and the corresponding average numbers of fusion attempts
are calculated for two fusion success rates: psucc ∈ {0.5, 0.75}. The adaptive iteration method of minit = 1200 is
used for the calculation.

Graph |V | |E| |E|/|E|max
psucc = 0.5 psucc = 0.75

Qopt #Fusions Qopt #Fusions

6-vertex star (G(6)
∗ ) 6 5 0.33 1.6× 101 1.0× 101 7.1× 100 4.9× 100

12-vertex star (G(12)
∗ ) 12 11 0.17 1.1× 102 7.4× 101 2.7× 101 2.1× 101

18-vertex star (G(18)
∗ ) 18 17 0.11 2.6× 102 1.7× 102 5.1× 101 4.0× 101

24-vertex star (G(24)
∗ ) 24 23 0.083 5.4× 102 3.6× 102 8.2× 101 6.5× 101

(3, 3)-lattice 9 12 0.33 5.4× 102 3.7× 102 5.5× 101 4.6× 101

(4, 4)-lattice 16 24 0.20 7.7× 103 5.2× 103 2.4× 102 2.0× 102

(5, 5)-lattice 25 40 0.13 1.0× 105 6.7× 104 9.9× 102 8.2× 102

(6, 6)-lattice 36 60 0.095 7.9× 105 5.3× 105 2.8× 103 2.3× 103

(1, 1, 1)-RHG lattice 18 24 0.16 1.9× 104 1.3× 104 3.9× 102 3.4× 102

(2, 2, 2)-RHG lattice 90 144 0.036 2.8× 1013 1.8× 1013 8.0× 106 6.5× 106

(2, 2)-tree 7 6 0.29 2.8× 101 1.8× 101 1.0× 101 7.3× 100

(2, 2, 2)-tree 15 14 0.13 2.1× 102 1.4× 102 4.0× 101 3.1× 101

(2, 2, 2, 2)-tree 31 30 0.065 1.6× 103 1.1× 103 1.4× 102 1.1× 102

(3, 3, 3)-tree 40 39 0.050 1.7× 103 1.2× 103 1.8× 102 1.5× 102

(4, 4, 4)-tree 85 84 0.024 1.2× 104 7.8× 103 6.1× 102 4.9× 102

(8, 2, 2)-tree 57 56 0.035 1.6× 104 1.0× 104 4.7× 102 3.8× 102

Repeater graph with m = 3 12 21 0.32 1.2× 102 8.2× 101 2.8× 101 2.1× 101

Repeater graph with m = 4 16 36 0.30 2.1× 102 1.4× 102 4.3× 101 3.3× 101

Repeater graph with m = 6 24 78 0.28 5.4× 102 3.6× 102 8.2× 101 6.5× 101

(2, 2) parity-encoded 3-star 12 17 0.26 1.2× 102 8.2× 101 2.8× 101 2.1× 101

(3, 3) parity-encoded 3-star 27 48 0.14 8.8× 102 5.9× 102 1.1× 102 8.4× 101

(4, 4) parity-encoded 3-star 48 95 0.084 2.4× 103 1.6× 103 2.3× 102 1.9× 102

(5, 5) parity-encoded 3-star 75 158 0.057 1.0× 104 6.8× 103 5.3× 102 4.3× 102

(2, 2) parity-encoded 6-cycle 24 42 0.15 1.3× 103 8.5× 102 1.2× 102 9.9× 101

(3, 3) parity-encoded 6-cycle 54 114 0.080 6.7× 103 4.4× 103 3.9× 102 3.1× 102

(4, 4) parity-encoded 6-cycle 96 222 0.049 2.1× 104 1.4× 104 8.8× 102 7.1× 102

sides them, we also consider parity-encoded graph
states, which are used for basic resource states of
parity-encoding-based topological quantum com-
puting (PTQC) protocol in Ref. [35] and FBQC
in Ref. [6]. The (n,m) parity code (or generalized
Shor code) [56] encodes a single logical qubit with
the basis of{(
|0⟩⊗m + |1⟩⊗m

)⊗n
±

(
|0⟩⊗m − |1⟩⊗m

)⊗n
}
,

where {|0⟩ , |1⟩} is the physical-level basis. An
(n,m) parity-encoded graph state indicates a
graph state in which the qubits on the vertices
are encoded with the (n,m) parity code. Such an
encoded graph state can be rewritten as a graph

state of physical-level qubits according to the rule
in Fig. 10 [35]. We cover two types of logical-
level graphs in the calculation: the 3-vertex star
graph (for PTQC [35]) and 6-vertex cycle graph
(for FBQC [6]).

In Table 1, we list the results of the resource
analyses for these graph states, together with the
basic information of the graphs. Additionally, in
Appendix A, we present several explicit exam-
ples of the application of our strategy with vi-
sualization. We note that the extremely high
resource overheads of RHG lattices do not nec-
essarily render them impractical. From the per-
spective of fault-tolerant quantum computing [4],
certain levels of absent vertices or edges result-
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ing from fusion failures can be endured [57, 58].
Hence, many previous schemes [21, 39, 35, 6]
take an approach of initially generating “unit”
resource states successfully, followed by merging
them while allowing fusion failures. In this con-
text, our strategy can be utilized to evaluate the
resource costs of these unit states. For exam-
ple, they can be tree graphs [21], parity-encoded
3-star graphs [39, 35], or parity-encoded 6-cycle
graphs [6], all of which are presented in Table 1.

3.4 Success probability of graph state genera-
tion
We emphasize that the resource overhead Q we
have used so far is defined by the expected value
of the resource count required to generate the de-
sired graph state |G⟩. Namely, if we define a dis-
crete random variable C by this resource count,
then

Q = E[C] =
∞∑

c=1
cPr(C = c).

One may want to know more information on the
probability mass function (PMF) Pr(C = c), not
just its expectation value. Moreover, the cor-
responding cumulative mass function (CMF) in-
dicates the probability Psucc(c) of the successful
generation of |G⟩ when c resource states are pro-
vided, namely,

Psucc(c) =
c∑

c′=1
Pr

(
C = c′), (6)

which may be a more practical indicator than Q
to assess the performance of a scheme.

We first investigate the case where two graph
states with resource counts C1 and C2 are merged
by a single fusion of success rate ps to form a
graph state with resource count C3. For each
i ∈ {1, 2, 3}, let us define qi(·) by the probability
distribution function (PDF) corresponding to the
PMF Pr (Ci = c); namely,

qi(x) :=
∞∑

c=1
Pr (Ci = c)δ(x− c),

where δ is the Kronecker delta function. Then q1,
q2, and q3 are related as

q3 = ps(q1 ∗ q2) + ps(1− ps)(q1 ∗ q1 ∗ q2 ∗ q2)
+ ps(1− ps)2(q1 ∗ q1 ∗ q1 ∗ q2 ∗ q2 ∗ q2)
+ ps(1− ps)3(q1 ∗ q1 ∗ q1 ∗ q1 ∗ q2 ∗ q2 ∗ q2 ∗ q2)
+ · · · , (7)

where the “∗” symbol indicates convolution de-
fined as

(f ∗ g)(x) :=
∫ ∞

−∞
f(t)g(x− t)dt.

Here, each term including ps(1 − ps)l for l ≥ 0
corresponds to the case where the fusion fails l
times and succeeds on the next attempt. The
convolution theorem [59] states that the Fourier
transformation (FT) defined as

F [f ] (k) = f̃(k) :=
∫ ∞

−∞
f(x)eikxdx

converts convolution into multiplication of func-
tions as

F [f ∗ g] (k) = f̃(k)g̃(k).

Thus, applying the FT to the both sides of
Eq. (7), we obtain

q̃3(k) =
∞∑

l=0
ps(1− ps)l[q̃1(k)q̃2(k)]l+1

= psq̃1(k)q̃2(k)
1− (1− ps)q̃1(k)q̃2(k) ,

which gives

q̃3(k)−1 = 1
ps
q̃1(k)−1q̃2(k)−1 − 1− ps

ps
. (8)

Therefore, considering that the PDF of the re-
source count for the basic resource state

∣∣∣G(3)
∗

〉
is

δ(x−1) =: qbase(x), the Fourier-transformed PDF
(FTPDF) for every graph state can be written as
the inverse of a polynomial of

q̃−1
base(k) = e−ik =: z−1.

Namely, for every FTPDF q̃(k), there exists a
series of real numbers {al}Ll=0 that satisfies

q̃(k) = 1∑L
l=0 alz−l

= 1∑L
l=0 ale−ikl

. (9)

To compute the FTPDF for a desired graph state,
we just need to assign the PDF of z to every node
of the fusion network and sequentially apply the
rule of Eq. (8) for every link contraction.

After obtaining the final FTPDF q̃(k) in the
form of Eq. (9), we need to recover the PMF
Pr(C = c) from it. By applying the Taylor ex-
pansion at z = 0 on

q̃(k) = zL∑L
l=0 alzL−l

= zL∑L
l=0 aL−lzl

,
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we get the power series

q̃(k) = zL
∞∑

j=0
bjz

j ,

where {bj} is recurrently defined as

b0 = a−1
L ,

bj = −
j−1∑

j′=max(0,j−L)

aL−j+j′

aL
bj′ .

Since zj = eikj is the FT of δ(x− j), we conclude
that the PMF is

Pr(C = c) =
{

0 if c < L,

bc−L otherwise.

Additionally, we obtain the CMF Psucc(c) in
Eq. (6) as

Psucc(c) =
{

0 if c < L,

dc−L otherwise,

where

d0 = a−1
L ,

dj =
j−1∑

j′=max(0,j−L−1)

aL−j+j′+1 − aL−j+j′

aL
dj′ ,

if we define a−1 := 0.
The above calculations are implemented in our

software OptGraphState. In Fig. 11, we display
the computed success probabilities Psucc for gen-
erating various graph states, plotted against the
resource count c. Lines labeled (a)–(d) corre-
spond to the repeater graph with m = 6, (4, 4)
parity-encoded 3-star graph, (4, 4)-lattice graph,
and (4, 4) parity-encoded 6-cycle graph, respec-
tively. We note that the resource overhead Q,
which is shown as dashed lines, matches the re-
source count when the associated success prob-
ability is roughly 60%. For achieving a greater
success probability, such as 90%, one would need
approximately twice as many resource states as
Q.

4 Remarks
Graph states are versatile resource states for var-
ious tasks on quantum computation and com-
munication, such as MBQC [2, 4], FBQC [6],
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Figure 11: Success probabilities of graph state gen-
eration as functions of the number of provided basic
resource states. The solid lines respectively indicate
the success probabilities Psucc(c) for the graph states of
(a) the repeater graph with m = 6, (b) (4, 4) parity-
encoded 3-star, (c) (4, 4)-lattice, and (d) (4, 4) parity-
encoded 6-cycle. Each dashed line represents the cor-
responding resource overhead Q, which is the expected
value of the resource count when Psucc is the cumulative
mass function.

quantum error correction [7, 8], and quantum re-
peaters [11]. However, in optical systems, the
non-deterministic nature of entangling operations
hinders the generation of large-scale graph states;
thus, the generation process should be carefully
designed.

In this work, we introduced a graph-theoretical
strategy to construct a resource-efficient method
for generating an arbitrary graph state with the
type-II fusion operation. Here, the resource over-
head is quantified by the average number of
required basic resource states (three-qubit star
graph states) to generate the graph state without
failed fusions. As outlined in Sec. 2, the strategy
is composed of multiple trials to find the optimal
one, where each round contains three stages: un-
raveling the graph, constructing a fusion network,
and determining the fusion order. In Sec. 3, we
applied the strategy to various graph states and
verified numerically that each step of the strategy
is indeed necessary to achieve high resource effi-
ciency. Moreover, we described a recursive tech-
nique to determine the success probability of gen-
erating a graph state as a function of the resource
cost and tested it on several representative graph
states.

We anticipate that our strategy and soft-
ware will aid researchers in designing experi-
mentally feasible approaches utilizing photonic
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graph states and in evaluating the practicality
of their proposed schemes. For example, the
basic resource states of MBQC and FBQC can
be logically-encoded star or cycle graph states
[35, 6]. Employing larger or more complex codes
may improve the fault-tolerance of these schemes;
however, generating such resource states could
become a bottleneck in their implementation.
Our strategy can contribute to evaluating such a
trade-off relation and identifying the most prac-
tical sweet spot.

We lastly note several interesting unsolved
problems related to our work:

1. Generalization of unraveling. For a given
graph state |G⟩, how can we identify another
graph state |G′⟩ such that |G⟩ can be gen-
erated from |G′⟩ using a combination of fu-
sions, single-qubit Clifford (or general) oper-
ations, single-qubit measurements, and clas-
sical communications, resulting in a reduc-
tion of the overall resource overhead? This
problem bears similarities to the equivalence
problem of graph states [38, 60, 61], but fu-
sions are included as allowable operations
and resource overheads for fusion-based gen-
eration are considered.

2. Lower bound of resource overhead. Is it pos-
sible to find a (sufficiently tight) lower bound
of the resource overhead Q? If such a lower
bound can be computed, it would enable us
to assess whether the resource overhead op-
timized by our strategy is indeed close to the
real optimal value.

3. Behavior of Qopt against |E|/|E|max. In
Fig. 8, Qopt exhibits an intriguing behavior,
where it is maximized around |E|/|E|max =
0.6 regardless of |V |. Can it be explained an-
alytically? Is Qopt related to a specific prop-
erty of the graph or graph state, such as the
multipartite entanglement of the graph state
[62]?

4. Usage of larger basic resource states. Using
a graph state larger than the three-qubit star
graph state

∣∣∣G(3)
∗

〉
as the basic resource state

can be beneficial. While preparing larger ba-
sic resource state might be challenging, it can
reduce the resource overhead. We anticipate
that the reduction would be approximately
proportional to the original overhead of the

new basic resource state. For instance, em-
ploying

∣∣∣G(4)
∗

〉
could lead to a fourfold re-

duction in overhead. If
∣∣∣G(n)

∗
〉

is used as the
basic resource state, only minor adjustments
are needed in our strategy: Within each node
group of a fusion network shown in Fig. 6,
contract adjacent nodes beforehand so that
each node represents a star graph state with
at most n qubits. However, if the basic re-
source state is not a star graph state, it might
necessitate a complete overhaul of the algo-
rithm, which will be worth investigating.

5. Tolerance for fusion failures. The aim of our
strategy is to generate a graph state without
any failed fusions. However, in practical sce-
narios, we may consider allowing some fusion
failures at the cost of some missing vertices
and edges from the lattice, which can be tol-
erable depending on the characteristics and
usage of the generated state. For example, in
parity-encoded graph states, which are graph
states of logically encoded qubits, such de-
fects may lead to correctable errors. If we
allow a degree of failed fusions, how many
vertices or edges would be missing from the
resulting lattice? In such cases, how can we
determine an efficient generation scheme and
calculate its resource overhead? Can we re-
late the fault-tolerance of a graph state and
the resource overhead to generate it?
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A Examples of the application of the strategy
In this Appendix, we present examples of applying our strategy to several graphs, which is obtained
by using our Python package OptGraphState. Figures 12, 13, and 14 show the (4, 4)-lattice graph,
repeater graph with m = 4, and (2, 2) parity-encoded 6-cycle graph and their unraveled graphs and
fusion networks that give the resource overheads in Table 1 when psucc = 0.5, which are plotted by
using the python-igraph library. The description of the various elements of these figures is as follows.

Original graph:

• A number inside each vertex is its unique name.

• Orange vertices indicate qubits with non-trivial Clifford gates.

Unraveled graph:

• A number inside each vertex is its unique name. If a vertex is originated from a vertex in the
original graph, they have the same name.

• Black solid lines are edges of the unraveled graph and red dashed lines indicate external fusions.

• Orange vertices indicate qubits with non-trivial Clifford gates.

Fusion network:

• A number inside each node is its unique name. Each seed node has the same name as the vertex
in the unraveled graph that the node is originated from; namely, the qubit at the vertex is the
root qubit of the

∣∣∣G(3)
∗

〉
state of the seed node. Non-seed nodes have names like ‘i-j’, where i is

the name of the seed node in the same node group and j is an index starting from 1.

• Black solid lines are leaf-to-leaf links, red dashed lines are root-to-root links, and blue arrows are
root-to-leaf links. Each arrow for a root-to-leaf link points from the node that contains the leaf
qubit involved in the fusion to the other node.

• A number placed on each link indicates the order of the fusion. The fusions should be performed
in the order in which these numbers increase and those with the same number can be done
simultaneously.

• If the text placed on a link ends with the letter ‘C’ (such as ‘1C’), it means that the corresponding
fusion is accompanied by non-trivial Clifford gates applied to one or both of the qubits before the
fusion is performed.
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Original graph

Unraveled graph

Fusion network

Figure 12: (4, 4)-lattice graph and its unraveled graph and fusion network obtained by our strategy. The
unraveled graph and fusion network give the resource overhead of 7680 when psucc = 0.5. See Appendix A for their
interpretation.

Original graph Unraveled graph

Fusion network

Figure 13: Repeater graph with m = 4 and its unraveled graph and fusion network obtained by our strategy.
The unraveled graph and fusion network give the resource overhead of 208 when psucc = 0.5. See Appendix A for
their interpretation. In the unraveled graph, the qubits at the orange vertices are subjected to non-trivial Clifford
gates: RX(π/2) := exp

[
i(π/4)X̂

]
to qubit 16 and RZ(π/2) := exp

[
i(π/4)Ẑ

]
to the others. In the fusion network,

the fusion of the link connecting the nodes 5 and 16 is accompanied by RX(π/2) applied to the qubit in node 16
before the fusion is performed.
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Original graph Unraveled graph

Fusion network

Figure 14: (2, 2) parity-encoded 6-cycle graph and its unraveled graph and fusion network obtained by our
strategy. The unraveled graph and fusion network give the resource overhead of 1280 when psucc = 0.5. See
Appendix A for their interpretation. In the original and unraveled graphs, the qubits at the orange vertices are
subjected to the Hadamard gate.
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