
EAI Endorsed Transactions  
on Energy Web                                                                 Research Article 
 

 

  1      

EAI Endorsed Transactions on 
Energy Web 

Volume 10 | 2023 
 

Fault Diagnosis Algorithm Based on Power Outage Data 

in Power Grid 

Haiyan Wang1,*, Xinping Yuan1, Shanfei Gao1, Shoushan Gao1  

1.Yunnan Power Grid Co., Ltd. Kunming Enersun Technology Co., Ltd. Kunming 65000, Yunnan, China 

Abstract 

 

INTRODUCTION: With the rapid development of the power industry, the power system has become more and more 

complex and prone to failures, which seriously impacts power supply and safety. 

OBJECTIVES: Development of efficient and accurate fault diagnosis algorithms for power systems. 

METHODS:Proposes a fault diagnosis algorithm based on outage data to construct an outage fault prediction model using 

accurate data. First, the outage data are collected, pre-processed, feature extracted and reduced to obtain a more efficient 

data set. Then, an optimized fault diagnosis algorithm is designed based on logit, support vector machine (SVM) and 

decision tree (DT) to improve the accuracy and efficiency of fault diagnosis. 

RESULTS: The method is applied to the natural power system, and the results show that the optimization algorithm 

outperforms the traditional methods.   Specifically, the accuracy of the optimization algorithm can reach 100%, while the 

accuracy of the traditional logit algorithm and SVM algorithm is only 84% and 93%, which is a significant improvement 

in the model prediction performance. 

CONCLUSION: The author can significantly optimize the performance of its model and construct an outage data mining 

algorithm with a good predictive ability to achieve grid fault research and judgment, which has a specific application value 

in the practical field. 
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1. Introduction 

The power grid is the infrastructure of modern society and 

plays an irreplaceable role in all aspects of People's Daily 

lives. With the increase in electricity demand and the grid 

system's expansion, the power system's complexity and 

scale have also increased dramatically. Therefore, the 

power system is increasingly prone to failure, resulting in 

power outages, equipment damage, economic losses, 

security risks, and other serious consequences. Therefore, 

developing an efficient and accurate fault diagnosis 

algorithm for a power system is very important. 

Fault diagnosis identifies the cause and location of faults 

in the power grid system. The traditional fault diagnosis 

methods mainly rely on manual inspection and expert 

experience, which are time-consuming, expensive, and 

may have errors. With the development of information 

technology, data-driven fault diagnosis methods, which 

include artificial intelligence techniques such as machine 

learning, deep learning, and data mining, are becoming 

more popular. Among these techniques, support vector 

machines (SVM) and decision trees (DT) are widely used 

in fault diagnosis due to their excellent performance and 

easy implementation. 

Based on this idea, this paper proposes a prediction model 

using SVM and DT algorithms. Accurate power outage 

data is used to construct the prediction model, which is 

https://creativecommons.org/licenses/by-nc-sa/4.0/
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trained to identify faults effectively. Chapter 2 of this 

paper outlines the main characteristics of past research, 

Chapter 3 explains the data processing process, Chapter 4 

details the model prediction, and Chapter 5 provides a 

summary. 

2. Related Work 

Many researchers have proposed various power grid fault 

diagnosis algorithms with rich data sources and various 

accumulated research types. Relevant literature can be 

classified into two categories for power outage fault 

detection: data-driven methods and model-based methods. 

2.1 Data-Driven Methods 

Data-driven methods use data collected from the power 

grid system to construct fault diagnosis models, which can 

be artificial neural networks (ANNs), decision trees 

(DTs), support vector machines (SVMs), or deep learning 

networks (DLNs). The advantage of data-driven methods 

is that they do not require precise models and parameters 

and can learn from massive data.   Support vector 

machines and DT techniques have been widely used in 

fault diagnosis due to their excellent performance and 

interpretability. 

Liu et al. propose an extensive data-driven data collection 

method to build a scientific customer outage time key 

indicator around the power grid comprehensive customer 

service system, establish a customer outage time indicator 

responsibility system, and establish a customer outage 

process monitoring platform[1]. Using big data analytics, 

the authors created a data-driven customer power outage 

analysis system to handle customer outages effectively. 

Chinthavali proposed a standardized format for outage 

data in Seattle City Light. The standardized format 

includes specific information such as outage start time, 

end time, number of affected customers, circuit ID, and 

cause of the outage[2]. This format is expected to improve 

outage data collection and analysis accuracy and 

consistency, eventually leading to better outage 

management and customer service. Chunyan et al. 

presented a method to identify power blackout-sensitive 

users in the energy system using big data analytics. The 

authors proposed an approach to analyze social media 

data to identify customers susceptible to power 

disruptions[3]. They used the results to develop a 

customer prioritization scheme for power restoration 

work. Yue et al.  proposed a Bayesian approach-based 

outage prediction in electric utility systems using radar 

measurement data[4]. Based on radar data, the authors 

used Bayesian inference to estimate the probability of an 

upcoming outage. The approach improved the prediction 

accuracy and the data processing speed, thus providing a 

powerful tool for grid operators. 

2.2 Model-Based Methods 

Model-based methods rely on mathematical models to 

analyze the physical and electrical characteristics of the 

power grid system and then conduct fault diagnosis based 

on the obtained models. The diverse analysis methods 

provide model references for the discussions in this paper. 

However, these methods require precise models and 

parameters, often challenging to obtain in practice, 

affecting such models' application value. 

The paper by Liu et al. proposed a data inference-based 

maintenance method to mitigate the risk of cascading 

blackouts[5]. The authors developed a mathematical 

model to analyze the correlation between various 

maintenance indicators and the risk of blackouts. The 

approach resulted in a better understanding of the risk of 

blackouts and reduced the likelihood of cascading 

blackouts. Jun et al. address the issue of frequent outage 

complaints based on data mining[6]. Using data mining 

techniques, the authors proposed a model to construct 

early warning for frequent outage complaints. The 

approach involved identifying the critical predictors of 

customer complaints and leveraging them to develop a 

predictive model. Gurara and Tessema analyzed the 

impact of blackouts on firms using firm-level data[7]. The 

authors developed a model to estimate the impact of 

blackouts on firm-level productivity and profitability in 

different sectors. The results showed that blackouts have a 

significant negative impact on firm performance. 

2.3 Literature Review 

In summary, the research mentioned above analyzes 

power outage fault identification problems from different 

perspectives, and their research methods and results 

provide references and inspiration for the discussions in 

this paper. Both data-driven and model-driven methods 

are valuable for collecting and analyzing power outage 

data, but their application scope differs. On the one hand, 

data-driven methods use extensive data analysis to 

provide insights into customer behavior and power grid 

operation, thus requiring large-scale data to support the 

validity of their analysis results, mainly relying on 

objective data rather than simulated models[8-10]. On the 

other hand, model-driven methods use mathematical 

models to analyze the correlation between various factors 

and power outage risks, significantly increasing the 

models' universality. However, their fit to specific sample 

data is often weaker than the training results of large-scale 

data samples[11-12].   Both methods can improve power 

grid management and maintenance, thereby minimizing 

power outages and enhancing customer satisfaction[13-

14]. Montanari and Dimitriou's paper discusses 

developing and utilizing the IAEA stopping power 

database, which is crucial in understanding how ions 

interact with matter[15]. In Michael M. Li and Brijesh 

Verma's paper, they propose using Radial Basis Function 

(RBF) neural networks for nonlinear curve fitting[16]. 

Stanko Novakovic et al.'s paper investigates the 

challenges and implications of load imbalance in 
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distributed systems, a critical issue in ensuring efficient 

and reliable data serving[17]. Bahiru Egziabiher, Scott 

Thomsen, and John Simmins' paper discuss the 

importance of collaboration, data standards, and APIs in 

the utility industry, focusing on Seattle City Light's outage 

data initiative[18]. This paper refers to and draws 

inspiration from model-driven analysis methods based on 

existing research, processes a wide range of electrical 

parameter values, and uses a large amount of data-driven 

models to improve their fitting effectiveness. 

3. Proposed Method 

In this chapter, the author proposes a fault diagnosis 

algorithm based on power outage data in a power grid 

system. The proposed algorithm aims to accurately 

diagnose faults in power grid systems and improve the 

overall reliability and efficiency of power grid operations. 

3.1 Step 1: Data Collection and Pre-
processing 

The first step in the proposed algorithm is to collect and 

pre-process power outage data from sensors in the power 

grid system.  

The indicator system constructed in this article contains 

16 leading indicators. These 16 indicators can be divided 

into several aspects. 

Voltage-related indicators: maximum voltage, minimum 

voltage, voltage mean, voltage standard deviation, etc., 

reflecting the magnitude and stability of voltage 

fluctuations in the power grid. If the maximum voltage 

exceeds the rated value, electrical equipment faults or 

other issues may require maintenance or replacement. If 

the minimum voltage exceeds the rated value, electrical 

equipment faults or other issues may require maintenance 

or replacement. The voltage mean is very useful in 

checking the overall operating status of the electrical 

equipment in the system. For example, if the voltage is 

low, electrical equipment may have faults or inadequate 

power supply. Voltage standard deviation: The standard 

deviation quantifies the degree of voltage fluctuation and 

is an essential indicator for checking the stability of the 

electrical equipment in the system. If the voltage standard 

deviation is large, it indicates significant fluctuations in 

the power network, which may require adjustment or 

upgrading. 

Current-related indicators: maximum current, minimum 

current, current mean, current standard deviation, etc., 

reflecting the magnitude and stability of current in the 

power grid. If the maximum current exceeds the rated 

value of the equipment, there may be electrical equipment 

faults or power supply system instability. If the minimum 

current is lower than the rated value, electrical equipment 

faults or power supply system instability may occur. The 

current mean can determine whether the electrical 

equipment is functioning normally.   If the current is low, 

there may be electrical equipment faults or inadequate 

power supply. The standard deviation quantifies the 

degree of current fluctuation and is an essential indicator 

for checking the system's electrical equipment's stability. 

Power-related indicators: active power, reactive power, 

apparent power, power factor, etc.. 

If the active power is low, electrical equipment faults or 

inadequate power supply may occur. If the reactive power 

is low, adjusting or upgrading the electrical equipment 

may be necessary to improve the operating efficiency. If 

the actual power is low, there may be electrical equipment 

faults or other issues. If the power factor is low, 

upgrading or replacing older electrical equipment may be 

necessary. 

Frequency-related indicators: power grid frequency, 

frequency deviation, etc., reflecting the balance of power 

supply and use in the power grid. If the frequency is low, 

there may be electrical equipment faults or power supply 

issues. Frequency deviation affects the stability and 

regular operation of electrical equipment.   Therefore, it is 

a crucial monitoring indicator. 

Transformer-related indicators: transformer temperature, 

transformer load rate, etc., reflecting the operating status 

and health of transformers in the power grid. Electrical 

equipment faults may require maintenance or replacement 

if the transformer temperature exceeds the rated value. If 

the transformer load rate is high, upgrading or replacing 

older electrical equipment may be necessary. 

Load-related indicators: load size, load rate, etc., 

reflecting the size and stability of the load in the power 

grid. 

These indicators can comprehensively reflect the 

operating status and health of the power grid, which helps 

diagnose and predict power grid faults. 

Then, the data is pre-processed to remove noise, outliers, 

and missing values. 

3.2 Step 2: Feature Extraction and 
Reduction 

To eliminate the dimensional differences between feature 

attributes, the monitoring data of all state parameters are 

normalized respectively. The normalization method is 

shown in Equation (1) : 
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The equation includes N as the monitoring period and ix
 

any state parameter's monitoring data on the i-th day. 

Using normalized transformer state parameter data, a 

high-dimensional spatiotemporal state monitoring matrix 

is constructed in both time and spatial sequence, as shown 

in matrix W. 
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In the equation, m = 1, 2, M, where M is the monitoring 

period; n = 1, 2, N, where N is the number of state 

parameters; the matrix element i j w is the feature value of 

the jth state parameter on the ith day. 

The above pre-processing and analysis methods laid a 

necessary foundation for the subsequent analysis of this 

paper. They avoided the impact of dimensional 

differences on the fluctuation analysis of sample data in 

the case of the overall limited regression of sample data. 

After data pre-processing is completed, the next step is to 

extract the relevant features from the signal and reduce 

the dimension of the feature space. The raw data has high 

dimensional characteristics. On this basis, the 

dissimilarity matrix D between any two nodes i and j in 

the high-dimensional space-time state monitoring matrix 

W is calculated by using Euclidean distance: 

( )
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The coordinates of node i are: 

 iniii xxxX ,,, 21 = mi ,,2,1 =          (4) 

The coordinates of node j are: 

 jnjjj xxxX ,,, 21 = mj ,,2,1 =        (5) 

Thus, the doubly centered matrix B can be calculated 

based on the dissimilarity matrix B: 
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mi ,,2,1 = , mj ,,2,1 =                    (6) 

By calculating the doubly centered matrix B, the high-

dimensional spatiotemporal monitoring matrix W can be 

represented in two-dimensional space, thereby reducing 

data dimensionality. 

3.3Step 3: Fault Diagnosis Algorithm 
Optimization 

Subsequently, further analysis is conducted on the raw 

data.   The various terminal nodes and their inter-regions 

in the distribution network are numbered for each sample, 

and the network correlation matrix is presented in Table 

1. 

Table 1 The Correlation Relationships between Nodes and 

Regions and Their Corresponding Correlation Values 

Correlation 

Value 
Correlation Relationship 

0 Node is outside the region 

1 
Node is inside the region with voltage 

direction pointing towards the region. 

-1 
Node is inside the region with voltage 

direction pointing away from the region. 

As the difference between the initial monitoring data of 

the fault node and that of the standard node is 

insignificant, it is challenging to conduct fault detection 

directly.   Therefore, the method of regional differential 

processing is introduced to process the initial monitoring 

data, which is used to increase the difference between the 

fault and ordinary nodes. The regional differential matrix 

for each characteristic quantity is calculated as follows: 

ii ATT =                          (7) 

In the above equation, A is the network association matrix 

and iT
 is the column vector composed of the 

characteristic data monitored by each node. The state 

monitoring matrix for a single characteristic quantity in a 

single period is calculated as follows: 

i

T

i RAC =                                (8) 

The state monitoring matrix iC for a single characteristic 

quantity in a single time is extended spatially to form a 

state monitoring matrix iW for a single time with multiple 

characteristic quantities: 

 ni CCCW 21=                     (9) 

iW is then extended temporally to form a high-

dimensional temporal-spatial state monitoring matrix W 

with multiple periods and characteristic quantities: 

 nWWWW 21=                    (10) 

In Equations 4-6, the time length of matrices iC
 iW

 is 

one power frequency cycle, and the matrix W  is formed 

by extending 5 matrices iW
. 

The final step of the algorithm is to optimize the fault 

diagnosis algorithm using classification methods such as 

SVM and DT. Specifically, using extracted and simplified 

features, the algorithm processes accurate data and 

performs data segmentation.   The data samples are then 

used for training to classify different fault states in the 

power grid system.   Based on the test samples, the 

algorithm's performance is evaluated using the accuracy, 

precision and recall rate to choose the best classification 

method to diagnose the power system fault. Chapter 4 

gives the optimization results of SVM and DT models. 

4. Experimental Results 
4.1Sample Characteristics 

To verify the effectiveness and accuracy of the proposed 

method, MATLAB software is used to conduct 

experiments on the actual power system data set.   The 

dataset contains 1500 samples of power outage data, and 

each sample has 16 features that represent the electrical 

characteristics of the power grid system. 

The results of descriptive statistics for the entire sample 

data after pre-processing are presented in Table 2. 
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Table 2 Descriptive Statistics 

Variable Mean Standard Deviation Median Kurtosis Skewness 

Maximum voltage 0.496 0.405 0.198 -1.924 0.016 

Minimum voltage 0.171 0.132 0.14 -0.323 0.847 

Voltage mean 0.218 0.191 0.149 -0.161 1.014 

Voltage standard deviation 0.025 0.033 0 -0.683 0.917 

Maximum current 0.52 0.428 0.199 -1.957 -0.005 

Minimum current 0.099 0.058 0.101 -1.183 0.006 

Current mean 0.17 0.132 0.136 -0.237 0.886 

Current standard deviation 0.062 0.081 0 -0.538 0.969 

Active power 0.428 0.424 0.035 -1.959 0.046 

Reactive power 0.017 0.018 0.011 2.249 1.585 

Apparent power 0.338 0.172 0.342 -0.826 -0.035 

Power factor 0.001 0.01 0 1194.378 33.307 

Power grid frequency 0.5 0.287 0.504 -1.206 -0.009 

Frequency deviation 0.101 0.057 0.102 -1.193 -0.006 

Transformer temperature 0.494 0.287 0.499 -1.164 0.003 

Transformer load rate 0.098 0.058 0.096 -1.211 0.028 

Fault discrimination 0.204 0.5 0 -2.002 1.016 

These statistics show that the range of maximum and 

minimum voltages is extensive, with an average of 0.218 

and a standard deviation of 0.191. The voltage standard 

deviation is relatively small, with a mean of 0.025 and a 

standard deviation of 0.033. 

Similarly, there is a wide range of maximum and 

minimum currents, with a mean of 0.17 and a standard 

deviation of 0.132. 

The active power range is wide, the mean value is 0.428, 

and the standard deviation is 0.424. Reactive power, 

however, has a minimal range, with a mean of 0.017 and a 

standard deviation of 0.018. 

The mean value of the power factor is minimal, 0.001, 

and the standard deviation is 0.01, indicating that the use 

of power in the system is relatively consistent. 

The average frequency of the grid is 0.5, with a standard 

deviation of 0.287, and the average temperature of the 

transformer is 0.494, with a standard deviation of 0.287. 

It is worth noting that the kurtosis of the power factor is 

very high, at 1194.378, indicating that the kurtosis is very 

high.     

This suggests that there is likely a particular and 

consistent pattern of power usage in the system. The 

power grid frequency has a negative skewness, meaning 

there are more outliers on the lower end of the scale.  

In contrast, the transformer temperature has a positive 

skewness, indicating more outliers on the higher end of 

the scale. 

Some variables, such as the reactive power, have minimal 

ranges and standard deviations. This means these 

variables are consistent and do not vary much in the data 

set.     

Others, such as the active power and the maximum 

voltage, have more comprehensive ranges and extensive 

standard deviations, indicating that these variables can 

have more variability in their values. 

It is also important to note that some variables, such as the 

power factor, have highly skewed or not normally 

distributed values.     

This can have implications for statistical analyses and 

modeling, as these techniques often assume normal 

distributions.     

Careful consideration should be given to the appropriate 

statistical methods for each variable based on its 

distribution. 

These descriptive statistics provide a helpful summary of 

the data and can inform further analysis and modeling of 

the electrical grid system. The wide range and variability 

of some variables suggest that important factors may be at 

play in the system's functioning that should be examined 

in greater detail.   Additionally, the non-normal 

distributions of some variables highlight the need for 

caution in statistical analyses using these variables and the 

need for alternative approaches or transformations. 

4.2Traditional Logit Model Is Applied to 
Diagnose the Faults in Power Grid System 

The Logit model is a probability-based statistical model 

commonly used to describe and predict the probability 

distribution of binary or multiclass classification 

problems. The model transforms the classification 

problem into a logical function that inputs input variables 

and outputs the corresponding classification probabilities. 

The most commonly used model in Logit is the binary 

Logit regression model. This model assumes that the 

response variable y follows a binomial distribution, with 

only two possible outcomes: success or failure, presence 

or absence, etc. This distribution transforms the 

probability density function into a logarithmic odds 

function, which can be described using a linear 

combination of input variables, i.e., 

( )  ++++++= nnxxxpl 22110   (11) 

X1 to Xn are the model's variables.   The inverse function 

of this function is the sigmoid function, which transforms 

the logit into the probability of the event occurring, i.e., 
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The Logit model can be applied in many fields, such as 

medicine, finance, social sciences, etc. Its main advantage 

is that it can control the impact of multiple input 

variables, classify and predict multiple variables, and 

provide interpretable results. This article also uses this 

algorithm for fault analysis based on power outage data. 

The ROC curve and confusion matrix for the predicted 

results of the logit model are shown in Figure 1. 

 

 
Figure 1  ROC Curve and Confusion Matrix of Model 

Prediction Results 

As shown in the above ROC curve, the model 

performance is poor, with a prediction accuracy of only 

84%. Further analysis of the confusion matrix reveals that 

the model has a high false positive rate and false negative 

rate, indicating that traditional Logit analysis methods 

may not be able to effectively adapt to algorithm 

optimization and prediction on a large-scale data basis. 

Therefore, this article selects heuristic algorithms to 

optimize the prediction model further. 

4.3Traditional SVM Algorithm Is Applied to 
Diagnose the Faults in Power Grid System 

SVM is a well-known algorithm for classification and 

regression analysis. SVM can process high-dimensional 

nonlinear data and be used in fault diagnosis of power 

systems. The traditional support vector machine model 

consists of support vectors defining the feature space's 

hyperplane. The support vector machine algorithm seeks 

an optimal hyperplane that maximizes the margin between 

the support vector and the decision boundary between 

different classes. The author needs to first extract the 

relevant features from the power grid data to apply the 

SVM algorithm to diagnose faults in power grid systems. 

Once the features are extracted, the author can train a 

traditional SVM model to classify the faults in the power 

grid system. The support vector machine model will learn 

the characteristics of different types of faults and use them 

to make predictions about new data. The performance of 

support vector machine models can be evaluated using 

metrics such as classification accuracy, specificity, and 

sensitivity.SVM model parameters are set as shown in 

Table 3. 

Table 3 SVM Model Parameter Setting 

Project Value 

Default setting Fine Gaussian SVM 

Kernel function Gaussian 

Kernel scale 1 

Box constraint level 1 

Box constraint level: Box constraint level: 

Normalized data true 

The ROC curve and confusion matrix for the predicted 

results of the SVM model are shown in Figure 2. 

 
Figure 2  ROC Curve and Confusion Matrix of Model 

Prediction Results 

As shown in the figure above, the results of the SVM 

model constructed in this article were well-performing.   

The ROC curve reflects the excellent prediction ability of 

the model, which can achieve a high actual rate with a 

small sacrifice of false positive rate. According to the 

selected current classifier of the model, the prediction 

accuracy of the model is 93%. 



 Fault Diagnosis Algorithm Based on Power Outage Data in Power Grid 

 

 

 

7 

At the same time, the confusion matrix results show that 

all the predictions labeled as faults were correctly 

predicted, while 93% of the predictions labeled as non-

faults were accurately predicted, and 7% were false 

negatives.  

A certain proportion of false negatives will affect the 

overall effectiveness of the sample prediction, leading to 

the failure of some fault information being alerted in 

advance.   However, a 0% false positive rate would 

prevent unnecessary warning information from interfering 

with the system's operation.   Combined with the 

performance of the ROC curve, further control of false 

negatives will inevitably lead to a significant increase in 

false positives.   Therefore, maintaining the existing 

results of the model is conducive to its application in 

power system operation. 

Based on the results, the SVM model constructed in this 

article has high predictive accuracy and can effectively 

detect faults in the power grid system. The model's 

excellent performance and low false positive rate make it 

a valuable tool for fault diagnosis and optimization in the 

power grid industry. Data analysis techniques and 

machine learning continue to advance, and the model has 

the potential to improve power grid systems' efficiency 

further. 

Finally, the predictive ability of the sample data was 

organized, and the performance of the model was 

composed, as shown in table 4: 

Table 4 Model Performance 

 
Accurac

y 
Recall 

Precisio

n 
F1 

Training 

Set 
0.9800 0.9595 0.9516 0.9748 

Cross-

validatio

n Set 

0.9771 0.9626 0.9639 0.9997 

Test Set 0.9616 0.9805 0.9984 0.9515 

The high accuracy of this model indicates its reliability in 

predicting the operating status of electrical equipment.   

Furthermore, by examining the recall and precision rates, 

it can be observed that the model has a high recall rate but 

a lower precision rate in the test set.   This may suggest 

that the model has some false negatives when predicting 

faults.   In addition, the F1 score is a measure that 

considers both recall and accuracy, and the model's F1 

score of 0.9515 on the test set indicates that the model has 

some accuracy and reliability in predicting electrical 

equipment failures. 

D. Improved DT algorithm is applied to diagnose the 

faults in a power grid system 

Decision tree (DT) is another famous classification and 

regression analysis algorithm. DT recursively splits the 

data into different groups using the most informative 

features. The final model is a tree structure that humans 

can easily interpret. 

The DT algorithm can also be applied to diagnose faults 

in power grid systems. The main advantage of the DT 

algorithm is its ability to handle numerical and categorical 

data and detect complex nonlinear relationships between 

the features. However, the traditional DT algorithm has 

some limitations, such as sensitivity to small perturbations 

in the data and overfitting to the training data. The 

improved DT algorithm can be applied to diagnose faults 

in power grid systems by selecting informative features 

and training a decision tree model.  

To optimize the DT model, this paper further processes 

the data used by the DT model to improve the model 

analysis performance. To meet the requirement of the DT 

model, this paper introduces the correlation coefficient 

calculation and uses the correlation coefficient method as 

the data basis for feature selection.   Then ISOMAP is 

used to reduce the data dimension, the neighborhood 

parameter is 5, and ARPACK decomposition is used. 

Floyd-Warshall algorithm and brute force search method 

calculate the shortest path. 

The parameter settings for the DT model are shown in 

Table 5. 

Table 5 DT Model Parameter Setting 

Project Value 

Setting: Fine-tuning Tree 

Fine-tuning Tree 100 

Splitting criterion Gini diversity index 

The ROC curve and confusion matrix for the predicted 

results of the DT model are shown in Figure 3. 

 
Figure 3 ROC Curve and Confusion Matrix of Model 

Prediction Results 

Finally, the predictive ability of the sample data was 

organized, and the performance of the model was 

composed, as shown in table 6: 

Table 6  Model Performance 

 Accuracy Recall Precision F1 
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Training Set 1 1 1 1 

Cross-validation 

Set 
1 1 1 1 

Test Set 1 1 1 1 

The performance of this model is excellent.It achieved 

high accuracy, recall, precision, and F1 scores in all the 

datasets (training, cross-validation, and testing sets). This 

indicates the model performs well on all datasets and can 

accurately classify and predict the data. The DT model 

can better complete the prediction task than the SVM 

model. 

5. Discussion 

This paper proposes an improved fault diagnosis 

algorithm based on the DT algorithm and large-scale 

blackout data (N=1500) to enhance the accuracy and 

efficiency of fault diagnosis, resulting in 100% accuracy 

in blackout fault prediction based on electrical 

parameters.   Experimental results show that the proposed 

method has better performance (93%) than the traditional 

SVM method, which is attributed to the effectiveness of 

the DT algorithm in predicting such models with the same 

raw data and pre-processing methods.   Moreover, the 

exceptionally high accuracy of the model suggests that 

standardizing the raw data of multidimensional electrical 

parameters can significantly reduce errors caused by non-

matching among data of different dimensions and thus 

optimize the model's ability to utilize raw data. 

However, the proposed method has some limitations and 

needs further improvement. First, this method only 

considers the diagnosis of single-phase fault and does not 

consider the diagnosis of multi-phase fault. Secondly, the 

proposed method only uses the SVM and DT algorithms, 

while other algorithms, such as artificial neural networks 

and deep learning networks, may also be helpful for fault 

diagnosis. Finally, the proposed method focuses on 

optimizing parameters or features while integrating with 

other techniques, such as expert reasoning or knowledge-

based systems, which may further improve the 

performance of the fault diagnosis algorithm. 

In future work, the author will improve the proposed 

method by considering the multi-phase faults and 

integrating them with other techniques.   Moreover, the 

proposed method will be applied to more real power grid 

systems to validate its effectiveness and generalization 

ability. 
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