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Background: Although well-documented, the causal relationships between

diet-derived circulating antioxidants, oxidative stress, and osteoarthritis (OA) are

equivocal. The objective of this study is to employ two-sample Mendelian

randomization (MR) to investigate possible causal relationships among

dietary-derived circulating antioxidants, oxidative stress damage indicators,

and OA risk.

Methods: Single-nucleotide polymorphisms for diet-derived circulating

antioxidants (ascorbate, β-carotene, lycopene, retinol, and α-and γ-tocopherol),

assessed as absolute levels and metabolites, as well as oxidative stress injury

biomarkers (GSH, GPX, CAT, SOD, albumin, and total bilirubin), were retrieved from

the published data and were used as genetic instrumental variables. Summary

statistics for gene–OA associations were obtained from publicly available and

two relatively large-scale GWAS meta-analyses to date. The inverse-variance

weightingmethod was utilized as the primary MR analysis. Moreover, multivariable

MR was used to determine if mediators (BMI and smoking) causally mediated any

connection. Furthermore, for each exposure, MR analyses were conducted per

outcome database and then meta-analyzed.

Results: Genetically predicted absolute retinol level was causally associated with

hip OA risk [odds ratios (ORs) = 0.40, 95% confidence interval (CI) = 0.24–0.68,

FDR-corrected p = 0.042]. Moreover, genetically predicted albumin level was

causally associated with total OA risk (OR = 0.80, 95% CI = 0.75–0.86, FDR-

corrected p = 2.20E-11), as well as the risk of hip OA (OR = 0.75, 95% CI =

0.68–0.84, FDR-corrected p= 1.38E-06) and knee OA (OR= 0.82, 95% CI= 0.76–

0.89, FDR-corrected p= 4.49E-06). In addition, MVMR confirmed that the e�ect of

albumin on hip OA is independent of smoking initiation, alcoholic drinks per week,

and moderate-to-vigorous physical activity levels but may be influenced by BMI.

Conclusion: Evidence from our study supports a potentially protective e�ect of

high levels of retinol and albumin on OA risk.
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1 Introduction

Osteoarthritis (OA) is a degenerative disease of the entire

joint, most notably the knee, but also the hand and hip (1). OA

affects ∼500 million people globally, and its incidence is steadily

increasing due to an aging population and an obesity pandemic,

resulting in a substantial public health and health economic burden

(1). However, current disease-modifying treatments for OA are

minimally effective (2). Therefore, it is necessary to find effective

strategies to prevent OA.

OA pathogenesis is regulated by multiple predisposing factors,

including imbalanced matrix metabolism, aberrant inflammatory

response, and excessive oxidative stress (3). Overproduction of

ROS and activation of oxidative stress in chondrocytes are major

contributors to OA pathogenesis (4, 5). Furthermore, antioxidants,

which can help eliminate free radicals and minimize and eliminate

oxidative damage, have been identified as possible targets for the

primary prevention of OA (6, 7). The current state of research

on the association between antioxidants and OA yields conflicting

results. Several studies and reviews analyze the potential protective

effects of nutrients, including vitamins D, E, and C, on cartilage

metabolism and the development of OA (8, 9). However, some

studies have not reported the protective effects of the preceding

antioxidants on OA (10, 11). Observational studies are, however,

limited by confounding factors and reverse causation bias that led

to inconsistent results.

Furthermore, age, gender, obesity, joint biomechanics, history

of joint surgery, and genetic susceptibility were identified as the risk

factors (12). In addition, recent studies implicated the importance

of antioxidants in OA (6, 13). Furthermore, redox equilibrium

is maintained by a sophisticated antioxidant defense system

comprised of both enzymatic and non-enzymatic antioxidants. The

major antioxidant systems in the cell are enzymatic antioxidants,

which include glutathione S-transferase (GST), catalase (CAT),

superoxide dismutase (SOD), and glutathione peroxidase (GPX).

Glutathione (GSH), albumin, and total bilirubin are common non-

enzymatic antioxidants. Several studies have reported that the

levels of GSH, GPX, CAT, and SOD, as well as total bilirubin,

were associated with the OA risk (14–17). The current state

of research on the association between albumin and OA yields

conflicting results; as a clinical study reported, the concentration

of albumin in osteoarthritic knee-joint effusions was distinctly

lower than in sera of healthy adults (18), but higher serum

albumin levels in OA patients were described in another study

(19). Existing observational studies are unable to rule out the

effect of reverse causality or unmeasured confounding factors such

as socio-economic status, dietary habits, or other health-related

behaviors (11, 20, 21). In addition, intervention trials may have

limitations due to the potential for unknown risks and harm

to subjects. In addition, intervention trials may be confounded

by many uncertainty factors such as time, dose, duration, and

onset and progression. Therefore, the causal associations between

antioxidant levels and the risk of OA remain unknown.

Mendelian randomization (MR) is a viable approach for

determining causation by using genetic variations as instrumental

variables (IVs) to investigate the causal influence of exposure

on outcome. This approach is based on the notion that genetic

variations are assigned at random during conception. It is less

susceptible to environmental or lifestyle influences, and it decreases

the bias caused by reverse causality or confounding factors.

This study used antioxidants (including diet-derived circulating

antioxidants and their metabolites, as well as oxidative stress

injury biomarkers) as exposures and OA as an outcome for

MR analysis to investigate the potential causal link to provide

a theoretical foundation for future research into the complex

processes and risk factors of OA.Moreover,MultivariateMendelian

randomization (MVMR) is a recently established method for

assessing independent but related exposures at the same time by

including genetic variation for each risk factor in the same model

(22). Since MVMR has recently been used to disentangle the direct

effects of each risk factor on a variety of health outcomes that

are not mediated by other associated risk factors, we used it in

this study to assess the potential mediating effects of body mass

index (BMI), smoking initiation, alcoholic drinks per week, and

moderate-to-vigorous physical activity levels.

2 Materials and methods

2.1 Study design

For the present study, we performed a two-sample MR to test

the associations of absolute circulating levels and corresponding

metabolites of antioxidants, as well as oxidative stress injury

biomarkers and OA risk. The general design of the current study

is illustrated in Figure 1. MR is based on three fundamental

assumptions, as genetic instrumental variables should (1) be

associated with exposure with the genome-wide significance; (2)

not be related to any measured and unmeasured confounders; and

(3) not affect the risk of OA through other pathways. All statistics

utilized in the present study were derived from publicly available

genome-wide association studies (GWAS), and each original study

had ethical approval and informed permission.Moreover, our study

was conducted based on the MR-STROBE guidance (23).

2.2 Selection of genetic instrumental
variables

In total, four main diet-derived antioxidants were identified

in the present study: vitamin C (ascorbate), β-carotene, lycopene,

retinol, and vitamin E (α- and γ-tocopherol). In the present

study, both antioxidants that were measured as real absolute

blood levels and their related circulating metabolites that were

evaluated as relative plasma or serum concentrations were taken

into consideration. For absolute antioxidant levels, α-tocopherol,

β-carotene, lycopene, and retinol were utilized, whereas for

antioxidant metabolites, α-tocopherol, ascorbate, γ-tocopherol,

and retinol were included. To identify suitable genetic IVs,

a variety of quality control procedures were performed. First,

independent single-nucleotide polymorphisms (SNPs) linked with

each exposure at genome-wide significance were selected as

potential IVs. Second, the linkage disequilibrium (LD) between all

SNPs for the same exposure was determined. Finally, to evaluate
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FIGURE 1

Schematic overview of the study design. (A) The MR hypothesis diagram and (B) Flowchart of MR analysis and meta-analysis.

the strength of the selected SNPs, the F statistics was calculated

using the formula: F = R2 (N–k−1)/[(1–R2) k], where R2 is the

proportion of variability explained by each SNP, N is the sample size

of the GWAS, and k is the number of SNPs. When the F-statistic is

more than 10, it implies that IV is a strong instrument (24).

2.3 Data sources and SNP selection for
absolute circulating antioxidants

For α-tocopherol, three SNPs were identified in a GWAS with

4,401 participants (p < 5 × 10−8, LD < 0.001) (25). Three genetic

variants for circulating β-carotene levels were obtained from a

GWAS study involving 2,344 subjects in the Nurses’ Health Study

(p < 5 × 10−8, LD < 0.2) (26). Five SNPs (p < 5 × 10−6,

LD < 0.001) for circulating lycopene level were identified from a

published GWAS study involving 441 older Amish adults (27). Two

genetic variants associated with circulating retinol were obtained

from a GWAS study of 5,006 Caucasian individuals from two

cohorts (p < 5× 10−8, LD < 0.001) (28).

2.4 Data sources and SNP selection for
circulating antioxidant metabolites

Genetic variants of circulating antioxidant metabolites were

extracted from recent large-scale GWAS (p < 1 × 10−5, LD: r2

= 0.001 and clump distance = 10,000 kb). Eleven instrumental
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variables of α-tocopherol (n = 7,276), 14 instrumental variables

of ascorbate (n = 2,063), and 13 instrumental variables of γ-

tocopherol (n = 5,822) were obtained from 7,824 adult individuals

from two European population studies (29, 30). A total of 26

SNPs associated with retinol were derived from 1,960 subjects of

European descent.

2.5 Data sources and SNP selection for
oxidative stress injury biomarkers

Genetic predictors for oxidative stress injury biomarkers, such

as GST, CAT, GPX, SOD, albumin, and total bilirubin, were derived

from the most up-to-date GWAS (p < 1 × 10−5, LD: r2 = 0.001

and clump distance= 10,000 kb). Genetic IVs for GST (n= 3,301),

CAT (n = 3,301), SOD (n = 3,301), and GPX (n = 3,301) were

identified in the INTERVAL study (31). Genetic variants of albumin

(n = 115,06) and total bilirubin (n = 342,829) were derived from

the UK biobank.

2.6 Data sources and SNP selection for OA

As both knee and hip are common sites of OA, summary

statistics data on hip, knee, and total OA (hip or knee) were

obtained from the publicly available GWAS (32, 33). Zengini

et al. performed a GWAS for OA using data across 16.5 million

variants from the UK Biobank resource and included 30,727

cases and 297,191 controls. The study by Zengini et al. included

self-reported OA and hospital-diagnosed OA patients; the self-

reported OA definition includes participants who answered “Yes”

to the following question on a touchscreen self-administered

questionnaire: “Has a doctor ever told you that you have had

any other serious medical conditions or disabilities?;” information

on disease code was collected in a subsequent computer-assisted

personal interview, and the hospital-diagnosed OA coding in

the UK Biobank is based on the ICD-10 code (34). The study

by Tachmazidou et al. meta-analyzed the UK Biobank and

Arthritis Research UK Osteoarthritis Genetics (arcOGEN) datasets

and included 77,052 cases and 378,169 controls. The study by

Tachmazidou et al. included the self-reported OA established

during an interview with a nurse and the hospital episode

statistics ICD10 code for OA in the UK Biobank (34). For

the arcOGEN dataset, OA was ascertained based on clinical

evidence of disease to a level requiring joint replacement or

radiographic evidence of disease (Kellgren–Lawrence grade ≥ 2)

(35, 36).

2.7 Multivariate MR analysis

As reported in the study, BMI, alcohol consumption, smoking,

and physical activity levels may be risk factors for OA and may

influence the effect of dietary sources of oxidants on OA (5, 37). To

address this issue, we performed MVMR as a sensitivity analysis to

correct formeasured confounders, such as BMI, smoking initiation,

alcoholic drinks per week, and moderate-to-vigorous physical

TABLE 1 Details for selected GWAS of mediators.

Mediators Sample
sizes

PMID

BMI 681,275 30124842

Smoking initiation 607,291 30643251

Alcoholic drinks per week 335,394 30643251

Moderate to vigorous physical activity

levels

377,234 29899525

activity levels, which were employed as the potential confounders.

For the confounders, we selected the largest published GWAS to

date (Table 1).

2.8 Statistical analysis

In the univariable MR, to explore the causal associations of

genetic variants related to exposures on outcomes, the inverse-

variance weighting (IVW) method was utilized as the primary

analysis for MR. Moreover, MR-Egger, simple mode, weighted

median, and weighted mode models were employed as sensitivity

analysis methods to test the robustness of the results. If trustworthy

instruments are provided by SNPs accounting for at least 50% of the

weight, then the weighted median estimate generates valid results

as it is the median of the SNP-specific estimates. Even if all genetic

variants are invalid, the MR-Egger regression can estimate the

underlying causal impact. In addition, the weightedmode approach

remains viable even if the other instrumental variables do not

meet the MR method’s prerequisites for causal inference as long

as the majority of IVs have equal causal estimations. Horizontal

pleiotropy is defined as some instruments influencing the outcome

via paths that bypass the exposure (38). The directionality of

pleiotropy can be detected and adjusted using the MR-Egger

technique based on the Instrument Strength Independent of Direct

Effect (InSIDE) assumption, although it is underpowered (39).

Additionally, the MR Pleiotropy RESidual Sum and Outlier (MR-

PRESSO) test was used to detect potential horizontal pleiotropy and

reduce the effects of pleiotropy by eliminating outliers (40). The

heterogeneity was assessed using Cochran’s Q-statistic. The leave-

one-out analysis was used to see if any of the significant results were

impacted by a specific SNP. Results are expressed as con OA risk for

a corresponding unit change in absolute circulating antioxidants

levels of α-tocopherol (mg/L in log-transformed scale), lycopene

(µg/dL), β-carotene (µg/L in natural log-transformed scale),

and retinol (µg/L in natural log-transformed scale), or a 10-

fold change in circulating antioxidant metabolites concentrations.

For analyses with biomarkers level as the exposure, we provide

the odds ratios (OR) for OA associated with each standard

deviation (SD) increase in levels of biomarkers for oxidative

stress damage. For MVMR analysis, the inverse-variance weighted

method was employed.

All exposure-specific MR analyses were performed

independently in the studies by Tachmazidou et al. (33) and

Zengini et al. (32) and then meta-analyzed to obtain pooled

estimates for each exposure on OA risk. We used I2 statistics to
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measure heterogeneity between estimates from two studies and

the associated p-value from Cochran’s Q test. When there is no

heterogeneity, the fixed-effect model meta-analyses are used to pool

instrumental variable estimates across the two outcome databases

for each exposure, while random-effect model meta-analyses are

employed when there is heterogeneity.

A p-value of <0.05 was regarded as suggestive evidence for a

possible causal relationship. To account for multiple testing (many

exposures), the statistical significance of the MR effect estimates

was set at <5% using the Benjamini–Hochberg false discovery rate

(FDR). All analyses were carried out in R version 4.3.0 using the

packages “TwoSampleMR,” “MRPRESSO,” and “meta.”

3 Results

3.1 Screening of genetic instrumental
variables

The features of genetic instruments identified for dietary-

derived antioxidants as absolute levels and metabolites, as well as

oxidative stress damage biomarkers, are summarized in Table 2.

Supplementary Tables 1–3 provide detailed information on the

variants, their associations with antioxidants (betagene−exposure),

oxidative stress injury biomarkers, and with OA (betagene−outcome)

across databases. The F-statistics for all genetic instruments

employed in this study were >10, demonstrating that the IVs were

strong instruments, lowering the bias of IV estimates.

3.2 Absolute circulating antioxidants and
OA

Overall, in the univariable MR analyses using IVW, most

genetically determined absolute dietary-derived antioxidant levels

were not associated with the risk of OA in both databases, but

genetically predicted absolute retinol levels were associated with

lower odds hip OA [OR = 0.40, 95% confidence interval (CI)

= 0.24–0.68, p = 0.006, FDR-corrected p = 0.042] (Figure 2;

Supplementary Tables 5, 6). Pooled odds ratio (OR) for hip OA per

unit increase of antioxidants was 0.93 (95% CI = 0.44–1.98, p =

0.85, FDR-corrected p = 0.85) for log-transformed α-tocopherol,

1.06 (95% CI = 0.92–1.21, p = 0.43, FDR-corrected p = 0.62) for

natural log-transformed β-carotene, and 1.06 (95% CI= 0.92–1.21,

p= 0.38, FDR-corrected p= 0.62) for 1 µg/dl lycopene. Pooled OR

for knee OA per unit increase of antioxidants was 0.87 (95% CI =

0.59–1.29, p = 0.49, FDR-corrected p = 0.69) for log-transformed

α-tocopherol, 0.99 (95% CI = 0.89–1.10, p = 0.85, FDR-corrected

p = 0.86) for natural log-transformed β-carotene, 0.99 (95% CI =

0.89-1.10, p = 0.26, FDR-corrected p = 0.46) for 1 µg/dl lycopene,

and 1.16 (95% CI = 0.78–1.75, p = 0.46, FDR-corrected p = 0.69)

for natural log-transformed retinol. Pooled OR for total OA per

unit increase of anti-oxidants was 0.88 (95% CI = 0.64–1.21, p =

0.44, FDR-corrected p = 0.61) for log-transformed α-tocopherol,

1.01 (95% CI = 0.92–1.11, p = 0.76, FDR-corrected p = 0.76) for

natural log-transformed β-carotene, 1.01 (95% CI = 0.92–1.11, p

= 0.57, FDR-corrected p = 0.61) for 1 µg/dl lycopene, and 0.81

(95% CI= 0.58–1.13, p= 0.21, FDR-corrected p= 0.49) for natural

log-transformed retinol.

We obtained similar outcomes using additional MR estimation

methods (MR-Egger, weighted median, simple mode, and weighted

mode) (Supplementary Tables 4, 5). Basically, no heterogeneity

was detected by Cochran’s Q test, but there was considerable

heterogeneity between lycopene and hip OA from the study by

Zengini et al. (Q = 47.25; p = 0.04) (Supplementary Table 6).

MR-Egger regression analysis suggested no evidence of directional

pleiotropy for the IVs (Supplementary Table 7). The MR-PRESSO

test uncovered no evidence of horizontal pleiotropy in the

relationships between absolute dietary-derived antioxidant levels

and OA (Supplementary Table 8). In addition, the leave-one-out

analysis indicated that the most causal association signals were not

driven by any single SNP (Supplementary Table 9).

3.3 Circulating antioxidant metabolites and
OA

In the univariable MR, consistent with the findings from

absolute circulating anti-oxidants, most genetically determined

absolute dietary-derived antioxidant levels were not associated

with the risk of OA in both databases, but genetically predicted

circulating retinol levels were associated with higher odds knee OA

(OR = 1.02, 95% CI = 1.00–1.05, p = 0.048, FDR-corrected p =

0.30) and total OA (OR = 1.02, 95% CI = 1.00–1.04, p = 0.01,

FDR-corrected p = 0.07) (Figure 3; Supplementary Tables 10, 11).

The combined ORs for hip OA per 10-fold increase in metabolites

concentration were 2.03 (95% CI = 0.41–10.06, p = 0.39, FDR-

corrected p = 0.62) for α-tocopherol, 1.03 (95% CI = 0.95–1.11,

p = 0.53, FDR-corrected p = 0.62) for ascorbate, 0.93 (95% CI =

0.76–1.15, p = 0.51, FDR-corrected p = 0.62) for γ-tocopherol,

and 1.01 (95% CI = 0.98–1.05, p = 0.37, FDR-corrected p = 0.62)

for retinol. The combined ORs for knee OA per 10-fold increase

in metabolites concentration were 1.21 (95% CI = 0.59–2.50, p =

0.60, FDR-corrected p = 0.76) for α-tocopherol, 0.96 (95% CI =

0.92–1.01, p = 0.13, FDR-corrected p = 0.30) for ascorbate, and

0.88 (95% CI = 0.76–1.03, p = 0.11, FDR-corrected p = 0.30) for

γ-tocopherol. The combined ORs for total OA per 10-fold increase

in metabolites concentration were 1.32 (95% CI = 0.59–2.94, p =

0.49, FDR-corrected p = 0.61) for α-tocopherol, 0.98 (95% CI =

0.94–1.02, p = 0.36, FDR-corrected p = 0.61) for ascorbate, and

0.92 (95% CI = 0.82–1.04, p = 0.19, FDR-corrected p = 0.61)

for γ-tocopherol.

Furthermore, we achieved similar outcomes utilizing additional

MR estimation methods (MR-Egger, weighted median, simple

mode, and weighted mode) (Supplementary Tables 10, 11).

Cochran’s Q test revealed no heterogeneity for circulating

antioxidant metabolites IVs in three OA types (hip, knee, and

total OA) but considerable heterogeneity between γ-tocopherol

and total OA from the study by Zengini et al. (Q = 47.25;

p = 0.04) (Supplementary Table 12). MR-Egger regression

analysis suggested no evidence of directional pleiotropy for the

IVs (Supplementary Table 13). MR-PRESSO test uncovered

no evidence of horizontal pleiotropy in the relationship

between absolute dietary-derived antioxidant levels and OA
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TABLE 2 Details of GWAS studies for diet-derived circulating antioxidants and oxidative stress-related traits.

Trait Numbers
of SNPs

p-value Unit R2 F statistic Participants
(Numbers)

PMID

Absolute circulating antioxidants

α-tocopherol 3 5× 10−8 mg/L in log-transformed scale 0.017 86.54 4,014 21729881

Lycopene 5 5× 10−6 µg/dL 0.301 189.04 441 26861389

β-carotene 3 5× 10−8 µg/L in natural

log-transformed scale

0.09 231.63 2,344 23134893

Retinol 2 5× 10−8 µg/L in natural

log-transformed scale

0.023 117.8 5,006 21878437

Circulating antioxidants metabolites

α-tocopherol 11 1× 10−5 log10-transfomed metabolites

concentration

0.033 198.61 7,276 24816252

γ-tocopherol 13 1× 10−5 log10-transfomed metabolites

concentration

0.15 1027.06 5,822 24816252

Retinol 24 1× 10−5 log10-transfomed metabolites

concentration

0.048 98.57 1,957 28263315

Ascorbate 14 1× 10−5 log10-transfomed metabolites

concentration

0.186 470.94 2,063 24816252

Oxidative stress injury biomarkers levels

GST 14 1× 10−5 - 0.013 45.89 3,301 29875488

CAT 27 1× 10−5 - 0.007 24.89 3,301 29875488

SOD 23 1× 10−5 - 0.008 25.14 3,301 29875488

GPX 22 1× 10−5 - 0.011 38.15 3,301 29875488

Albumin 107 1× 10−5 - 0.0004 42.20 115,060 -

Total bilirubin 360 1× 10−5 - 0.001 418.71 342,829 -

(Supplementary Table 9). In addition, the leave-one-out analysis

indicated that there were SNPs with potential effects on the pooled

results, suggesting the need for careful interpretation of the causal

association signals (Supplementary Table 14).

3.4 Oxidative stress injury biomarkers
and OA

Overall, in the univariable MR using IVW, most genetically

determined oxidative stress injury biomarkers levels were not

associated with the risk of OA in both databases, except each SD

higher albumin level was associated with lower odds hip OA (OR=

0.75, 95% CI= 0.68–0.84, p= 9.88× 10-8, FDR-corrected p= 1.38

× 10−6), lower odds knee OA (OR= 0.82, 95% CI= 0.76–0.89, p=

3.21× 10-7, FDR-corrected p= 4.49× 10−6), and lower odds total

OA (OR = 0.80, 95% CI = 0.75–0.86, p = 1.575 × 10-12, FDR-

corrected p = 2.20 × 10-11) (Figure 4; Supplementary Tables 15,

16). The combined ORs for hip OA in each SD higher oxidative

stress injury biomarkers levels were 1.02 (95% CI = 0.98–1.06, p

= 0.27, FDR-corrected p = 0.62) for GST, 0.98 (95% CI = 0.95–

1.02, p = 0.33, FDR-corrected p = 0.62) for CAT, 1.01 (95% CI =

0.98–1.05, p = 0.52, FDR-corrected p = 0.62) for SOD, 0.98 (95%

CI = 0.95–1.02, p = 0.30, FDR-corrected p = 0.62) for GPX, and

0.99 (95% CI = 0.93–1.05, p = 0.77, FDR-corrected p = 0.83) for

total bilirubin. The combined ORs for knee OA in each SD higher

oxidative stress injury biomarkers levels were 1.00 (95% CI= 0.97–

1.03, p = 0.85, FDR-corrected p = 0.86) for GST, 0.98 (95% CI =

0.95–1.01, p= 0.18, FDR-corrected p= 0.36) for CAT, 1.00 (95% CI

= 0.97–1.04, p= 0.86, FDR-corrected p= 0.86) for SOD, 1.02 (95%

CI = 0.99–1.05, p = 0.12, FDR-corrected p = 0.30) for GPX, and

0.96 (95% CI = 0.92–1.01, p = 0.09, FDR-corrected p = 0.30) for

total bilirubin. The combined ORs for total OA in each SD higher

oxidative stress injury biomarkers levels were 1.01 (95% CI= 0.98–

1.03, p = 0.52, FDR-corrected p = 0.61) for GST, 0.98 (95% CI =

0.96–1.00, p = 0.10, FDR-corrected p = 0.47) for CAT, 1.01 (95%

CI = 0.98–1.05, p = 0.52, FDR-corrected p = 0.61) for SOD, 0.98

(95% CI = 0.95–1.02, p = 0.30, FDR-corrected p = 0.61) for GPX,

and 0.97 (95% CI = 0.93–1.01, p = 0.14, FDR-corrected p = 0.49)

for total bilirubin (Figure 4).

In addition, similar findings were observed when using other

MR estimate methods, such as MR-Egger, weighted median,

simple mode, and weighted mode (Supplementary Table 16).

Cochran’s Q test revealed no heterogeneity for circulating

antioxidant metabolites IVs in three OA types (hip, knee, and

total OA) but considerable heterogeneity for the effects of

albumin, CAT, and total bilirubin onOA (Supplementary Table 17).

Basically, no directional pleiotropy was detected by MR-Egger

regression analysis (all P-values for intercept > 0.05), but

potential directional pleiotropy between total bilirubin and OA

(Supplementary Table 18). The MR-PRESSO test detected some
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FIGURE 2

Causal association between absolute circulating antioxidants with OA. The e�ect of (A) absolute α-tocopherol, (B) absolute β-carotene, (C) absolute

lycopene, and (D) absolute retinol on OA risk.

outliers for the effects of CAT, albumin, and total bilirubin on

OA, and the causal effects remained unchanged after the removal

of outliers SNPs (Supplementary Table 19). In addition, the leave-

one-out analysis indicated that the most causal association

signals were not driven by any single SNP, but the potential

effect of the total bilirubin on hip OA (from the study by

Tachmazidou et al.) may be influenced by some potential SNPs

(Supplementary Table 20).

3.5 Exploration of the potential
confounding factors

In the MVMR analysis, after adjusting for smoking

initiation, alcoholic drinks per week, and moderate-to-

vigorous physical activity levels, the IVW results of MVMR

analyses demonstrated that each SD higher albumin level was

significantly correlated with the lower risk of hip OA (Table 3).

However, the effect of albumin on hip OA was substantially

reduced in MVMR analyses incorporating BMI (Table 3). In

addition, there are not enough SNPs for MVMR analysis of

absolute retinol.

4 Discussion

In the present study, we investigated the causal associations

between dietary-derived antioxidants/oxidative stress injury

biomarkers and OA risk using MR analysis with the large publicly

available GWAS datasets. Our findings indicate that the levels of

absolute retinol circulating retinol and albumin may be causative

factors of OA risk. Moreover, MVMR confirmed that the effect of

albumin on hip OA is independent of smoking initiation, alcoholic

drinks per week, and moderate-to-vigorous physical activity levels

but may be influenced by BMI.

There has been obvious controversy over whether antioxidants

reduce the risk of OA. Our study found that there was no causal

relationship between vitamin E (α- and γ-tocopherol), β-Carotene,

and lycopene levels and the risk of OA. Previous clinical trials

have suggested that oral vitamin E may reduce pain in OA

patients (41, 42). In addition, a cross-sectional investigation in a

community-based study in Japan found that high serum values

of γ-tocopherols were significantly associated with a low risk of

radiographic knee OA (43). However, a double-blind, randomized,

placebo-controlled study reported that vitamin E was not effective

in relieving symptoms of knee OA (44), and a cross-sectional

study reported that the vitamin E intake tended to be positively
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FIGURE 3

Causal association between circulating antioxidant metabolites with OA. The e�ect of (A) circulating α-tocopherol, (B) circulating ascorbate, (C)

circulating γ-tocopherol, and (D) circulating retinol on OA risk.

associated with the tibial plateau bone area, which is a negative

effect on the bone and might even increase the OA risk (21). γ-

Tocopherol is often the most prevalent form of vitamin E in plant

seeds, and α-tocopherol is the predominant form of vitamin E

in most human and animal tissues, including blood plasma. In

addition, in a prospective cohort study, higher β-Carotene intake

was associated with a reduced prevalence of femoral head bone

marrow lesions in OA patients (45). In contrast, some cross-

sectional studies described that carotenoid, including β-Carotene

intake, was not significantly associated with cartilage or bone

measures or the risk of OA (21, 43). Interestingly, a case–control

study reported that the people with the highest levels of trans-beta-

carotene were more likely to have knee OA (46). A cross-sectional

study observed that vitamin C intake was inversely associated

with the tibial plateau bone area and with the presence of bone

marrow lesions, both of which are important in the pathogenesis

of knee OA (21). However, a cohort study observed that there

was no association between the dietary vitamin C and the risk of

OA (11). A prospective cohort study in Australia reported that

higher lycopene intake was associated with a reduced prevalence

of femoral head cartilage defects in community-based adults (45).

In addition, a case–control study indicated that lower serum

lycopene levels were associated with higher pain and physical

disability in knee OA patients (47). These disparities might be

attributed to eating habits, subject characteristics, and sample

size (48).

Retinol, a form of vitamin A, is a fat-soluble vitamin in

the vitamin A family found in food and used as a dietary

supplement. Moreover, our pooled results from two databases

indicated that absolute retinol level was negatively correlated with

hip OA risk, while circulating retinol was positively correlated

with knee OA and total OA (hip or knee). A recent MR study

reported the inverse causal association between absolute serum

retinol levels and hip OA utilizing one GWAS, which is consistent

with our pooled results from two databases in our study (49).

In addition, a longitudinal cohort study over a 10-year follow-

up period recently described that women with low serum retinol

levels develop knee OA at a significantly lower rate among

community-dwelling people in Japan (50). Interestingly, a cross-

sectional investigation in a community-based study reported no

associations between serum retinol level and the development

of radiographic knee OA in rural Japanese inhabitants (43).

Existing research on the role of vitamin A in OA is highly

controversial. Some studies reported that the effect of vitamin A

on OA was negative (51). There is even evidence that vitamin

A metabolite levels are elevated in synovial fluid, serum, and

cartilage from patients with OA, and they appear to drive OA

development (52, 53).
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FIGURE 4

Causal associations between oxidative stress injury biomarkers and OA. The e�ect of (A) GST, (B) CAT, (C) SOD, (D) GPX, (E) albumin, and (F) total

bilirubin absolute retinol on OA risk.

TABLE 3 Causal e�ect of albumin on hip OA in multivariable Mendelian randomization analyses.

Mediators adjusted E�ect of albumin on Hip OA (33) E�ect of albumin on Hip OA (32)

E�ect estimate
(IVW): OR (95% CI)

p E�ect estimate
(IVW): OR (95% CI)

p

BMI 0.93 (0.79, 1.09) 0.09 0.88 (0.60, 1.3) 0.63

Smoking initiation 0.78 (0.70, 0.87) 1.27× 10−5 0.76 (0.58, 0.98) 0.04

Alcoholic drinks per week 0.78 (0.69, 0.87) 1.91× 10−5 0.68 (0.54, 0.86) 0.001

Moderate to vigorous physical activity levels 0.80 (0.72, 0.89) 2.55× 10−5 0.74 (0.58, 0.95) 0.02
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Enzymatic antioxidants such as GST, CAT, SOD, and GPX can

limit peroxide generation and eliminate free radicals (54). Several

studies have reported OA disease models with lower GSH, GPX,

CAT, and SOD levels (14–16), as well as higher total bilirubin levels

(17). Interestingly, other studies observed no significant difference

in the GSH level, as well as the activity of SOD and GPX between

OA patients and control people was insignificantly lower than in

healthy people (55, 56). Non-enzymatic antioxidants, including

albumin and bilirubin, which break the free radical chain reaction

interacting with ROS, also play a key role in the antioxidant system

(54). Approximately 5% human serum albumin has been reported

to reduce pain and effectively treat OA in patients by increasing

anti-inflammatory prostaglandins, promoting inflammation and

healing as well as cartilage regeneration (57). Our results support

the finding and indicate that a high albumin level was associated

with a lower risk of OA. Yet, some studies reported no significant

differences in plasma and synovial fluid albumin levels between OA

patients and healthy people, which may be limited by the small

sample sizes (58).

The present study has several strengths. First, MR uses genetic

variation as a proxy for environmental exposure to determine

the causal relationship between exposure and disease outcome.

Genetic differences are assumed to be randomly assigned before

birth, are highly independent of environmental variables such

as dietary patterns and lifestyle, and are established before

the onset of disease. Therefore, MR analyses using genetic

variation as an instrumental variable for exposure may reduce

the bias of causal reversals and confounders common in

observational studies. Second, we further restricted the inclusion

of populations of European ancestry to minimize population

stratification. In addition, we conducted a meta-analysis of

two large databases, and the results from these two databases

were largely consistent with weak evidence of heterogeneity,

supporting the robustness of our findings. Thus, despite the

limited number of robust genetic instruments, the precision of

the final MR estimates and the reliability of the results were

significantly improved.

However, some limitations concerning the interpretation of the

results should also be considered. First, we were unable to test for a

non-linear causal link between antioxidant levels and OA risk since

the published data we used were summary-level statistics. Second,

sensitivity analysis could not be performed due to the limited

number of SNPs for the absolute retinol instrumental variable,

and a large GWAS of antioxidants will be required in future

to increase the instrument’s variable strength. Third, the lack of

demographic data, such as gender and ethnicity, and other relevant

characteristics in the original study prevented additional subgroup

analyses. Finally, we were unable to explore the association

between antioxidant use and risk of OA in nutritionally deficient

populations that may be more interested in supplementing with

antioxidants or testing the effects of antioxidants in combination

with other treatments. Furthermore, due to the availability of data,

this study focused on populations of European origin, and further

validation of associations in other populations is needed.

Evidence from the present study supports the beneficial

role of absolute circulating retinol levels and albumin in

OA. Dietary retinol and albumin supplementation may be a

useful strategy for the primary prevention of OA in high-

risk individuals.
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