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There is a need to develop a validated algorithm for plaque characterization which can
help to facilitate the standardization of optical coherence tomography (OCT) image
interpretation of plaque morphology, and improve the efficiency and accuracy in the
application of OCT imaging for the quantitative assessment of plaque vulnerability.
In this study, a machine learning algorithm was implemented for characterization of
atherosclerotic plaque components by intravascular OCT using ex vivo carotid plaque
tissue samples. A total of 31 patients underwent carotid endarterectomy and the ex vivo
carotid plaques were imaged with OCT. Optical parameter, texture features and relative
position of pixels were extracted within the region of interest and then used to quantify
the tissue characterization of plaque components. The potential of individual and
combined feature set to discriminate tissue components was quantified using sensitivity,
specificity, accuracy. The results show there was a lower classification accuracy in the
calcified tissue than the fibrous tissue and lipid tissue. The pixel-wise classification
accuracy obtained by the developed method, to characterize the fibrous, calcified
and lipid tissue by comparing with histology, were 80.0, 62.0, and 83.1, respectively.
The developed algorithm was capable of characterizing plaque components with an
excellent accuracy using the combined feature set.

Keywords: atherosclerotic plaque, carotid artery, histology, machine learning, optical coherence tomography

INTRODUCTION

Rupture of vulnerable atherosclerotic plaques is the leading cause of stroke and myocardial
infarction (Cicha et al., 2011). These serious accidents often occur when plaques in the arteries
suddenly rupture, causing thrombus and leading to the obstruction of the blood flow to the brain
or the heart (Lekadir et al., 2017). Therefore, early and accurate prediction of individuals at high
risk of plaque rupture could allow preventive, therapeutic, or surgical interventions to be taken to
prevent such life-threatening events happening.

It is now well established that plaque components and morphology are the main
factors in the determination of plaque vulnerability (Shah, 2003; Li et al., 2006a,b).
Plaques with a large lipid core and a thin fibrous cap are more prone to rupture,
whereas plaques containing calcified tissue may tend to be more stable (Arbab-
Zadeh and Fuster, 2015). High-resolution intravascular optical coherence tomography
(OCT) imaging has shown great promise in the identification and characterization of
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atherosclerotic plaque components, such as fibrous cap,
calcification and lipid tissue, as well as the quantification of
plaque areas and volume (Yabushita et al., 2002; Regar et al.,
2013). Histological studies have shown the ability of OCT to
separate fibrous, calcified and lipid tissue from the carotid
artery (Zimarino et al., 2007; Matsumoto et al., 2014). Although
OCT images present plaque morphological information with a
relatively high resolution, it still relies on interpretation of the
images by trained readers for the identification and quantitation
of plaque components. Therefore, development of computational
techniques is important to determine plaque components.

Levitz et al. (2004) published a quantitative study which
demonstrated that OCT tissue characterization of atherosclerotic
plaques could be conducted by measuring by the backscattering
and attenuation coefficients. Their work showed that the
coefficients has essential differences between fibrous, lipid and
calcific plaques. The optical parameters were gradually enriched
for atherosclerotic characterization in OCT quantitative studies
(van der Meer et al., 2005a,b; Xu et al., 2008; Popescu et al.,
2010; van Soest et al., 2010). However, tissue quantification
using only optical parameters caused significant overlaps between
different tissue types. In addition, discrepancies existed because
of the different light sources and physical models. Later,
Wang et al. (2010) proposed a different methodology using
the morphology operation for semiautomatic segmentation
of calcified plaques in OCT images. Then, a series of such
studies were implemented to quantify plaque components, by
combining optical parameters and texture features (Ughi et al.,
2013), k means and texture features (Athanasiou et al., 2014),
and least square optimization strategy to estimate the depth
profiles in OCT data (Rico-Jimenez et al., 2016). Previous
studies demonstrate the feasibility of atherosclerotic plaques
segmentation based on machine learning algorithm, while the
segmentation results were compared with manual annotation.
Recently, the prevailing convolutional neural networks (CNN)
were also applied to the classification of plaque components
based on OCT images and demonstrated excellent results
(Abdolmanafi et al., 2017, 2018; Gessert et al., 2019). However,
it is still challenging to segment plaque components based
on OCT imaging. Moreover, lack of ex vivo validation
on the developed imaging processing methods is the other
obstacle in this area.

This study was designed to characterize and identify the
fibrous, calcified and lipid tissues based on the expert annotation
using histology images. In the present study, we used optical
parameters, texture features combined with relative position of
pixels to analyze and delineate plaque components in OCT
images. Validation algorithm was performed by comparing these
results with those of corresponding histological sections of the
ex vivo carotid plaques.

MATERIALS AND METHODS

Carotid Plaque Tissue Collection
In this study, 31 patients with a high-grade (>70%) carotid
stenosis scheduled for carotid endarterectomy (CEA) from

October 2015 to December 2018 were included. The dissected
specimens were used for both ex vivo OCT imaging and histology
analysis. All participants provided a written informed consent
prior to the enrollment and the study protocol was approved by
the institutional ethics committee.

OCT Image Protocol and Preprocessing
OCT can acquire cross-sectional images (Figure 1C) of
microscopic pathology structure of arterial wall. In the study,
the OCT system used for the CEA plaque tissue imaging was
a commercially available C7-XR with DragonflyTM catheter (2.7
F, C7-XR, St. Jude Medical Inc., St. Paul, MN, United States).
The OCT system had high image resolutions of ∼15 µm,
approximately 10 times finer than conventional intravascular
ultrasound. Scan parameters were set as 100 frames/s, 54,000
A-scans/s, pullback speed of 20 mm/s, pullback length of
∼54.2 mm (Figure 1B). In average, the ex vivo specimen
was imaged over 50–250 frames, depending upon the actual
length of the samples.

Prior to OCT imaging, the specimens (Figure 1A) were
flushed with phosphate buffered saline (PBS) to remove blood
clots, washing out excess blood to reduce possible clutter artifacts.
In order to accurately co-register the OCT images with the
histological and immunohistochemistry sections, at each imaging
site, photograph was taken and stored to eliminate the rotary bias
on slices as much as possible. In each imaging site, an automatic
pullback was performed to obtain images. Cross-sectional images
(cartesian coordinate images) and lossless raw images (polar
coordinate images) were acquired and stored on CD-ROMs for
off-line process. It is worth noting that the raw images were used
as input and the cross-sectional images were used as visualization.

Lumen segmentation is the primary step for plaque image
analysis. The lumen boundary is solved by the classic
optimization method, dynamic programming (DP) (Amini
et al., 1990). More details about the algorithm refer to literature
(Wang et al., 2012).

Figure 2 presents a flowchart of the training, testing
procedures and the final performance evaluation. For the training
procedure, after the preprocessing steps including automatic
guide-wire and lumen segmentation, the optical parameters
(OP), the texture features and relation position (RP) features were
quantified. Based on these locally extracted values, the supervised
pixel-wise classification was applied to train a classifier. The
histology slices were used as the gold standard for manually
delineating the train and test sets, and an intermediate color-
coded image map depicting the different types of tissue was given
by the trained classifier. The performance of the algorithm was
evaluated by classification accuracy of the trained classifier output
and the manual tissue map based on histology.

Histopathology Analysis
After imaging, each carotid plaque tissue was cut into 1 cm
serial transverse segments. Each embedded segment was
marked in the same order with the corresponding OCT
pullback and was serially sectioned into slices of 4 µm
transverse sections, with a 40 µm interval perpendicular
to the longitudinal axis of the artery. Sections were
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FIGURE 1 | Carotid plaque tissue and OCT imaging. (A) An intact CEA plaque tissue. (B) A longitudinal view of CEA tissue (A) with the C7-XR OCT system. (C) A
cross-sectional OCT image from the vertical line (B).

mounted on the slide glass substrates and then stained with
Hematoxylin and Eosin (H&E), Masson’s trichrome, Oil
Red O to show the structural and morphology information
within the plaque sample. Figure 3 shows the process
from the carotid tissue to the slice. The histopathology
and immunostained sections were examined with an Axio
Lab.A1 (Carl Zeiss, Germany), and the scanned histology
images were analyzed using the Pannoramic Viewer image
analysis software (Budapest, Hungary). The pathological
classification of the plaque components was processed based on
the modified American Heart Association (AHA)-classification
(Stary et al., 1995).

Histopathology and OCT Image Co-registration
The gross morphological features of OCT images such as lumen
size and shape, wall size and shape, plaque configuration, as
well as calcific plaques were used to adjust the cross-sectional
orientation of the slices. Manual co-registration of the OCT
images and the digitized histological slices was performed by
two experts. The carotid bifurcation and the narrowest lumen
(maximum stenosis) were used as the reference points of
matching the histology slices and OCT images. The challenge
is that the thickness of OCT imaging and histology slices was
different. Every 0.1 cm plaque specimen could cover 5 OCT
images in one pullback and 250 consecutive histology slices. We
were able to use both ends of the plaque samples as additional
registration points to co-register the OCT imaging with the
histology slices.

Ground Truth Annotation
The images were annotated by the experts using ImageJ software
(Girish and Vijayalakshmi, 2004), according to the registered
histology slices. The photomicrograph representative of each
tissue type is shown in Figure 4. The two expert independently
assessed the plaque components by examining the slice, and
outlined the corresponding regions on the OCT image. The three
main plaque components were color-coded with a segmentation
plugin (Schindelin et al., 2016), such as green for the fibrous
tissue, white for the calcified tissue and pink for the lipid tissue.
Considering the most important morphologic features of plaque
tissue are in the superficial region, whereas it was just within
the current OCT imaging capabilities. Therefore, the annotation
depth was less than 1 mm from the vessel lumen into the
deeper tissue when we defined the main analysis region of the
three plaque components. This value is in agreement with the
literatures reported in Holzapfel et al. (2005). Figure 5 shows the
annotation results by the histology slices.

Reproducibility of Annotations
Although the expert performed the annotation, the decision to
delineate various tissue map was varying degree subjective and
thus prone to analyst variability. To better annotation OCT
images, another analyst is necessary to test the reproducibility.
To determine reproducibility of annotation results, the intraclass
correlation coefficient (ICC) with 95% confidence interval (CI)
was calculated to measure the level of agreement between
two measurements.
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FIGURE 2 | Flowchart of the tissue characterization used in the study.

Pixel-Wise Feature Extraction
Inversion Methods for Optical Parameters
OCT systems could acquire multiple OCT A-lines. The intensity
of A-line value of the detected OCT signal < Id (r) > can
be modeled using a single scattering model according to the
Lambert-Beer law (Lantos, 2014).

< Id (r) >= I0T (r) ŝ (r) exp (−µt (r)) (1)

I0 = I
′

µb (2)

where r indicates the penetration depth, µt the total attenuation
coefficient and I0 a scale factor, I

′

locally available intensity
and µb the backscattering coefficient (van Soest et al.,
2010). The attenuation coefficient µt

(
mm−1) is a result of

scattering and absorption. However, only scattering can be
considered because the contribution of tissue absorption is
very low at the near infrared wavelengths used in OCT
(Qu et al., 1994). In addition, the OCT signal is influenced
by focusing effects related to the confocal properties of

the catheter (van Leeuwen et al., 2003), which can be
described as:

Tr =

[(
r − z0

zR

)2
+ 1

]−1/2

(3)

Here Tr is the longitudinal point spread function (PSF), z0is the
position of the beam waist and zR is the Rayleigh length. While
ŝ in (1) represents the modulation due to the OCT depth scan
response and is described as follow:

ŝ (r) = exp

[
−

(
r − zC
zW

)2
]

(4)

While zC is the center of the scan, and zW is the half width of the
roll-off function (Yun et al., 2004).

To reduce the dynamic range and sensitivity to noise of the
fitted signal, (1) is linearized by logarithmic transformation:

log [〈Id (r)〉]− log [Tr]− log [̂s (r)] = log (I0)− µt (r) (5)
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FIGURE 3 | Sample sectioning for histological analysis. (A) Carotid plaque tissue. (B) Embedding blocks with 1 cm intervals. (C) 40 µm interval slices. (D) 4 µm
histology slices.

FIGURE 4 | Photomicrographs demonstrating tissue components. (A) Low magnification Hematoxylin-Eosin staining reveals fibrous plaque consist of homogenous
area that was clearly demarcated by high magnification box (left bottom). (B) Low magnification Alizazrin Red staining reveals calcified plaque consist of
heterogeneous region that was clear and high-dense internal and external boundaries (middle bottom, high magnification box) (red arrows). (C) Low magnification Oil
Red O staining shows lipid droplets (blue arrow).

The attenuation coefficient µt and constant parameter log (I0)
were calculated using a linear least-square fit to the OCT A-lines
for different layers and for different positions of the individual
layers by an optimization process.

Texture Features
Texture features were extracted from the training set and the
testing set images in order to be used for the classification of

the plaque tissues. Texture refers to the spatial interrelationships
and arrangement of the basic elements of an image. In the study,
several texture features were selected as follows:

First order statistics (FOS) textures are directly related
to the gray tone distribution of the pixel intensity
and ignore inter-pixel correlations. In the paper, four
parameters including mean value, standard deviation,
skewness and kurtosis were extracted directly from
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FIGURE 5 | Three groups of co-registration of the histology slices and the OCT images. (A1,B1,C1) are cross-sectional OCT image. (A2,B2,C2) are the expert 1
annotation OCT images. (A3,B3,C3) are the expert 2 annotation OCT images (A4,B4,C4) are the corresponding histology slices. Carotid atheroma demonstrates
the fibrous region (green arrow), calcification region (red arrowhead) and lipid region (blue asterisk). The plaque morphology and calcified region allowed a precise
co-registration between OCT and histology.

the image. More details can be found in reference
(Christodoulou et al., 2003b).

Gray level co-occurrence matrix (GLCM) is a powerful
statistical tool for texture analysis, which is a tabulation of
how often different combinations of pixel brightness values
(gray levels) occur in an image (Soh and Tsatsoulis, 1999). In
this paper, the distance was 1 and angle theta were 0◦, 45◦,
90◦, and 135◦. Seven features were computed based on the
probability density functions (PDFS), including correlation,
contract, dissimilarity, energy, entropy, homogeneity,
maximum probability.

Neighborhood gray tone difference matrix (NGTDM)
corresponds to the visual properties of the texture (Christodoulou
et al., 2003a). The following five texture features were extracted
form NGTDM, for a neighborhood size of 3 × 3: busyness,
contrast, complexity, coarseness and texture length.

Fractal dimension (FD) is an index for characterizing the
fractal patterns or sets by quantifying their complexity as a ratio
of the change in detail to the change in scale (Soh and Tsatsoulis,
1999). In this paper, the image intensities were transformed to the
FD domain using the differential box-counting algorithm (Liu
et al., 2003) at various different scales and then displayed for
plaque tissue identification.

The optical parameters were one-dimension information
extracted by nonlinear fit, the texture feature sets (the four
groups) were two-dimension features based on the local
neighborhood operations, the sixth set was relative position
of pixels (RP) (the x and y coordinate of each pixel). This
RP features were used in combination with other feature
sets during the experiment because of their natural and
essential characterization. Table 1 presents the details of
the feature sets.

Random Forest Classifier
To handle the large training set, the random forest (RF)
algorithm was selected (Breiman, 2001). RF is an ensemble
of decision trees that combine a series of weak classifiers
(i.e., binary trees) to achieve an accurate classification. In
addition, the randomization allows the flexibility to explore
a large feature space because it only considers a subset of
features in each decision tree. The tuning parameters are
Ntree (number of trees to grow) and Mtry (number of
variables randomly sampled at each node). Each decision
tree is independently produced and each node is split by
the parameter Mtry. By growing the forest up to another
parameter Ntree, the algorithm creates trees that have a high
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TABLE 1 | Feature sets included in the study.

Feature sets Fewature name

OP µt and b

FOS Mean, variance, median, skewness, kurtosis

GLCM Correlation, contract, dissimilarity, energy, entropy,
homogeneity, maximum probability

NGTDM Busyness, contrast, complexity, coarseness, texture length

FD H1, H2, H3, H4

RP x and y coordinate

OP, optical parameters (van Soest et al., 2010), are two paramenters of fit functions.
FOS, first order statistics (Christodoulou et al., 2003b); GLCM, gray level co-
occurrence matrix (Soh and Tsatsoulis, 1999); NGTDM, neighborhood gray tone
difference matrix (Christodoulou et al., 2003a); FD, fractal dimension (Liu et al.,
2003); RP, relative position of pixels.

variance and a low bias. RF becomes increasingly popular in
similar medical image classification applications because of its
computational efficiency for large training data, ability to handle
multiclass classification.

Statistical Analysis
Annotation regions were compared on a pixel-wise basis
with the results of the RF classifier. The performances of
the RF classification methods were compared based on the
following model accuracy measures: sensitivity, specificity,
accuracy (ACC) (Maroco et al., 2011). In order to avoid
the correlation of the results, the training set contained

24 patients, and the testing set contained other 7 patients.
The 10-folds cross-validation strategies were applied to
estimate the classification performance of the method.
The 50 images were randomly split into 10 subsets, each
from random set of 5 images. The final statistical results for
characterization of plaques component were then calculated
based on each testing subset data. After the cross-validation,
mean, standard deviation (SD) and median values were
computed from the 10 testing set estimations of overall
classification accuracy. All statistical analyses were conducted
by using Matlab R2018a and related toolboxes (MathWork R©,
Natick, MA, United States): image processingTM and Parallel
ComputingTM toolboxes.

RESULTS

Reproducibility of OCT Images
Annotations
Figure 6 illustrates the reproducibility results for the two
annotations of the three plaque components by the two
experts. Both annotation area1 and annotation area2
were in good agreement and displayed a strong linear
trend (R2

= 0.99). The fit lines had slopes of 1.02, and
y-intercepts of 0.06 mm2 (Figure 6B). A Bland-Altman
statistic did not show bias together with narrow limits of
agreement (Figure 6A).

FIGURE 6 | Reproducibility results. (A) Regression analysis. (B) Bland–Altman plots showing agreement between observers for annotation area.
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FIGURE 7 | Three groups of manual and automated results. (A1,B1,C1) are cross-sectional OCT images from different carotid samples. (A2,B2,C2) are
corresponding manual annotation results by expert 1. (A3,B3,C3) are automated annotation results by the algorithm. Color coding: green = fibrous tissue,
white = calcified tissue, red = lipid tissue. (A4,B4,C4) are the corresponding histology images.

Manual vs Automatic Classification
Result
The annotation results of the two experts show that excellent
reproducibility of three plaque components based on the
histology slices. Therefore, we choose the annotation result of
expert 1 as the benchmark. Figure 7 illustrates examples of
the automated classification results compared with histology,
respectively, as well as manual annotation.

Accuracy of Carotid Plaque
Classification
Table 2 shows the classification accuracy, sensitivity and
specificity of the three plaque components using individual
feature set and the combined feature set. The accuracy for the
classification of the calcified tissue was lower than those of the
fibrous and the lipid tissues. In general, moderate quantitative

results were obtained with each individual feature set. The
classification results of the three tissue types affect each other,
in other words, each type tissue may be misclassified into the
other two types. Especially, the fibrous components were often
misclassified as the lipid components and vice versa. The highest
and lowest classification accuracy of three tissue components
were the lipid tissue (83.1%) and the calcified tissue (62.0%) using
combination feature, respectively.

Results of Cross Validation
The results of the 10-folds cross validation are shown in Table 3,
which reports mean, standard deviation and median values of
the estimates of each classification accuracy. Compared to the
fibrous tissue, classification accuracy of calcified and lipid tissue
appeared a larger range. The fuse feature set (ALL) obtained the
best compromising results between the three plaque tissues.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 8 July 2020 | Volume 8 | Article 749

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00749 June 30, 2020 Time: 21:0 # 9

He et al. Atherosclerotic Plaque Tissue Characterization

TABLE 2 | Results for each feature set of OCT image compared to the histology.

Feature sets Fibrous tissue Calcified tissue Lipid tissue

OP+RP % Sen 62.7 14.4 66.6

Spe 59.1 91.5 70.4

Acc 62.2 13.7 66.4

FOS+RP % Sen 78.1 41.6 76.9

Spe 77.0 89.0 87.0

Acc 77.7 36.0 78.4

GLCM+RP % Sen 77.5 66.4 81.8

Spe 92.6 88.0 87.7

Acc 76.5 67.1 83.8

NGTDM+RP % Sen 83.1 37.0 74.5

Spe 76.9 93.4 86.7

Acc 82.1 35.5 75.7

FD+RP % Sen 74.1 46.4 83.6

Spe 83.2 87.3 86.1

Acc 74.5 48.0 84.6

ALL % Sen 80.5 64.7 80.2

Spe 91.2 90.7 87.5

Acc 80.0 62.0 83.1

TABLE 3 | Result of 10 fold cross validation analysis.

Feature sets Acc

Fibrous
tissue

Calcified
tissue

Lipid
tissue

OP+RP % Mean ± SD 62.2 ± 1.6 13.7 ± 4.4 66.4± 11.2

Median 61.7 14.3 66.7

FOS+RP % Mean ± SD 77.7 ± 1.4 36.0 ± 11.3 78.4 ± 8.7

Median 77.7 36.1 76.5

FD+RP % Mean ± SD 74.5 ± 1.4 48.0 ± 7.6 84.6 ± 4.6

Median 74.6 46.2 81.5

GLCM+RP % Mean ± SD 76.5 ± 2.7 67.1 ± 4.9 83.7 ± 6.8

Median 76.5 65.2 83.3

NGTDM+RP % Mean ± SD 82.2 ± 2.0 3.5 ± 10.1 75.7 ± 8.0

Median 81.4 31.0 73.9

ALL % Mean ± SD 80.0 ± 2.1 62.0 ± 8.2 83.1 ± 8.6

Median 79.6 60.6 81.8

DISCUSSION

In this paper, we presented an algorithm for the characterization
of atherosclerotic plaque components in OCT images and the
validation using ex vivo carotid plaque tissue (Figure 2).

The present study shows an important finding that the
combination of the optical parameters, the texture features and
relative position can improve the quantification results, and the
validation procedures further facilitated image interpretation.
Different methods tend to extract different features, for example,
the optical parameters reflect the relationship between the light
and the plaque tissue in term of the physical or chemical
properties, whereas the texture features reflect the spatial
interrelationship of different tissue types. All misclassified tissue
types were associated with the other two tissue types (e.g.,

the calcified tissue was often misclassified as the fibrous and
the lipid tissues). The occurrence of the misclassification is
mainly due to the blurring of the boundaries of the three
main components. Although the literature indicates that the
calcified region has a clear boundary, it is difficult to annotate
an accurate tissue map in the pixel-wise way. In addition,
more feature parameters may be needed to interpret the
heterogeneity of OCT tissue components and further distinguish
the plaque components.

Recently, CNN have shown remarkable success in medical
image processing tasks such as disease classification (Kim
et al., 2012), tumor segmentation (Kamnitsas et al., 2017;
Harangi, 2018). Abdolmanafi et al. (2017, 2018) used CNN
as feature extraction to characterize the layers of coronary
arteries and the classification rate was up to 96% of second
layer media. Later, they further classified the coronary artery
pathological formations (calcification, fibrosis, normal intima,
macrophage, media, neovascularization) using CNN as feature
extractor, random forest as classifier and majority voting
as classification calculation. Gessert et al. (2019) architected
the ResNet50-32 and DenseNet-121 network in the different
concatenation points and investigated the optimal abstraction
level of feature fusion of polar and Cartesian OCT images.
The result showed the combined model performed with an
accuracy of 91.7%, a sensitivity of 90.9%, and a specificity
of 92.4% of the plaque detection in OCT pullbacks. Tissue
characterization by OCT images mainly relies on segmentation
which is a necessary step for treatment planning in percutaneous
coronary intervention (PCI). So far, the studies on the
segmentation of plaque components in OCT images using
deep learning approaches are very limited. The present
study used histology slices as gold standard to annotate the
training and testing images, which is a valuable contribution
to the interpretation of OCT images and it demonstrates
the feasibility of machine learning for plaque components
segmentation. This study may provide a foundation for future
deep learning-based OCT images classification studies, which
will provide a useful tool for the identification of vulnerable
plaques and aid the risk stratification of patients with luminal
stenosis in the future.

Until now, most research has shown that an atherosclerotic
plaque with a lipid or necrotic core and a thin fibrous cap is
associated with an increased risk of plaque rupture and thrombus
formation, resulting in an acute coronary event or progression
of atherosclerosis (Havaei et al., 2017). Therefore, it is important
to differentiate the fibrous and the necrotic tissue in order to
distinguish a vulnerable and a stable plaque. The developed
algorithm is able to characterize the difference between the
fibrous and the lipid tissues, which can help in the identification
of plaque vulnerability. In addition, fibrous cap rupture and
subsequent plaque thrombosis are accompanied with a high
macrophage content. Macrophages are inflammatory cells which
lead the plaque destabilization by releasing proteolytic enzymes
and other pro-inflammatory mediators. Moreover, macrophages
tend to scatter light by large organelles (Di Vito et al., 2015).
This leads to either a high attenuation coefficient or a high
backscatter coefficient of OCT images. Therefore, a large lipid
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core is often accompanied by a large number of macrophages.
Although some literature has shown that OCT is capable of
identifying macrophages, the separation of the lipid tissue from
the macrophage infiltration is still challenging. In other words,
it is difficult to distinguish “poor signal” region in OCT images
whether led by macrophage aggregation or infiltration or lipid
tissue. In future studies, more data (histology sections and
OCT images) may help to better classify the lipid tissues,
inflammation regions etc.

Although this study is based on ex vivo CEA plaque samples,
the OCT imaging of the various ex vivo plaque components is in
agreement with those reported for in vivo studies (Mathews et al.,
2011; Blackham et al., 2015). The effectiveness and efficiency of
intravascular OCT imaging device were confirmed to be at least as
good as the imaging information obtained from the ex vivo tissues
and the OCT imaging was highly reproducible. In addition, the
reproducibility of the imaging findings was obtained from arterial
segments in patients and animals were identical in both in vivo
and ex vivo images (Mathews et al., 2011). Therefore, it is possible
to extend this study to the coronary arteries.

Despite the encouraging results, some limitations still remain.
First, it was difficult to co-register OCT with histology because of
the inherent differences in the longitudinal resolution between
OCT (200 µm) and histology (4 µm). The limitation can
be overcome by undertaking continuous histological slide
preparation of vessel segments. Second, the data set annotation
was performed according to the plaque components and
shape of histology image using manual analysis by expert
image readers as the ground truth. It is well known that
the manual analysis of OCT images tends to cause inter-
observer variability and intra-observer variability, and thus
resulting in a relatively large deviation. Despite this, it is
important to note that some studies have shown the influence
of intra-observer on manual image analysis was scarce (Kini
et al., 2017). Finally, this study is a single-center study with
a relatively small study population. Future multicenter studies
or a large amount of histological data would be required to
fully test the developed algorithm before it can be used in
clinical applications.

CONCLUSION

In this study, the combination of the optical parameters and
the texture features of OCT images were extracted and used

for characterization of carotid atherosclerotic tissue types. The
algorithm was validated against histology slices, which were the
“gold standard” as the evaluation criteria. This study shows that
the developed approach can provide an effective tool for OCT-
based plaque vulnerability assessment. Although the statistical
results still need to be further improved before the computer-
aided automatic segmentation method is applied in routine
clinical practice, the fundamental research filled the gap in the
quantification and characterization of atherosclerotic tissue types
from OCT imaging.
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