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Abstract

Whether or not genetic divergence in the short-term of tens to hundreds of genera-
tions is compatible with phenotypic stasis remains a relatively unexplored problem. We
evolved predominantly outcrossing, genetically diverse populations of the nematode
Caenorhabditis elegans under a constant and homogeneous environment for 240 gen-
erations and followed individual locomotion behavior. Although founders of lab popu-
lations show highly diverse locomotion behavior, during lab evolution, the component
traits of locomotion behavior - defined as the transition rates in activity and direction -
did not show divergence from the ancestral population. In contrast, transition rates’ ge-
netic (co)variance structure showed a marked divergence from the ancestral state and
differentiation among replicate populations during the final 100 generations and after
most adaptation had been achieved. We observe that genetic differentiation is a tran-
sient pattern during the loss of genetic variance along phenotypic dimensions under drift
during the last 100 generations of lab evolution. These results suggest that short-term
stasis of locomotion behavior is maintained because of stabilizing selection, while the
genetic structuring of component traits is contingent upon drift history.
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Introduction

Stasis, the lack of directional change in the average values of a trait over time, is the most com-
mon phenotypic pattern observed over timespans reaching one million years (Arnold, 2014; Gin-
gerich, 2019; Uyeda et al., 2011). Theory predicts phenotypic stasis when stabilizing selection,
or when directional and other forms of selection cancel out over the period examined, acts upon
standing genetic variation reflecting the phenotypic effects of mutational input (Charlesworth et
al., 1982; Estes and Arnold, 2007; Hansen and Martins, 1996; Lande, 1986; Morrissey and Had-
field, 2012; Stroud et al., 2023). When considering mutation-selection balance on the long-term
(as scaled by the effective population sizes), theory has been successfully applied to explain, for
example, fly wing evolution over a period of 40 million years (Houle et al., 2017), or nematode
embryogenesis over 100 million years (Farhadifar et al., 2015). On the short-term of a few tens
to hundreds of generations, however, many natural populations depend on standing genetic vari-
ation for adaptation or rescue from extinction, when mutation should be of little influence and
founder effects, demographic stochasticity and genetic drift are important (Chelo et al., 2013;
Hill, 1982; Mallard et al., 2023a; Matuszewski et al., 2015).

In the short-term, before mutation-selection balance is reached, phenotypic stasis in natural
populations is also commonly observed, often despite significant trait heritability and selection
(Merila et al., 2001; Pujol et al., 2018). Explanations for short-term phenotypic stasis have relied
on showing that in many cases there were no changes in the breeding traits’ values, that is, no
genetic divergence, either because of selection on unmeasured traits that are genetically or envi-
ronmentally correlated with observed ones (Czorlich et al., 2022; Kruuk et al., 2002). Short-term
phenotypic stasis without genetic divergence has also been explained by phenotypic plasticity
allowing the tracking of environmental fluctuations, e.g., (Biquet et al., 2022; Villemereuil et al.,
2020). Pujol et al., 2018 reviews other processes responsible for phenotypic stasis in the short
term. These studies indicate that phenotypic evolution cannot be understood when considering
each trait independently of others and that a multivariate description of selection and standing
genetic variation is needed. Selection on multiple traits should be seen as a surface with poten-
tially several orthogonal dimensions (Phillips and Arnold, 1989), each with particular gradients
depicting selection strength and direction on each trait and between traits (Arnold et al., 2001;
Lande and Arnold, 1983). Responses to selection in turn will depend on the size and shape of the
G-matrix, the additive genetic variance-covariance matrix of multiple traits (Lande, 1979). For ex-
ample, phenotypic dimensions with more genetic variation are expected to facilitate adaptation,
as selection will be more efficient (Lande, 1976, 1979; Schluter, 1996), even if indirect selec-
tion can confound predictions about phenotypic evolution (Mallard et al., 2023a; Morrissey and
Bonnet, 2019; Stinchcombe et al., 2014).
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The extent to which phenotypic stasis is compatible with the expected divergence of the G-
matrix in the short-term remains little explored cf. (Bohren et al., 1966; Gromko, 1995; Simbes
et al., 2019; Teotdnio et al., 2004; Teotdnio and Rose, 2000). Studies in natural populations can-
not usually control environmental variation, and estimates of G-matrix dynamics are nearly im-
possible to obtain, while experiments employing truncation selection do not easily model the
complexity of the selection surface. Under drift, and assuming an infinitesimal model of trait
inheritance, the G-matrix size (i.e., the total genetic variance) is reduced and diverges from an-
cestral states by a factor proportional to the effective population size (Lande, 1976; Lynch and
Hill, 1986; Phillips et al., 2001). However, theory that includes the effects of finite population
sizes, multivariate selection, and the pleiotropic effects of mutation remains out of reach for
changes in genetic covariances between traits and thus G-matrix shape (Barton and Turelli, 1987;
Burger, 2000; Lande, 1980; Lynch and Walsh, 1998; Simons et al., 2018). We do expect, how-
ever, that once most adaptation has occurred, the divergence of the G-matrix shape is caused
by drift, and also know that different forms of selection might lead to further genetic divergence
in the relatively local phenotypic space occupied after adaptation (Doroszuk et al., 2008; Haller
and Hendry, 2014). Whether or not genetic divergence will also lead to phenotypic divergence
should then depend on the distribution of pleiotropic effects of quantitative trait loci (QTL) alle-
les, and linkage disequilibrium between them, created by past selection and drift, and ultimately
on the developmental and physiological mapping of genetic onto phenotypic variation (Chebib
and Guillaume, 2017; Hansen and Wagner, 2001; Morrissey, 2015; Riska, 1989).

Here we seek to find if the short-term evolution of the G-matrix follows the directions of se-
lection or if there is loss of genetic variance just by drift. We also seek to determine how genetic
divergence is compatible with phenotypic stasis once most adaptation has been achieved. We
analyze the evolution of locomotion behavior on the hermaphroditic nematode Caenorhabditis
elegans, spanning 240 generations of lab evolution in a constant and homogeneous environment,
thus maximizing the chances of imposing and detecting stabilizing selection. We could obtain an
accurate characterization of the fitness effects of component trait variation of locomotion behav-
ior (transition rates between movement states and direction), by measuring essentially all individ-
uals at the time of reproduction. We expect locomotion behavior to evolve because individual
nematodes do not need to engage in foraging and dwelling for feeding (Gray et al., 2005). It is fur-
ther expected that sexual interaction between hermaphrodites and males impacts the evolution
of locomotion behavior (Barr et al., 2018). We characterized the evolution of the broad-sense
G-matrix for hermaphrodite locomotion behavior, obtained by phenotyping inbred lines derived
from the domesticated ancestral population at generation 140 and from three replicate popu-
lations during further 50 and 100 generations in the same environment. After domestication,
selection gradients were estimated by regressing fertility onto transition rates.

Methods

Laboratory culture

We analyzed the lab evolution of locomotion behavior during 273 generations (Figure 1A),
the first 223 of which have been previously detailed (Noble et al., 2017; Teotdnio et al., 2012;
Theologidis et al., 2014). Briefly, 16 inbred founders were intercrossed in a 33-generation fun-
nel to obtain a single hybrid population (named AOQ), from which six population replicates (A[1-
6]) were domesticated for 140 generations. Based on the evolution of several life-history traits
such as hermaprodite self and outcross fertility, male mating ability or viability until reproduc-
tion we have previously shown that most adaptation to lab conditions had occurred by genera-
tion 100 (Carvalho et al., 2014a,b; Poullet et al., 2016; Teotodnio et al., 2012; Theologidis et al.,
2014). From population Aé at generation 140 (A6140), we derived six replicate populations and
maintained them in the same environment for another 100 generations (CA[1-6]). CA[1-6] were
derived from splitting into six a single pool of at least 103 individuals from large (10%) thawed
samples of the A6140 population (Theologidis et al., 2014). Inbred lines were generated by self-
ing hermaphrodites from A6140 (for at least 10 generations), and from CA populations 1-3 at
generation 50 and 100 (CA[1-3]50 and CA[1-3]100; Noble et al., 2021). We refer to these last
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100 generations as the focal stage. During the domestication and focal stages, populations were
cultured at constant census sizes of N = 10* and expected effective population sizes of N, = 103
(Chelo et al., 2013; Chelo and Teotdnio, 2013). Non-overlapping 4-day life-cycles were defined
by extracting embryos from plates and seeding starvation-synchronized L1 larvae to fresh food
(Teotonio et al., 2012). Periodic storage of samples (> 103 individuals) was done by freezing
(Stiernagle, 1999). Revival of ancestral and derived population samples allows us to control for
transgenerational environmental effects under "common garden" phenotypic assays (Teotonio
et al., 2017).

Worm tracking assays

Sampling and design. Population or inbred line samples were thawed from frozen stocks on 9cm
Petri dishes and grown until exhaustion of food (Escherichia coli HT115). This occurred 2-3 gen-
erations after thawing, after which individuals were washed from plates in M9 buffer. Adults
were removed by centrifugation, and three plates per line were seeded with 1000 larvae. Sam-
ples were maintained for one to two complete generations in the controlled environment of
lab evolution. At the assay generation (generation 4-6 post-thaw), adults were phenotyped for
locomotion behavior at their usual reproduction time during lab evolution (72h post L1 stage
seeding) in single 9 cm plates. At the beginning of each assay we measured ambient tempera-
ture and humidity in the imaging room to control for their effects on locomotion. See Table S1
for a detailed description of populations phenotyped with their generations within the different
phase of the experiment.

Inbred lines from the experimental populations were phenotyped over three main common
garden experiments in two different lab locations (Lisbon and Paris) by three experimenters. The
first common garden included only A6140 lineages, the second CA[1-3]50 lineages and the last
one all CA[1-3]100 lineages and A6140 lineages. A6140 G-matrix was initially estimated only
from the first common garden (see details below). There were 197 independent thaws, each
defining a statistical block containing 2-22 samples. 188 inbred lines from the A6140 popula-
tion were phenotyped, with 52 CA150, 52 CA250, 51 CA350, 51 CA1100, 53 CA2100 and 68
from CA3100 (not including the A6140 lineages from the third common garden). Each line was
phenotyped in at least two blocks (technical replicates). CA[1-3]50 and CA[1-3]100 lines were
phenotyped within a year. A6140 lines were phenotyped over two consecutive years. A set of
63 A6140 lineages that were phenotyped together with the CA[1-3]100 populations in the third
common garden were used to compute a second A6140 G-matrix. We further phenotyped the
outbred populations and the 16 founders in a single common garden. For these, there were
9 independent thaws, of which 5 also contained founders. All founders and populations were
phenotyped twice except for A6140, which was included in six blocks.

To improve the estimation of the selection surface in our lab evolution environment (see
below), we also assayed locomotion bias in 56 inbred lines derived from populations evolved in
a high-salt environment (GA[1,2,4]50) for which fertility data was available (Noble et al., 2017).
These lines were phenotyped in the same blocks as the A6140 lines included in the gamma matrix
analysis (first common garden, single experimenter). Removing these lines from the analysis did
not affect the mode of the posterior distribution estimates of our coefficients. It only led to the
loss of statistical power reflected by wider credible intervals (analysis not shown).

Imaging. To measure locomotion behavior we imaged adults 72h post-L1 seeding using the
Multi-Worm Tracker [MWT version 1.3.0; Swierczek et al., 2011]. Movies were obtained with a
Dalsa Falcon 4M30 CCD camera and National Instruments PCle-1427 CameralLink card, imag-
ing through a 0.13-0.16 mm cover glass placed in the plate lid, illuminated by a Schott A08926
backlight. Plates were imaged for approximately 20-25 minutes with default MWT acquisition
parameters.

Choreography was used to filter and extract the number and persistence of tracked objects
and assign movement states across consecutive frames as forward, still or backwards, assuming
that the dominant direction of movement in each track is forward (Swierczek et al., 2011).
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MWT detects and loses objects over time as individual worms enter and leave the field of
view or collide with each other. Each track is a period of continuous observation for a single
object (the mapping between individual worms and tracks is not 1:1). We ignored the first 5 min-
utes of recording, as worms are perturbed by plate handling. Each movie contains around 1000
tracks with a mean duration of about 1 minute. The MWT directly exports measurements at a
frequency that can vary over time (depending on tracked object density and computer resource
availability), so data were standardized by subsampling to a common frame rate of 4 Hz. Worm
density, taken as the mean number of tracks recorded at each time point averaged over the total
movie duration, was used as a covariate in the estimation of genetic variance-covariances below.

Differentiating males from hermaphrodites. A6140 and all CA populations are androdioecious,
with hermaphrodites and males segregating at intermediate frequencies (Teoténio et al., 2012;
Theologidis et al., 2014). We were able to reliably (97% accuracy) differentiate between the sexes
based on behavioral and morphological traits extracted from MWT data. We first evaluated a
set of simple descriptions of individual size, shape, and movement to find a subset of metrics
that maximized the difference in preference for a two-component model between negative and
positive controls: respectively, inbred founders and two monoecious (M) populations which con-
tained no, or very few, males; and three dioecious (D) populations with approximately 50% males
[M and D populations were derived from A6140, see Theologidis et al. (2014) and Guzella et al.
(2018)]. Starting with worm area, length, width, curvature, velocity, acceleration, and movement
run length as parent traits from the Choreography output, derived descendant traits were de-
fined by first splitting parents by individual movement state (forward, backward, still) and cal-
culating the median and variance of the distribution for each track. Traits with more than 1%
missing data were excluded, and values were log-transformed where strongly non-normal (a dif-
ference in Shapiro-Wilk —logio(p) > 10). Fixed block and log plate density effects were removed
by linear regression before fitting the residuals to two-component Gaussian mixture models.
These two-component Gaussian models were fit to tracks for each line/population [R package
mclust Scrucca et al., 2016, VII spherical model with varying volume], orienting labels by area
(assuming males are smaller than hermaphrodites). We sampled over sets of three traits, requir-
ing three different parent trait classes, at least one related to size. We took the set maximizing
the difference in median Integrated Complete-data Likelihood (ICL) between control groups (log
area, log width, and velocity, all in the forward state). By this ranking, the 16 inbred founders and
two monoecious populations fell within the lower 19 samples (of 77), while the three dioecious
populations fell within the top 15 samples.

To build a more sensitive classifier robust to male variation beyond the range seen in con-
trol data, we then trained an extreme gradient boosting model using the full set of 30 derived
traits on the top/bottom 20 samples ranked by ICL in the three-trait mixture model [R pack-
age xgboost, Chen and Guestrin, 2016]. Negative control samples were assumed to be 100%
hermaphrodite, while tracks in positive controls were assigned based on mc/ust model prediction,
excluding those with classification uncertainty in the top decile. Tracks were classified by logis-
tic regression, weighting samples inversely by size, with the best cross-validated model achiev-
ing an area under the precision-recall curve of 99.75% and a test classification error of 3.1%
(max_depth = 4, eta = 0.3, subsample = 0.8, eval_metric = " error”). Prediction probabilities were
discretized at 0.5.

Males tend to move much faster than hermaphrodites (Lipton et al., 2004), and because indi-
vidual collision leads to loss of tracking, sex is strongly confounded with track length and number.
To estimate male frequencies at the sample level, tracks were sampled at 1s slices every 30s over
each movie in the interval 400-1200 seconds, and line/population estimates were obtained from
a binomial generalized linear model (Venables and Ripley, 2002). Estimates appear to saturate
at around 45%, presumably due to density-dependent aggregation of multiple males attempting
to copulate.
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Locomotion behavior

Definition of transition rates. In a one-dimensional space, individual locomotion behavior can be
described by the transition rates of activity and direction. We modeled the expected sex-specific
transition rates between forward, still and backward movement states with a continuous time
Markov process. We consider a system having d = 3 states with P(t;, ) € R%9, t, > 1,
denoting the transition probability matrix (Jackson, 2011; Kalbfleisch and Lawless, 1985):

(1) pij(t1, t2) = P[s(t2) = j | s(t1) = 1]

where s(t) € S, with & = {still, forward, backward} being the movement state occupied in
instant t. We consider a time-homogeneous process described by the transition rate matrix:

—qs Qqsf dsb
(2) Q= 19rs —ar Grpb
dbs Abf —A4b

where q; ; > 0Vi, j, subject to the constraint:

(3) qGi=Y_aij
J#i
Hence, six of the nine possible transitions are independent. Let § denote the parameters to
be estimated, containing the off-diagonal elements from equation 2:

(4) 0 = [qs.f. Gs,b Gf.s, Gf b Gb,s+ Gb.f]

In this model, an object’s time remains in a given state is on average 1/g;. Since the process
is stationary, the probability of transition is a function of the time difference At = t, — t, such
that P(t1, t2) = P(At), and the elements of the P(At) matrix:

(5) pij(At) =P[S(At) =j| 5(0) = i]
It then follows that:

(6) P(At) = exp(At Q)

where exp(-) denotes the matrix exponential. The constraint in equation 3 ensures that:

s fr 1y
(7) P(oo) = |fs fr 1
s fr 1

where f; is the relative frequency of state / that no longer depends on the previous state
(all three rows of the P(co) matrix converge). We find that the state frequencies from P(c0)
are a monotonic and mostly linear function of the observed frequencies of movement states
(Figure S3), showing that violations of the Markov assumption of the model do not induce a
large bias in the long-term predictions of our model.

Estimation of transition rates. To estimate transition rates, we have N objects (individual tracks)
from each technical replicate (Petri plate), with the data on the k-th object denoted as:

(8) Dk — (Xk,].rxk,Zv vXk,nk—l)

(9) Xiet = (St Sk +1, Dt ), Dty = tijr1 — tes >0
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where s | is the state of the k-th object in the /-th time-point in which it was observed, and
tx 1 is the instant of time in which this observation was made. Then, givendataD = {Dy, D», ..., Dy},
the log-likelihood for the model for analysis is (Bladt and Sorensen, 2005; Kalbfleisch and Law-

less, 1985):
N nkfl

(10) L(0|D)= Z Z ln(pi,j(At)‘i:Sk,/JZSk,/H,Af:Afk,/)
k=1 I=1

where p; ; (At) was defined in equation 5, and is calculated as a function of the parameters
f via equation 4. Therefore, the data on the N objects can be represented as the number of
observations of x = (/,, At), which we denote as n; j a+:

N nk—l

(11) nijat = Z Z Lij.ae Sk, Sk41, At
k=1 I=1

and where [; j a¢ [-] is the indicator function:

1, if51:i,52:jand(5t:At

12 I;; , S, =
(12) jatlst $2.0t] {0, otherwise

The input data can then be compressed by considering only the data:

(13) Z={zn,z,...,zm}
(14) Z) = (Atk, K/k) , Aty € §R+, K/k S Ng’d
(15) Ni = i j ag,

The log-likelihood to estimate transition rates can be finally rewritten as:

m
(16) £0]2) =317 (N ©In(Py)) 1y
k=1

where 1, is a d-dimensional vector of 1s, ® denotes the Hadamard product, and In Py is the
matrix obtained by taking the logarithm of each value in matrix P,.

These models were specified using RStan (Stan Development Team, 2018, R version 3.3.2,
RStan version 2.15.1), which performs Bayesian inference using a Hamiltonian Monte Carlo
sampling to calculate the posterior probability of the parameters given the observed data. We
used multi-log normal prior distributions with mean transition rate and a coefficient of variation:
In(qgi ;) ~ N (In(2),0.6).

Throughout, we denote non-self transition rates ¢, the six off-diagonal elements of the Q
matrix estimated by the above model.

Male and inbreeding effects. Using the transition rates measured in populations and inbred lines,
we fit a series of linear mixed-effects models to test for phenotypic evolution in the outbred
populations, for effects of male frequency on hermaphrodite transition rates in the outbred pop-
ulations, and for inbreeding effects in the inbred lines. Given sparse temporal sampling, we make
the conservative assumption of independence of observations within domestication and focal
stages. For transition rate qy:

(17) In(Qk) =a+ ﬁgenG + Yanct + Oanc + Cb +e€

with a the trait mean, 5z, a fixed effect of generation number ¢, v,,c and é,,c random effects
accounting for intercept and slope differences between the domestication and focal periods of
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lab evolution (both~ A(0, 02)), ¢ ~ N(0, 02) a random effect of block b and ¢ ~ A(0, 02) the
residual error.

(18) In(qx) = a + BF + Ypopid + Cp + €

with 3 a fixed effect of male frequency F, ypopia ~ N(O, 02) a random effect accounting for
differences between populations, ¢ ~ N(0, %) a random effect of block b, and ¢ ~ A(0, o2) the
residual error.

As we estimate the G-matrix from the line differences (see next section), it is likely that it
does not reflect the true additive genetic (co)variance matrix (G-matrix) unless the mean trait
values among lines are similar to the mean trait values of the outbred population from which the
lines were derived (Lynch and Walsh, 1998). Only with directional, genome-wide, dominance
or epistasis would the "broad-sense" G-matrix not be a good surrogate for the "narrow-sense"
additive G-matrix. See Chapter 3 of Kearsey and Pooni, 1996 for the different ways dominance
and epistasis can change segregation variance in F2 crossing designs. Because the lines and the
populations were phenotyped at different times, we included environmental covariates:

(19) In(qx) =a+ B+ T xHx* D+ v+ djineip + €

where environmental covariates: temperature (T), relative humidity (H) and density (D) are fit-
ted as fixed effects. 3 is a two-level categorical fixed effect (inbred lines or population). ~ is a
two-level categorical fixed effect accounting for differences between the years of phenotyping
measurements of the A6140 lineages. § ~ N(0, o2) a random effect accounting for line identity
within populations and e ~ N(0, 02) the residual error.

Both male and inbreeding models were fit using the /mer function in R package /me4, and
non-zero values of fixed effects were tested against null models without fixed effects with likeli-
hood ratio tests. Marginal r? for the male frequencies were computed using the r.squaredGLMM
function of the package MuMin (Barton, 2020).

Transition rate genetics

G-matrix estimation. Genetic (co)variances of transition rates per population are estimated as half
the between inbred line differences for lines separately derived from the evolving outbred pop-
ulations. In the absence of selection during inbreeding and canceling of directional non-additive
gene action, this broad-sense G-matrix obtained from inbred lines is an adequate surrogate for
the additive G-matrix of outbreeding populations (Kearsey and Pooni, 1996; Lynch and Walsh,
1998). We test these assumptions (see below).

G-matrices for the six non-self transition rates g, were estimated from trait values for the
inbred lines derived from focal populations. We estimated G-matrices separately for each of the
seven populations (A6140, CA[1-3]50, CA[1-3]100). The 6 transition rates g, were fitted as a
multivariate response variable y in the model:

(20) y=u+T+xHxD+L+B+e.

where the intercept (1) and the environmental covariates: temperature (T), relative humidity (H)
and density (D) were fitted as fixed effects. Environmental covariates were fitted individually
and with all possible interactions. Each covariate was standardized to a mean of 0 and standard
deviation of 1. Block effects (B) and line identities (L) were modeled as random effects and e
was the residual variance. We then estimated a matrix of genetic (co)variance as half the line
covariance matrix (L). An additional two-level categorical effect was included when estimating
the A6140 matrix that accounts for differences between the 2012 and 2013 phenotyping blocks
in the first common garden. As mentioned above, a second A6140 matrix was computed from
the data collected in the third common garden using the same model.
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For modeling we use the R package MCMCglmm (Hadfield, 2010). We constructed priors as
the matrix of phenotypic variances for each trait. Model convergence was verified by visual in-
spection of the posterior distributions and by ensuring that the autocorrelation remained below
0.05. We used 100000 burn-in iterations, a thinning interval of 2000 and a total of 2100000
MCMC iterations.

G-matrices under random sampling. For each of our seven populations (A6140, CA[1-3]50, CA[1-
3]100), we constructed 1000 randomised G-matrices to generate a null distribution against
which to compare the observed estimates. We randomly shuffled both the inbred line and block
identities and fit equation 20. We then computed the posterior means of our 1000 models to
construct a null distribution.

We additionally generated 1000 matrices for the A6140 population using the same proce-
dure on random subsets of 60 (of 188 total) inbred lines to determine the effects of sampling
the same number of lines as those for CA[1-3]50 and CA[1-3]100 populations.

G-matrix divergence and differentiation. We define genetic divergence whenever comparing de-
rived from ancestral G-matrices, and similarly, genetic differentiation when comparing the G-
matrices of replicate populations at generation 50 or generation 100.

To compare the overall size of the G-matrices during experimental evolution, we first com-
puted the trace of the matrices and then performed spectral analyses of the posterior ancestral
G-matrix. The decomposition of the posterior ancestral G-matrix allows one to describe the
overall G-matrix shape, with the relative genetic variance between the six eigenvalues of each
eigenvector, indicating whether the matrix is elliptical (a few large eigenvalues) or round (homo-
geneous eigenvalues). The first eigenvector (defined as gp.x) is the linear combination of traits
where the genetic variance is maximized.

To compare changes in G-matrix shape, we computed the angles © between the eigenvectors
of the G-matrices as in Noble et al., 2019. For g; and g; two eigenvectors:

(21) ©= @cos_l(ﬁ).
™ &ill = ll&ll

As both g; (gj) and —g; (-g;) are eigenvectors of the same G-matrix, © values between 90°
and 180° were transformed so that © always remains between 0° and 90°. We sampled the
posterior distribution of the G-matrix of interest for each angle to create a credible interval. The
null expectation for © is calculated as the angle between 1,000 pairs of random vectors sampled
from a uniform distribution /°(—1, 1) as in Mallard et al., 2023a.

In our final analysis of genetic divergence and differentiation, we used eigentensor methods
to explore differences between the G-matrices, following (Aguirre et al., 2014; Hine et al., 2009).
Genetic (co)variance tensors (X) are fourth-order objects describing how phenotypic dimensions
between transition rates maximize differences between all the G-matrices. The genetic variation
among multiple G-matrices can be described by X decomposition into orthogonal eigentensors
(E;, with i being the orthogonal dimensions), each associated with an eigenvalue quantifying its
contribution to variation in X («;). In turn, eigentensors can be decomposed into eigenvectors
(ej;), each with associated eigenvalues ()\;). Aguirre et al. (2014) implemented this approach in a
Bayesian framework using MCMCglmm, and Morrissey and Bonnet (2019) made an important
modification to account for sampling where the amount of variance in «; is compared to an
expected distribution by sampling a finite number of lines.

Selection on transition rates

Selection surface. The log-transformed, covariate-adjusted fertility values (best linear unbiased
estimates) for each inbred line were downloaded from Noble et al., 2017, exponentiated, and
divided by the mean to obtain a relative fitness measure (w;).

Since we did not observe any directional change in locomotion behavior or component tran-
sition rates during lab evolution, and because the inbred lines were derived after domestication,
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most of adaptation to the lab environments has occurred, and we do not expect linear (direc-
tional) selection to be significant (but see below). We estimated quadratic selection gradients
using partial regression, following (Lande and Arnold, 1983), with the MCMCglmm R package:

6 5 6
(22) wp=a+1/2x% Z szfv, + Z Z Vi, ko Zky,1Zky, 1 T €
k=1 ki=1 ko=k1+1

with a being the mean relative fitness among all lines and ~ the partial coefficients estimat-
ing quadratic selection on each transition rate k, or between pairs of transition rates k; and ko.
Environmental covariates (temperature, humidity, density) were defined and normalized as for
the G-matrices estimation described above. Model residuals were normal and homocedastic (not
shown).

We compared the results of this model (equation 22) with those of linear mixed effect mod-
els including as a random effect the additive genetic similarity matrix A between inbred lines, as
defined in Noble et al., 2017 and Noble et al., 2021. We have also compared results from equa-
tion 22 to models including coefficients for linear selection on each transition rate. Under both
circumstances parameter estimates are similar to those presented, albeit with changing credible
intervals (not shown). Including other measured traits by the worm tracker, such as body size [a
trait related to developmental time that is known to affect fertility in our populations (Theologidis
et al., 2014)] similarly does not affect the qualitative conclusions we reach.

G-matrix alignment with the selection surface. We used canonical analysis (Phillips and Arnold,
1989) to visualize the selection surface as:

(23) A=UT~U

with U being the matrix of eigenvectors of ~, and A the diagonal matrix of eigenvalues (de-
noted )\[1,6]). G-matrices were rotated to visualize them as:

(24) G =U'GU

To sample a null distribution of the ~ eigenvalues along the rotated dimensions, we fit the
same model after permuting the relative fitness values of the lines.We then extracted the diag-
onal elements of these permuted ~ after rotation using the estimated U.

To see the evolution of the G-matrix in the selection surface, we calculated the Pearson
product moment correlations between the eigentensor vectors explaining most of the genetic
differences between the 7 matrices (e11, e12) with the canonical selection dimensions (y;-ys). We
estimated uncertainty in these values by sampling from the posterior distribution of v+ 1000
times.

Inference of effects

Most of our analysis relies on Bayesian inference of genetic or phenotypic effects. As dis-
cussed in Walter et al. (2018), the "significance" of effects can be inferred when there is no
overlap between the posterior null sampling distributions with the posterior empirical estimate
of the expected values. Thus, we compare expected value estimates such as a mean or mode
with the 95% credible intervals under random sampling of the expected value. The "significance”
of the posterior mode estimates is based on their overlap with the posterior null distribution of
the posterior modes (Walter et al., 2018). For all comparisons of posterior distributions signifi-
cance can be inferred when their 83% credible intervals do not overlap (Austin and Hux, 2002),
assuming homoscedasticity.

Peer Community Journal, Vol. 3 (2023), article €119 https://doi.org/10.24072/pcjournal.349



https://doi.org/10.24072/pcjournal.349

Francois Mallard et al. 11

Results

Laboratory culture

Our lab evolution system is based on a hybrid population derived from 16 founder strains (Fig-
ure 1A). Replicate samples from the hybrid population were domesticated for 140 non-overlapping
generations at census size N=10* to an environment in part characterized by constant density,
temperature and relative humidity and by little spatial structure during the life cycle (see Meth-
ods). The dynamics of several life-history traits during domestication indicate that most adapta-
tion to lab conditions occurred by generation 100 (Carvalho et al., 2014a,b; Poullet et al., 2016;
Teotonio etal., 2012; Theologidis et al., 2014). From a single domesticated population we derived
replicate populations and evolved them for another 100 generations in the same environmental
conditions. Although we measured locomotion behavior throughout of lab evolution, we only
follow the G-matrix of its component traits during the last 100 generations, after adaptation, a
stage that we call here the focal stage of lab evolution (Figure 1A).

C. elegans reproduces mostly by selfing in nature though there is considerable variance in
male mating performance among the founders (Teotdnio et al., 2006). By training a model on a
suite of size- and locomotion-related metrics, we found that hermaphrodites could be differen-
tiated from males (see Methods), and estimated male frequencies were high during the entire
experiment (Figure S1). Because C. elegans are androdioecious, and hermaphrodites cannot mate
with each other, average expected selfing rates at a generation are 1 minus twice the male fre-
quency at the previous generation (Teotdnio et al., 2012), and we can conclude that outcrossing
was the predominant reproduction mode during lab evolution. Previously, we showed that effec-
tive population sizes during domestication were of about N.=102 (Chelo and Teoténio, 2013).
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Figure 1 - A. Experimental design. One hybrid population (AO) was created from the in-
tercross of 16 inbred founders. Six replicate populations were then domesticated to a
defined lab environment and after 140 generations one of these (A6140) was the an-
cestor to six other replicate populations maintained for an extra 100 generations under
similar conditions (CA). Inbred lines were derived by selfing hermaphrodites (colored cir-
cles) from A6140 and three replicate CA populations at generation 50 and 100 (blue
and red). Horizontal lines indicate outbred population samples that were phenotyped. B.
Modelling locomotion behavior from component traits, defined by the transition rates
between moving forward (F), moving backward (B) or being stationary (S). We consider
the 6 independent non-self rates, shown in colored arrows. C. Evolution of locomotion
behavior. Stationary frequency in the founders (pink dots) and outbred populations dur-
ing lab evolution. Colored overlays indicate three stages of lab evolution: hybridization,
domestication and focal. Ticks are sampled time points, while colored points during the
focal stage indicate populations from which inbred lines were derived. Point mean esti-
mates are shown for 3-6 replicate populations at other generations, with 95% confidence
intervals for each one of them. The evolution of the component traits of locomotion be-
havior in hermaphrodites and males, the transition rates between movement state and
direction, can be found in Figures S4 and S5.
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Evolution of locomotion behavior

We measured locomotion behavior at the reproduction time for each outbred population and
the inbred founders using worm video tracking (Swierczek et al., 2011). The output, after quality
control and initial analysis, are individual worm tracks categorized at a given point in time by
activity (moving, or not) and direction (forwards or backwards).

We model a three-state memoryless (Markov) process with homogeneous spatial and tempo-
ral dynamics (see Methods, Figure S2). We view this as an obviously false but useful approxima-
tion of worm locomotion behavior under our conditions, which is only partially violated (worms
tend to resume forward movement more often than expected; Figure S3). Component traits of
locomotion behavior are the (sex-specific) six non-self transition rates between forward move-
ment, backward movement, and immobility.

We find that while the founders of lab evolution show great diversity in locomotion behavior
under lab conditions, evolved populations rapidly attained, and maintained, a stable level after
hybridization for 240 generations. For example, considering the proportion of time individual
worms are stationary (Figure 1B), we observe values of around 40% for hermaphrodites - much
higher than most founders - while males are much more vagile (stationary around 10%). Neither
hermaphrodite nor male transition rates showed a directional change from the hybrid ancestral
state over the full 240-generation period (Table S2, Supplementary Figures S4 and S5). Differ-
ences between replicate populations can be explained by sampling error.

Broad-sense G-matrix

To estimate G-matrices, we used approximately 200 lines from the generation 140 domesti-
cated population (A6140), and approximately 50 lines from each of three replicate populations
derived from A6140 and sampled at generations 50 (CA[1-3]50) and 100 (CA[1-3]100) of the fo-
cal lab evolution. We use these broad-sense G-matrices as a surrogate for the narrow-sense (ad-
ditive) G-matrices of the outbred populations (see Methods). These two kinds of matrices might
not be identical because of selection during inbreeding or because of differential expression of
non-additive genetic effects in inbred and outbred individuals. Such differences, if present, man-
ifest as differences in the mean values of inbred and outbred samples as directional effects will
statistically average out for polygenic traits (Kearsey and Pooni, 1996; Lynch and Walsh, 1998).
We used the inbred lines and the focal A6140 ancestor to compare means for all transitions and
we did not find any evidence of directional non-additive genetic effects (Table S3).

Our G-matrices could also differ from the G-matrices of outbred populations due to the ab-
sence of males in the inbred lines; which were abundant in the outbred populations. This is be-
cause males are known to disturb hermaphrodite locomotion behavior (Lipton et al., 2004). We
tested for effects of male frequency on transition rates in outbred populations with univariate
linear models and found that they were weak at best (Figure Sé).

Genetic divergence and differentiation

For the domesticated 140 population (A6140), ancestral to all CA populations during further
100 generations in the same environment after adaptation, there is significant genetic variance
in all hermaphrodite transition rates, relative to a null distribution from permutations of line and
technical replicate identity (Figure 2A). Likewise, the posterior distributions of most (12 of 15)
covariance estimates between transition rates do not overlap O, and differ from the null distri-
bution of posterior means. The A6140 G-matrix is structured in two main behavioral modules,
with the transitions from still to forward or backward (i.e. leaving the still state) showing positive
covariances with each other and negative covariances with other transition rates.

Inbred lines from the ancestral and evolved populations at generations 50 and 100 were
phenotyped in separate common garden assays. CA[1-3]50 inbred lines show a clear difference
relative to other generations in all transition rate variances and mean body area or velocity (not
shown). We thus phenotyped a subset of A6140 lines together with all CA[1-3]100 lines and
ensured that these measurements were comparable (see Figure S9). As a consequence, we only
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compare G-matrix between A6140 and CA[1-3]100 populations, though we discuss the diver-
gence among the three CA[1-3]50 G-matrices as they were phenotyped in a single common
garden assay.
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Figure 2 - G-matrix evolution and divergence during the focal stage. A. A6140 G-matrix.
Shown are the 15 genetic covariances between transitions rates (top) and six the genetic
variances of transition rates (bottom), as bars and dots the 95% and 83% credible inter-
vals (black and red) and mean of the posterior distribution, respectively. "S", "F", "B" stand
for still, forward and backward movement states, with letter ordering indicating the di-
rection of movement. G-matrices of the CA populations can be found in Supplementary
Figure S7. B. Total amount of genetic variance computed as the sum of the G diago-
nal elements (trace). All observed posterior means differ from the null 95% of posterior
means (orange). C. Genetic variance along the phenotypic dimension encompassing most
genetic variation in the ancestral A6140 population (g,.x, red mean, 83% and 95% Cl).
A6140 g.x explains 64% of the total genetic variance Table S4). D. The angle (©, see
Methods) between the A6140 g,..x and the first three eigenvectors of the evolved G-
matrices (gmax, g2 and gz of the CA[1-3]100 populations). There is no alignment between
the evolved populations’ first three eigenvectors with the ancestral g;,,.. Dots show the
mean estimate with bars the 83% and 95% credible interval of the posterior G-matrix
distribution. The null expectation was obtained by computing the angle between pairs
of random vectors sampled from a uniform distribution.

When looking at the evolved CA populations, we see that their G-matrices are reduced after
100 generations of evolution (Figure S7). Reduced genetic (co)variance in generation 100 is par-
ticularly obvious when calculating the trace of the G-matrices, although all populations contain
more genetic variance than expected by chance (Figure 2B). The loss of genetic (co)variances
during focal evolution could be due to differences in statistical power or the result of continued
lab evolution. Sub-sampling A6140 to the sampling sizes of CA[1-3]100 populations, while in-
creasing the credible intervals did not affect the estimated modes, with many of them remaining
different from the null (Figure S8). This difference is robust to common garden assay variation
(see Figure S9A).

Eigendecomposition of the A6140 G-matrix further shows that, for the phenotypic dimen-
sion encompassing 64% of genetic variation in this population (g.x), the projected variance of
CA[1-3]100 populations in this dimension is much reduced (Figure 2C). In this g.x dimension
of maximal ancestral variation, leaving the still movement states (still-to-forward, and still-to-
backwards, transition rates) are positively associated with each other while being negatively as-
sociated with all other transition rates (Table S4). Therefore, the size of the G-matrix has evolved
over 100 generations.

Peer Community Journal, Vol. 3 (2023), article €119 https://doi.org/10.24072/pcjournal.349



https://doi.org/10.24072/pcjournal.349

14 Francois Mallard et al.

Next, we performed eigendecomposition of the CA[1-3]100 and compared if the shape of
the evolved G-matrices aligned with the g,.x of the ancestral population. We find that the angle
(©, see Methods) between the A6140 g,,..x and the first three eigenvectors of the evolved G-
matrices (gmax, & and gz) are much higher than zero, and indeed are not different from random
expectations (Figure 2D). At generation 50, however, only one replicate population diverged in
G-matrix shape because the angle between A6140 g,.x and the CA[1,3]50 gax is smaller than
expected by chance (Figure S11) - note that although the matrices were estimated in different
common garden assays, the direction of the canonical dimensions can be compared -. Overall,
the size and the shape of the G-matrix evolved over 100 generations.
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Figure 3 - Genetic divergence. A. Spectral decomposition of variation among A6140 and
CA[1-3]100 G-matrices. The variance «; associated with the ith eigentensor E; is com-
pared to a null permutation model where variation among matrices is due to sampling
(see Methods). Although several eigentensors are different from zero (black bars, 95%
credible interval) only the first one, Eq, do not overlap the null (red and orange bars, 83%
credible intervals). B. The coordinates of the G-matrices in the space of the first eigenten-
sor E; for each population tested. Absolute values of the coordinates in the first eigen-
tensor represents its contribution to the difference between matrices. C. Contribution
of specific transition rate combinations to coordinated changes among G-matrices. The
amount of genetic variance in the direction of the greatest variation among all Gs for the
first eigenvector of E; (e;1), for each population. Eigentensor decomposition of the CA[1-
3]50 G-matrices, testing for differentiation at generation 50, can be found in Figure S9.

We more formally tested for divergence of the G-matrices from the ancestral state during
100 generations and for differentiation between derived replicate populations at generation 50
using eigentensor analysis (see Methods). This analysis identifies the phenotypic dimensions
along which there are most differences between the several matrices being compared.

When looking for divergence between A6140 and CA[1-3]100, the first eigentensor, Eq, ex-
plains more variation than the null expectation (Figure 3A, 73%). G-matrix coordinates in the
space of E; (Figure 3B), show that the A6140 population drives most significant differences be-
tween all matrices, and thus encompasses most of the genetic divergence. Along the first eigen-
vector of E; (called e;1;Figure 3C), divergence is mostly due to the loss of genetic variance in
the CA populations (Figure 2C). Confirming this interpretation, we further find that e;; is highly
collinear with the g,.x of the A6140 population, the phenotypic dimension encompassing most
ancestral genetic variation (not shown). Similar conclusions can be reached when comparing the
A6140 results from the third common garden with the CA[1-3]100 populations while ensur-
ing that the assay period does not affect the variance estimates (see Figure S9). The first three
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eigenvectors of CA[1-3]100 populations did not align with the A6140 g,,.x (Figure 2D), though
by generation 50 CA[1,3]50 replicates were aligned (Figure S11). Together, these findings indi-
cate that the genetic variance is progressively dispersed over multiple phenotypic dimensions
during focal evolution.

We tested for differentiation between replicate populations during focal evolution by restrict-
ing the spectral analysis to only the three CA[1-3] G-matrices, separately at generation 50 and
generation 100. For the CA[1-3]50 populations, we observe that a single eigentensor was differ-
ent from the null expectations, explaining 53% of the differences between the three G-matrices
(Figure S10). The coordinates of these matrices in the space of the eigentensor indicate that
CA150 and the remaining two populations contributed in opposite directions to the difference
observed. Most of this difference is expressed along the first two eigenvectors (50% and 37%):
CA[2-3]50 lost variance along the first eigenvector and CA150 along the second one. A simi-
lar analysis at generation 100 did not show differentiation between the three CA[1-3]100 G-
matrices (not shown).

Selection on locomotion behavior

In Noble et al., 2017 we reported the fertility of many inbred lines used to estimate the G-
matrices. This data encompasses hermaphrodite self-fecundity and progeny viability until early
larvae, measured in an environment that closely mimicked that of lab evolution. With this data
at hand we can estimate the selection surface of locomotion in our lab environment by applying
equation 22, with relative fertility being partially regressed onto the transition rates (see Meth-
ods).
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Figure 4 - Selection surface of locomotion behavior. Canonical analysis of the v-matrix
shows positive phenotypic dimensions (y;-y3) of transition rate combinations under dis-
ruptive selection (as measured by the eigenvalue )\), and negative dimension (y;-ys) un-
der stabilizing selection. Stars show the mode of the posterior empirical distribution (see
Methods). These estimates are to be compared to the posterior distribution of null modes
(dots and colored bars, the mean and 83% and 95% credible intervals). The ~-matrix be-
fore canonical rotation can be found in Figure S12.

We find that the 95% credible intervals for several coefficients for correlated selection be-
tween pairs of transition rates do not overlap zero: negative between still-forward (SF) and
forward-still (FS) and positive between SB and FS, and FS and BS (Figure S12).
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To visualize the selection surface, we rotated the v-matrix with canonical analysis (see Meth-
ods). The resulting selection surface suggests a saddle with three unstable equilibria in three
canonical dimensions y1-y3, indicating disruptive selection, and three stable equilibria in three
dimensions (y4-ye), indicating stabilizing selection (Figure 4, Table S5). We only find, however,
evidence of weak and strong stabilizing selection at ys and yg, respectively, because only these
empirical estimates are unlikely under the null distribution.

G-matrix evolution in the selection surface

Projection of the G-matrices onto the canonical selection dimensions shows that most ge-
netic variance is concentrated in dimensions (y»-y,), while the dimensions under stabilizing se-
lection (y5 and yg) do not show much genetic variance that can be lost after generation 140
(Figure 5). y1 does similarly not show much genetic variance. Along all potential selection dimen-
sions, loss of genetic variance is consistent with drift when assuming an infinitesimal model of
trait inheritance (Barton et al., 2017) and effective population sizes of N, = 103.

However, for the y; and yg dimensions, initial and evolved populations at generation 100
clearly varied less than the founders' isolates of experimental evolution, as their 83% posterior
distributions do not overlap.

To assess if G-matrix evolution aligned with the selection surface, we calculated the correla-
tion between the directions of genetic divergence at generation 100 of the focal stage (Figure 3),
and differentiation of replicate population at generation 50 (Figure S10), with the canonical se-
lection dimensions (Figure 4). Overall there is a strong alignment of both genetic divergence and
genetic differentiation axes obtained from our two tensor analysis with y3 (Figure S13), meaning
that drift fully explains genetic divergence and differentiation.

Discussion

The evolution of C. elegans locomotion behavior during 240 generations in a fairly constant
and homogeneous lab environment is characterized by stasis, following a genetically and phe-
notypically dynamic 33-generation period of hybridizing the founder strains (Figure 1). We ob-
served that most genetic variance along the several phenotypic dimensions was reduced during
domestication and before the focal stage (Figure 5), presumably because of stabilizing selection.
After generation 140, during the focal stage, genetic variance continued to be lost (Figure 2),
though not obviously along the phenotypic dimensions where stabilizing selection was detected
(Figure 4, Figure 5). Most, if not all, of the genetic divergence (Figure 2, Figure 3, Figure S11) and
of the genetic differentiation among generation 50 populations (Figure S10) is sufficiently ex-
plained by genetic drift (Figure 5, Figure S13). Despite divergence and differentiation being suf-
ficiently explained by genetic drift, there was stabilizing selection after domestication because
the inbred lines used for selection estimates were from the focal stage (Figure 4, Figure S12).
Although we did not formally test for directional selection, it is likely that it only occurred during
the hybridization of the founders (Figure 1, Figure 5). We further suspect that the main pheno-
typic dimensions under stabilizing selection (ys and yg, Figure 4) lost genetic variance during this
initial hybridization stage.

Stabilizing selection and genetic drift therefore appear to have maintained phenotypic stasis
over the available phenotypic variation after founder hybridization. A future area of research
would be to ask if specific mechanisms of density and/or frequency-dependent selection - such
as sex allocation, sexual selection, viability selection during early larval growth, maternal effects,
etc.; as we before described in some of the same populations (Carvalho et al., 2014b; Chelo et
al., 2013; Dey et al., 2016; Poullet et al., 2016) -, underlie stabilizing selection on locomotion
behavior. It would further be interesting to test if starting lab evolution from founders whose
average locomotion behavior is away from the phenotypic space measured in our populations
converge into a similar "adaptive zone” cf. (Simpson, 1944; Uyeda et al., 2011), or continue to
be somehow constrained by standing genetic variation.

It can be argued that, with only 16 founders, we have little power to reject the hypothesis
that there was no loss and that the genetic (co)variances we found after domestication reflect
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Figure 5 - G-matrix evolution in the selection surface. Loss of genetic variance along axes
y> - y5, Which contain most of the genetic variance in the evolved populations and are un-
der very weak or no selection, is compatible with expectations from genetic drift under
the assumption of infinitesimal trait inheritance (dashed lines, for N. = 103). We mod-
elled drift as a per generation loss of genetic variance of Q‘/TA Along y; and ys, genetic
variance was much reduced relative to the founders of experimental evolution (green).
The genetic variance of each canonical axis y; was obtained by rotation of the original
G-matrices, with 95% (grey) and 83% (colored) credible intervals from sampling 400 ma-
trices in the posterior distributions for each G-matrix. Dots show the median estimates.
See also Figure Figure S13.

natural standing genetic variation. At mutation-drift balance, the G-matrix should reflect the pat-
terns of mutational effects described by the M matrix, the equivalent measure of trait mutational
variances, and covariances between them due to pleiotropy (Lande, 1979; Lynch and Hill, 1986).
Elsewhere, we have estimated the M matrix in two of the founders of lab evolution, which show
locomotion values divergent from those of lab evolution populations, by phenotyping a set of
about 120 lines that accumulated mutations in a nearly neutral fashion for 250 generations (Baer
et al., 2005; Yeh et al., 2017). We found that the M matrices from these founders have similar
sizes and are well aligned with each other, but not with the G-matrix of our A6140 domesticated
population (Mallard et al., 2023b). Loss of genetic variances from the founders during hybridiza-
tion was, therefore, partly because of directional selection. Future work should nonetheless try
to understand if mutation-selection balance is responsible for the maintenance of genetic vari-
ation in locomotion behavior in nature by comparing G-matrices from natural populations, as
they can be obtained from a large collection of wild isolates now available (Cook et al., 2017;
Lee et al., 2021), with M matrices (Houle et al., 1996; Johnson and Barton, 2005).
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One of the major findings is that of divergence and the transient differentiation of the G-
matrix during the last 100 generations of lab evolution. The phenotypic dimensions of genetic
divergence and differentiation among all populations were not aligned with the phenotypic di-
mensions under selection, and most, if not all, of the genetic variance lost during this focal 100-
generation period was expected with drift. Not unexpectedly, loss of genetic variance mostly
occurred along the dimensions with most genetic variance in the ancestral lab-adapted popula-
tion (gmax)- This dimension may represent a continuum between activity and direction of move-
ment in foraging and dwelling, expressed by the positive association between transition rates
from the still state (Flavell et al., 2020; Gray et al., 2005). Stabilizing selection favors a negative
association between transition rates from the still state, which, elsewhere, we have shown is
under directional selection in a new stressful environment (Mallard et al., 2023a). As was the
case here, however, transition rates from the still state in the new stressful environment did not
evolve under directional selection because of a lack of relevant genetic variation in the appropri-
ate direction. Overall, these observations are congruent with experiments in D. melanogaster by
K. Fowler and colleagues where, after bottlenecking an outbred population, there was a reduc-
tion in the size of the G-matrix for wing morphology in the derived bottlenecked populations,
and size divergence among them, as expected under drift (Fowler and Whitlock, 1999; Phillips
et al., 2001). Genetic differentiation also occurred because the shape of the G-matrix changed
as derived populations showed different genetic covariances between traits. Interestingly, drift
history was consequential to the future phenotypic divergence of particular bottlenecked pop-
ulations in a new environment (Whitlock et al., 2002). We suspect a similar result would have
been observed had we performed experimental evolution in a new environment and had the
differentiated replicates from generation 50 of the focal stage as ancestral populations.

Most of our analyses and the underlying theoretical predictions are predicated on the as-
sumption that the infinitesimal model of trait inheritance is a good approximation of the truth.
However, that assumption may be violated, as the genetic variances and covariances of locomo-
tion behavior will not in the short-term of our hybridization and lab evolution be independent of
allele frequency changes and linkage disequilibrium between smaller effect quantitative trait loci
(QTL). QTL allele frequency independence is expected only in the long-term when approaching
strong recombination and weak selection, mutation and drift, steady-states (Barton, 1990; Bar-
ton et al., 2017; Vladar and Barton, 2014). Our findings pose the question of how genetic drift,
together with stabilizing selection, generates variable allele frequency changes at QTL so that
pleiotropy or linkage disequilibrium between them eventually results in genetic covariances that
diverge from the ancestral states and are not common among replicate populations. Even if pop-
ulations eventually lose most genetic variance, this transient differentiation could be important
for future phenotypic evolution if the environment changes. In our case, recombination during
the focal stage should have remained much weaker than selection between 0.5-1 cM regions
(Chelo and Teotdnio, 2013; Noble et al., 2021, 2017); for total a total genome size of 300 cM. If
after domestication several QTL alleles within these linked regions segregate at low frequency,
it is possible that selection and drift was such that each replicate population during divergence
fixed alleles with differently signed phenotypic effects that would not average out when com-
paring across populations (Bernstein et al., 2019; Cohan, 1984; Gromko, 1995). Inflation of the
effects of drift is further expected because there is a correlation across generations between
the traits’ breeding values of successful parents and their offspring, resulting in a reduction in
effective population sizes (Robertson, 1961; Santiago and Caballero, 1998).

Short-term phenotypic stasis without genetic divergence in natural populations has been ex-
plained by indirect selection or phenotypic plasticity, among several other processes cf. (Estes
and Arnold, 2007; Pujol et al., 2018), despite heritability and direct selection on the traits that
were followed. Our study shows that phenotypic stasis can also occur with simultaneous ge-
netic divergence and transient genetic differentiation. We conclude that the adaptive landscape
in our lab environment is best understood as a table-top mountain, where a plateau with poten-
tially very shallow optima are of no consequence to genetic or phenotypic divergence. In the
long term, phenotypic stasis is a common pattern observed over up to a million years. For longer
periods, rapid divergence in mean trait values is observed from fossil records, or inferred from

Peer Community Journal, Vol. 3 (2023), article €119 https://doi.org/10.24072/pcjournal.349



https://doi.org/10.24072/pcjournal.349

Francois Mallard et al. 19

phylogenetic trees, potentially because new adaptive zones are accessible after extreme ecolog-
ical changes. Given our results, we speculate that upon such changes, phenotypic divergence
and differentiation of populations can be facilitated by cryptic evolution of genetic covariance
structure during phenotypic stasis.
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Supplementary Information

0.1. Supplementary Figures

Male frequency

0 50 100 150 200 250
Generation

Figure S1 - Male frequencies during lab evolution. Males and hermaphrodite tracks were
differentiated with a 30-trait classifier based on moments of size, shape and velocity-
related traits derived from Multi-Worm Tracker metrics, and frequencies were estimated
from 1s slices across movies. Empty circles indicate the estimates for each replicate popu-
lation (between 1 and 6 at each time point), red circles the mean among replicate popula-
tions (4= standard error). During the first 100 generations of domestication, the estimates
are similar to those obtained by directly counting the number of males (Teoténio et al.,
2012).
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Figure S2 - Schematic of data acquisition and analysis pipeline.
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Figure S3 - Correlation between the observed frequencies of each of the three move-
ment states and the predicted values from the Markov model. There is a consistent bias
in the long term predictions due to violation of the memoryless assumption of the model.
Some moving worms tend to remain in this state longer than expected on the long term,
that is, they can be briefly interrupted but are more likely to resume movement than pre-
dicted.
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Figure S4 - Evolution of mean hermaphrodite transition rates. Each panel shows the evo-
lution of a transition rate in the founders (pink dots) and during experimental evolution
(white dots). At the beginning of the domestication and focal stages there was one ances-
tral population, shown by empty circles with 95% credible intervals, while 3-6 replicate
populations were measured at each sampled time point indicated by tick marks.
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Figure S5 - Evolution of mean male transition rates, as in Figure S4. Note that the founder

inbred lines do not have any males.
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Figure S6 - The effects of males on hermaphrodite transition rates in the outbred popu-
lations during lab evolution. Each point shows the relation between transition rates and
male frequency for each replicate population at a given time point during lab evolution.
Red (black) lines show significant (non-significant) linear effects of male frequency on

transition rates. For all regression models the coefficient of determination is extremely
low (r2).
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Figure S7 - Median genetic covariance and variance estimates of the CA[1-3] popula-
tions at generation 50 and generation 100 (dots), as well as random expectations (stars).
Intervals are shown with the 95% and 83% credible intervals (black and red, grey and
orange). Many of the covariance estimates do not differ from zero (95% interval) and co-
variance and variance median estimates do not generally differ from a null distribution
obtained from random permutations of the phenotypic values (black dots are within grey
bars), particularly for generation 100 populations. This is explained by a loss of genetic
(co)variances with continued lab evolution after domestication, and not sampling a lim-
ited number of lines in each population, see Figure S7).
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Figure S8 - G-matrix estimates of the 140-generation domesticated A6140 population.
Black and red show the estimated genetic (co)variances using all inbred lines as in main
Figure 3. Grey and orange show genetic (co)variances after downsampling to 60 inbred
lines, approximately the minimum number of lines phenotyped in the CA[1-3] popula-
tions. Median estimates are similar between data sets, though with larger intervals in the
subsampled estimates.
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Figure S9 - Effect of the common garden assay on genetic (co)variances. A. Total amount
of genetic variance computed as the sum of the G-matrix diagonal elements (trace). The
amount of genetic variance in the two A6140 matrices from the two separate common
gardens is similar. All observed posterior means differ from the null 95% posterior means
(orange). B. The coordinates of the G-matrices in the space of the first eigentensor when
comparing the A6140 and the CA[1-3]100 populations, all computed from the third com-
mon garden assay (see Methods). The absolute values of the G-matrix coordinates in each
eigentensor represent its contribution to the difference between matrices. Coordinates
with opposing signs indicate that the matrices contribute in opposing directions. C. Con-
tribution of specific trait combinations to coordinated changes among G-matrices. Each
panel shows the amount of genetic variance in the direction of the greatest variation
among G (eigenvector of E; only). Here, as in panels A. and B., the results obtained from
this second A6140 G-matrix are similar to when using the one from the first common
garden assay.
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Figure S10 - Genetic differentiation. A. Eigentensor decomposition of variation among
G-matrices of the CA[1-3]50 populations. The variance o; associated with the ith eigen-
tensor E; is compared to a null permutation model where variation among matrices is due
to sampling (see Methods). Here, only the first eigentensors is different from the null. B.
The coordinates of the G-matrices in the space of the first eigentensor. The absolute
values of the matrices coordinates in each eigentensor represent its contribution to the
difference between matrices. Coordinates with opposing signs indicate that the matrices
contribute in opposing directions. C. Contribution of specific trait combinations to coor-
dinated changes among G-matrices. Each panel shows the amount of genetic variance in
the direction of the greatest variation among G (eigenvector of E; only).
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Figure S11 - The angle (©) between the first three eigenvectors of the evolved G-matrix
(gmax, g1 and gz of the CA[1-3]50 populations) with the A6140 g,... © differs from the
random expectations in CA150 and CA350 but not in CA250 showing genetic differen-
tiation. Dots show the mean estimate with bars the 83% and 95% credible interval of
the posterior G-matrix distribution. The null expectation was obtained by computing the
angle between pairs of random vectors sampled from a uniform distribution.
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Figure S12 - Quadratic selection coefficients. The partial regression coefficients of fer-
tility on trasition rates estimated by Bayesian inference. Each row shows the mode (dot),
and 83% and 95% credible intervals (red bar and line bars, respectively) of the posterior
distributions. The top 15 rows show coefficients of correlated selection between two
transition rates, the bottom 6 rows show coefficients of stabilizing or disruptive selec-
tion on each transition rate.
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Figure S13 - Alignment of G-matrices divergence and differentiation with the quadratic
selection surface. Shown is the density distributions of Pearson product moment correla-
tions between the first eigenvector e;; of E1 measured for divergence (between A6140
and CA[1-3]100, top panel) and for genetic differenciation (measured among CA[1-3]50,
bottom panel). The density distributions are obtained from 1000 sampling in the poste-
rior distribution of the  matrix.
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0.2. Supplementary Tables

Population name Generations Stage
OF5, AO -5,0 Ancestral population
Al1,A2,A3 10;30;60;100
A4 10;30;40;60;100 Domestication
A5,A6 10,;40;60;100
CA1, CA2, CA3 5;10;36:50;68;100
CA4, CA5 32,66 Focal
CA6 32

Table S1 - Identity of the phenotyped populations shown in Figure 1C. The first column
presents the population names, composed of a prefix followed by a replicate number.
The prefixes "A" and "CA" stand for domestication and focal stages respectively. "CA"
populations were all started from the Aé population at generation 140 (A6140) and the
generation number restarted at 0. OF5 populations was frozen 5 generations before the

AO during hybridization.

Transition rate Sex Chisq P value P adjusted
SF H 0.542 0.462 0.799
SB H 0.715 0.398 0.799
FS H 0.389 0.533 0.799
FB H 3.077 0.079 0.799
BS H 0.037 0.847 0.924
BF H 1.810 0.179 0.799
SF M 0.414 0.520 0.799
SB M 0.647 0.421 0.799
FS M 0.542 0.462 0.799
FB M 0.053 0.817 0.924
BS M 0.001 0.980 0.980
BF M 0.082 0.774 0.924

Table S2 - Phenotypic stasis: Results of anova LRT x3 tests for directional changes in
mean transition rates in hermaphrodites (H) and males (M), during the 240 generations
of lab evolution. Corrected P values for multiple comparisons were obtained with the
Benjamini-Hochberg method. Transition rates notation XY stands for transition from trait

XtoY, S: Still, F: Forward and B: Backward.
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Transition rates Chisq P values P adjusted
SF 5.445 0.020 0.118
SB 1.319 0.251 0.419
FS 0.107 0.743 0.860
FB 1.443 0.230 0.419
BS 1.170 0.279 0.419
BF 0.031 0.860 0.860

Table S3 - Inbreeding effects: Results of anova LTR y?2 testing for mean phenotypic differ-
ences between the mean of the inbred lines and the mean of the A6140 population from
which they were derived. Corrected P values for multiple comparisons were obtained
with the Benjamini-Hochberg method. Transition rates notation XY stands for transition
from trait X to Y, S: Still, F: Forward and B: Backward.
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A6140 population

8max 82 83 84 8s 86
Eigenvalues 0.263 0.105 0.022 0.01 0.005 0.003
HPD lower 0.196 0.074 0.016 0.007 0.003 0.002
HPD upper 0.348 0.156 0.03 0.014 0.006 0.003
Proportion 0.645 0.257 0.054 0.025 0.012 0.007
Trait loadings:

SF -0.438 0.474 0.086 0.286 -0.539  -0.451
SB -0.423 0444 -0.488 0.198 0.501 0.31

FS 0214 -0.315 -0.176 0.717 0.297 -0.472
FB 0.629 0.383 -0.596 -0.162 -0.236 -0.143
BS 0.112 -0.127 -0.074 0.533 -0.488 0.666
BF 0.419 0.563 0.602 0.234 0.276 0.119

Table S4 - Eigendecomposition of the A6140 G-matrix. Transition rates notation XY
stands for transition from trait X to Y, S: Still, F: Forward and B: Backward.
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Eigenvalues
HPD lower
HPD upper
Proportion

Trait loadings:

SF
SB
FS
FB
BS
BF

41
Gamma

Y1 1) Y3 y4 Ys Ye
4.904 0.256 0.02 -0.172 -1.489  -10.256
0.239 0.008 -0.14 -1.031 -3.456  -18.076
12.295 1.094 0.234 0.036 -0.46 -3.9
0.287 0.015 0.001 0.01 0.087 0.6
0.527 -0.429 -0.212 0.378 0.544 -0.234
-0.479 -0.167 -0.744  -0.251 0.3 0.192
-0.296 0.282 0.274 -0.276 0.536 -0.628
0.514 -0.132 0.026 -0.839 0.039 0.112
-0.11 0.016 0.447 0.062 0.548 0.695
-0.359 -0.831 0.356 -0.104 -0.154 -0.135

Table S5 - Eigendecomposition of the v G-matrix. Transition rates notation XY stands
for transition from trait X to Y, S: Still, F: Forward and B: Backward.
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