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Abstract
General linear models have been the foundational statistical framework used to discoverthe ecological processes that explain the distribution and abundance of natural popu-lations. Analyses of the rapidly expanding cache of environmental and ecological data,however, require advanced statistical methods to contend with complexities inherent toextremely large natural data sets.Modernmachine learning frameworks such as gradientboosted trees efficiently identify complex ecological relationships in massive data sets,which are expected to result in accurate predictions of the distribution and abundanceof organisms in nature. However, rigorous assessments of the theoretical advantagesof these methodologies on natural data sets are rare. Here we compare the abilities ofgradient boosted and linear models to identify environmental features that explain ob-served variations in the distribution and abundance of blacklegged tick (Ixodes scapularis)populations in a data set collected across New York State over a ten-year period. Thegradient boosted and linear models use similar environmental features to explain tickdemography, although the gradient boosted models found non-linear relationships andinteractions that are difficult to anticipate and often impractical to identify with a linearmodeling framework. Further, the gradient boosted models predicted the distributionand abundance of ticks in years and areas beyond the training data with much greateraccuracy than their linear model counterparts. The flexible gradient boosting frameworkalso permitted additional model types that provide practical advantages for tick surveil-lance and public health. The results highlight the potential of gradient boostedmodels todiscover novel ecological phenomena affecting pathogen demography and as a powerfulpublic health tool to mitigate disease risks.
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Introduction
Statistical models have been a cornerstone of understanding ecological phenomena in thenatural world. Ecological models traditionally focus on identifying the biotic and abiotic drivers ofnatural phenomena and on explaining the distribution and abundance of populations (Austin etal., 1984; Elith and Leathwick, 2009; Harvey et al., 1980; McLain et al., 1995; Tran et al., 2021a).Classical generalized linear modeling has resulted in many foundational ecological discoveries(Abbott et al., 1977; Austin et al., 1990; Elith and Leathwick, 2009; Kleiber, 1947; Root, 1988;Tilman et al., 1996). This modeling framework, however, has several technical disadvantages in-cluding strict assumptions about error distributions, sensitivity to outliers, and an assumption oflinear relationships between variables that can limit predictive power (Hastie et al., 2001; Mc-Cullagh and Nelder, 1989; Naghibi and Pourghasemi, 2015; Olden et al., 2008; Yee andMitchell,1991). The introduction of machine learning methods such as gradient boosted trees overcomesmany of these limitations, although direct comparisons of the effectiveness of machine learningmethods and linear models on natural data sets are rare (De’ath, 2007; Elith et al., 2008; Elithet al., 2006; Friedman, 2001). In this study, we compare a gradient boosting machine learningmethod (Pedregosa et al., 2011) with comparable general linear models in their ability to identifyenvironmental features affecting population dynamics and their ability to predict the distributionand abundance of blacklegged ticks (Ixodes scapularis), an arthropod vector of multiple humanpathogens.Many machine-learning frameworks such as neural networks, random forests, and gradientboosted trees are well suited to investigate ecological phenomena in the increasingly data-richresearch environment (Cutler et al., 2007; Farley et al., 2018; Friedman, 2001; Han et al., 2015;Rammer and Seidl, 2019; Stephens et al., 2017; Tran et al., 2021b). Among machine learningmethods gradient boosted trees are well reputed for very high predictive accuracy and accurateidentification of nonlinear relationships on tabular data (Bentéjac et al., 2021; Elith et al., 2008;Grinsztajn et al., 2022). Gradient boosting is an efficient machine learning algorithm that cananalyze large data sets, identify complex relationships among variables, and make highly accu-rate spatio-temporal forecasts. The power of the gradient boosting algorithm is in part derivedfrom their ability to automatically identify non-linear and non-additive relationships by combin-ing hundreds of decision trees into a highly accurate ensemble (De’ath, 2007; De’ath and Fabri-cius, 2000). These models have several advantages over traditional linear models including thatthey accept many data types, are unconstrained by data and error distributions, and automat-ically detect nonlinear and interactive relationships. Further, cross-validation and advances ininterpretative machine learning algorithms have addressed prior concerns that gradient boostedalgorithms are prone to over-fitting and are too complex to derive ecological inferences (Elithet al., 2008; Lundberg and Lee, 2017; Rudin, 2019; Ryo et al., 2021).
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The ability of linear and gradient boosted models to identify ecologically relevant featuresor to forecast demographic changes is rarely assessed in natural systems, despite the availabil-ity of appropriate data sets (though see (Becker et al., 2020; Elith et al., 2006; Escobar et al.,2018; Qiao et al., 2015; Shabani et al., 2016)). On one such dataset, linear models that exploredthe explanatory power of 217 environmental variables on the distribution and abundance of I.scapularis ticks identified several geographical, temporal, seasonal, environmental, climatic, andlandscape features that accounted for the majority of the natural variance in tick demography(Tran et al., 2021a). These linear models accurately predicted the distribution and abundance oftick populations in future years, providing a potentially powerful public health tool to mitigatehuman disease risks from I. scapularis-borne pathogens including the agents causing Lyme dis-ease, babesiosis, and anaplasmosis (Burgdorfer et al., 1982; Spielman et al., 1979; Telford et al.,1996). However, the data distributions assumed in this linear model framework required sepa-rate distribution and abundance models and the default assumptions of linearity and additivitylimited the exploration of non-linear and non-additive effects which are ubiquitous in ecologicalsystems (Hastie et al., 2001; Levin, 1998; McCullagh and Nelder, 1989; Olden et al., 2008; Tranet al., 2021a; Yee and Mitchell, 1991).Here, we use gradient boosted trees to investigate the relationship between environmentalfeatures and the distribution and abundance of I. scapularis using the same dataset previouslyanalyzed with general linear models (Tran et al., 2021a). The gradient boosted models were usedto forecast the distribution and abundance of ticks in areas and years not used to build themodels. Both the environmental features determined to influence tick demographics and thepredictive performance of the gradient boosted tree models were compared to linear modelstrained and validated using the same data sets (Tran et al., 2021a). Additionally, we utilize theflexibility of the gradient boosting framework to build and validate two additional models thatoffer practical benefits for disease surveillance, including ease of interpretation and the abilityto simultaneously predict tick distribution and abundance.
Methods

Study System
The presence and abundance of host-seeking nymphs were determined at 532 unique lo-cations between 2008 and 2018 using the standardized dragging, flagging, and walking surveyprotocols described previously (Prusinski et al., 2014; Tran et al., 2021a). Locationswere sampledevery 1–5 years with an average of 4.7 visits per site between 2008 and 2018. The environmen-tal features investigated as explanatory factors in our statistical models can be broadly catego-rized as geographical, temporal, seasonal, climatic, and landscape features. The tick density andenvironmental data used in this study are identical to those previously described in Tran et al.(2021a) to rigorously evaluate the relative efficacy of the gradient boosted and linear statisticalmodels.

Distribution and Abundance Models
Independent distribution and abundance gradient boosted models were built to allow di-rect comparisons with the previously published distribution and abundance linear models (Tranet al., 2021a). A combined distribution and abundance linear model was not built, as a log-transformation of tick abundance was used to approximate a normal distribution and thus siteswhere ticks were absent could not be accommodated (Tran et al., 2021a). Data were also pro-cessed as described previously in Tran et al. (2021a) to aid comparisons between gradient boostedand linearmodels. As examples, tickswere considered "present" at a site in a given year if nymphswere detected at any of the multiple site visits within the year and the visit with the greatestnymphal abundance estimate was used as the abundance value for that site in that year. For asummary of built models see (Supplemental Table 2).Training of gradient boosted models included feature selection, hyper-parameter tuning, andmodel fitting to the training data set (data from 2008-2017). Environmental features were se-lected separately for each model using a step-forward feature selection algorithm that optimizes
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average predictive performance on a 5-fold cross-validation data set (Raschka, 2018). Briefly,each of the 5 folds of the cross-validation data set was generated by randomly partitioning thetraining data into subsets for model fitting (80% of data) and evaluation (20% of data), such thateach fold would contain a unique 20% of the training data for evaluation. Models were limited to30 or fewer environmental features to reduce the probability of over-fitting (Cawley and Talbot,2010). Hyper-parameters that influence the learning process were tuned using a random searchalgorithm to find values that maximized performance on cross-validation data sets (Pedregosaet al., 2011). Using cross-validation sets to optimize which features and hyper-parameters areused in the final model fitting process reduces over-fitting to the training data, making the re-sultant model more likely to generalize to out-of-sample data (data collected in 2018, whichwas not used to train the model). The analytical code for this training process is available at (https://doi.org/10.17632/w8bp678m3f.2; Manley et al., 2023).
Predictive Accuracy Assessment

The out-of-sample predictive accuracy of the gradient boosted distribution and abundancemodels was compared to the accuracy of linear distribution and the abundance models using thepreviously published accuracy metrics (Tran et al., 2021a). Briefly, the predictions from gradientboosted and linear distribution models to the 2018 out-of-sample data were assessed basedon accuracy, sensitivity, and specificity. Abundance model predictions to the out-of-sample datawere compared using root-mean-squared-error and R2 values. Additionally, to compare the abun-dance models in accordance with the methodology from Tran et al. (2021a), abundances wereconverted from log-transformed counts of nymphs into discrete categories of low (1-4 nymphs),medium (7-35), and high (36+), and predictions were considered accurate if they were withinone natural log unit of the average prediction error.
Simultaneous Modeling of Distribution and Abundance

A multi-class categorical model and a density-estimating regression model were built usingthe gradient boosting framework. These models do not require the data processing, such as thelog-transformation necessary for the linear models, which allows simultaneous analysis of pres-ence and abundance from all sites and years. Themulti-class model predicts nymphal abundanceto one of three categories: absent (no nymphs), low abundance (1-35 nymphs), and high abun-dance (>35 nymphs). Out-of-sample performancewas assessed as the accuracy of the predictedclassification to locations visited in 2018.The gradient boosted density model is similar to the previously described abundance modelexcept that the response variable was tick density, as opposed to the number of ticks collectedused in the linear model, and that site densities of zero ticks were permitted. Nymphal densitywas estimated as the number of ticks collected per collection-hour. Collector hours here werelimited to four as preliminary analyses and prior studies demonstrated that density estimateswere biased when larger collection-hour values were included (Tran et al., 2021a). The statisticalweight of sites during model fitting was positively correlated with collection-hour up to fourhours as density estimate accuracy is greater at sites with more sampling effort.
Environmental Feature Analyses

The relationships between nymphal tick distribution or abundance with individual environ-mental features in each model were analyzed using SHAP (SHapley Additive exPlanation) values(Lundberg and Lee, 2017). Briefly, this interpretative framework estimates the impact eachmodelfeature has on model predictions. Together these estimates provide a global view of the impactof each feature on model predictions in the context of other model features. SHAP values wereused to identify and visualize the non-linear relationships and interaction effects discovered byeach model. SHAP values were not used to evaluate the impact of environmental variables onpredictions from the multi-class model as the complex outputs of this model are not supportedin this analytical framework.
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Results
The gradient boosted distribution and abundance models outperformed their linear modelcounterparts in both predictive power and identification of complex relationships between en-vironmental features. The gradient boosted distribution model (Figure 1A), built using data from2008-2017, accurately predicted 94% of sites where ticks were present in 2018 and 84% ofsites where ticks were absent. By comparison, the linear distribution model trained and testedon the same data accurately predicted 80.6% of sites where ticks were present and 80.7% ofsites where they were absent. Importantly, the gradient boosted model had a far lower falsenegative rate than the linear model (5.8% vs 19.4%), an especially costly error for public healthefforts. The gradient boosted distribution model also made highly accurate predictions to the 27sites that were visited for the first time in 2018 (true positive rate = 85%; true negative rate =86%).

Figure 1 – Gradient boosted models more accurately predict future (A) distributionsand (B) abundances of nymphal ticks than generalized linear models. (A) The gradientboosted distribution model was more accurate (90.6% vs 80.6%), more sensitive (truepositive rate = 94.2% vs 80.5%), and more specific (true negative rate = 84.2% vs 80.7%)than its linear model analog. (B) The gradient boosted abundance model also more accu-rately predicted to the out-of-sample data than its linear model counterpart (82.5% vs74.8%). Stars indicate sites with accurate predictions from the gradient boosted modeland inaccurate predictions from the linear model; triangles represent accurate linearmodel predictions and inaccurate gradient boosted model predictions; squares repre-sent sites accurately predicted by both models; circles represent inaccurate predictionsby both models. Confusion matrices summarize the accurate and inaccurate predictionsmade by the gradient boosted model vs the linear model.
The gradient boosted abundance model more accurately predicted out-of-sample tick abun-dance than the analogous linear model in all quantitative metrics (RMSE = 0.972 vs. 1.096; R2

= 0.59 vs. 0.48). Gradient boosted model predictions were also converted into discrete cate-gories to compare the accuracy of the linear and gradient boosted models using the previouslypublished methodology (Tran et al., 2021a). The gradient boosted abundance model was moreaccurate than its linear model counterpart, correctly predicting the abundance at 82.5% of sitescompared to the 74.8% of sites correctly predicted by the linear model (Figure 1B). Sites vis-ited for the first time in 2018 were also predicted with high accuracy by the gradient boostedmodel (83.3%; RMSE = 0.948; R2 = 0.61). Importantly, nearly 40% of all sites incorrectly pre-dicted by the gradient boosted model were conservative in that the model overestimated tickabundances at sites with high abundance (n=3) or underestimated tick abundance at sites with
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low abundance (n=4). These errors are less costly as they indicate that the model has correctlypredicted sites with high or low tick abundance but erred in terms of magnitude.Complex non-linear relationships between environmental features and nymphal abundancewere detected in gradient boosted models that were not investigated in the previously pub-lished linear models (Tran et al., 2021a). For example, estimates of deer population size have ahighly complex relationship with nymphal abundance (Figure 2A): deer harvest values less than2000 result in decreased nymphal abundance predictions; deer harvest between 2000 and 3000are correlated with increases in nymphal abundances; deer harvest between 3000 and 6000 arecorrelated with decreased nymphal abundances; and deer harvest above 6000 is correlated withincreased nymphal abundance. Although not biologically relevant, the number of tick collectionefforts (sampling hours) had a positive but decelerating relationship with the number of nymphscollected (Figure 2B). That is, the number of nymphs collected is strongly and positively cor-related with the number of hours field technicians flagged for ticks at sites visited for fewerthan two hours. However, this positive relationship becomes less pronounced at sites visited forgreater than two hours and is not detectable at sites visited for more than five hours.

Figure 2 – Gradient boosted models identified non-linear relationships that are imprac-tical to investigate with linear models. (A) The association between estimates of deerpopulation size and nymphal tick abundance oscillates between having a positive effectto a negative effect. (B) The relationship between person-hours collecting hours and tickabundance is a positive but decelerating function. Data shown are the rolling average(rolling window = 50) of the impact that (A) deer density estimates or (B) tick collectioneffort has on tick abundance.
The impacts of non-additive interactions between environmental features on the presenceof nymphal ticks were also detected in gradient boosted models. One ecologically relevant inter-action demonstrates that the effect of the month in which a site is sampled on the presence ofactive nymphs is conditioned on the maximum temperature in June of the year before sampling(Figure 3). Although sampling month is generally highly predictive of nymphal presence due tothe seasonal activity patterns of I. scapularis in New York State (Yuval and Spielman, 1990), tickswere more likely to be detected in the summer months (May-August) if the temperature in Juneof the prior year was hotter. By contrast, the probability of detecting nymphal ticks in fall months(September-December) was greater if the maximum temperature in June of the prior year wascooler. This non-additive effect was strong enough to change the month of May from being neg-atively associated with the presence of nymphs when June of the prior year was cooler to apositive association when this month was warmer.The sets of environmental features used by the gradient boosted distribution and abundancemodels were similar to those included in linear models but were related to nymph populations
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Figure 3 – Gradient boosted models detected ecologically relevant interactions be-tween environmental features which impacts the presence of nymphal ticks. The max-imum temperature in June of the year before a collection event modulates tick phenol-ogy. That is, nymphal ticks are more likely to be collected between May and August inyears when the prior June was hotter while the likelihood of nymphal tick presence inSeptember-December increases in years when the prior June was cooler.

Figure 4 – The multi-class model accurately predicts both the presence and abundanceof nymphs across New York State. The model accurately predicted 90.6% of sites with-out ticks, 70% of sites with low tick abundance (1-35), and 64.9% of sites with hightick abundance (> 35). Further, most inaccurate predictions were one class apart (absentvs low or low vs high). That is, sites without nymphs were rarely predicted to have ahigh abundance (1.3%) and sites with high abundance were rarely predicted to have nonymphs (5.4%).
in more complex ways. Despite different feature selection processes, the two modeling frame-works frequently used identical or strongly correlated features as predictors (Supplement Table1). However, the linear models related features to nymph populations linearly and without in-teraction effects, while the relationships in the gradient boosted models were always non-linearand frequently incorporated interactions. In fact, both non-linear relationships discussed above(Figure 2) involve features that were included in the previously published linear models.
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The gradient boosting framework was used to produce two additional models - a multi-classand a density model - that simultaneously estimate the presence and abundance of nymphs.The multi-class model forecasts which sites will have no nymphs, low nymphal abundance (1-35), or high nymphal abundance (>35) with high accuracy, correctly classifying 80% of sites inthe out-of-sample data set (Figure 4). This multi-class model predicted the presence or absenceof nymphs with similar accuracy as the gradient boosted distribution model (both ≈90%) buthas the additional functionality of distinguishing between two non-zero abundance classes. Thenovel density model predicts a continuous estimate of tick densities (ticks per collection hour)to out-of-sample data with high accuracy (R2 = 0.42). Restricting the comparison to the subsetof the out-of-sample data included in the abundance models (Figure 1B) resulted in the densitymodel performing comparably with the linear abundance model (RMSE = 1.06 vs. 1.096; R2 =0.51 vs. 0.48) while retaining the added functionality of predicting the absence of nymphs. Boththe multi-class and density models have similar predictive accuracy at sites that were visited forthe first time in 2018 and those that had been sampled prior to 2018.
Discussion

Machine learning analyses of the recent expansion of publicly available biological and envi-ronmental data is ideal for discovering novel ecological insights and accurately forecasting thedistribution and abundance of populations in nature. The gradient boosted modeling frameworkefficiently and accurately identifies both simple and complex ecological relationships from largedata sets and produces highly accurate predictions of the demography of natural populations(Elith et al., 2008; Han et al., 2015; Ramazi et al., 2021; Wyse and Dickie, 2018). However, thetheoretical advantages of gradient boosted models over traditional linear models are rarely vali-dated using natural data sets. As a result, many ecologists rely exclusively on generalized linearmodels even though gradient boosted models could be more effective for exploring and inter-preting data (LaRue et al., 2019; Shah et al., 2019; Sutomo et al., 2021;Walter et al., 2018). Herewe demonstrate that the distribution and abundance of natural populations of I. scapularis tickscan be predicted with greater efficiency and accuracy with gradient boosted models than withlinear models. Additionally, the gradient boosted models identified non-linear and non-additiverelationships, which are difficult to detect in linear modeling frameworks, that improved pre-dictive accuracy. These results indicate that gradient boosted models can improve both spatio-temporal forecasts and provide novel insights into the ecology of natural populations.The gradient boosted occurrence and abundancemodels consistently outperformed their lin-ear counterparts in predictive accuracy, illustrating the potential of this framework to improvepredictions of ecological phenomena. When trained and tested on the same datasets as the lin-ear models from Tran et al. (2021a), the gradient boostedmodels were better able to forecast thedistribution and abundance of nymphs (Figure 1). Notably, the gradient boosted models outper-formed their linear analogs on sites not previously sampled, suggesting that the superior predic-tive performance of this framework results from incorporating more precise ecological relation-ships rather than overfitting to previously sampled sites. However, gradient boosted models arenot always expected to be the most accurate type of model for a given problem. As examples,linear models might be favored for small datasets with simpler relationships when overfittingis likely to be a problem, whereas neural networks are expected to outperform in contexts likeimage or speech classification (Deng et al., 2013; Hastie et al., 2001; Rawat and Wang, 2017).Nonetheless, our findings highlight gradient boostedmodels as a powerful but underutilized toolfor predicting demographic changes in natural populations.The gradient boostedmodels automatically identified complex relationships between severalenvironmental features and the distribution and abundance of ticks. For example, these modelsfound a non-linear relationship between deer harvest data - an estimate of deer populationsize - and nymphal tick abundance (Tran et al., 2021a). The non-linear relationship identifiedin the gradient boosted model implies that changes in deer populations are positively associ-ated with tick abundance at some deer population sizes and negatively at others (Figure 2). Thisnon-linear relationship may explain contradictory conclusions in previous reports in which some
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identify positive relationships between deer population size and tick densities while others donot (Kugeler et al., 2016; Lewis et al., 2017; Ostfeld et al., 2006; Schulze et al., 2001; Tran etal., 2021a). Statistical models like gradient boosting do not identify the ecological mechanismunderlying this relationship but do suggest avenues for further experimentation to resolve thisdiscrepancy. Gradient boosted models also identified an interaction between climate variablesthat influences tick questing activity throughout summer months. Specifically, hotter tempera-tures in June of the year prior to tick collections alter tick phenology such that nymphal ticksare active earlier in the season (Figure 3). These results warrant further investigation into howclimate change may affect seasonal activity patterns of ticks and possibly the pathogens theytransmit (MacDonald et al., 2021).Relationships between variables identified by any statistical model should be interpretedwithcaution. The ecological relationships included in the gradient boosted models presented herewere identified using SHAP value analyses that determine the effect each variable has on modelpredictions (Lundberg and Lee, 2017). Thus, these relationships represent the patterns our mod-els used to make accurate predictions but do not necessarily represent causal processes. Never-theless, similar environmental features were detected in the gradient boosted and linear modelsdespite using different approaches (Supplemental Table 1), adding confidence that these featuresare useful in forecasting tick distribution and abundance (Tran et al., 2021a). Additionally, thecomplex relationships involving these shared environmental features suggests that the gradientboosted framework has the potential to yield novel ecological insights, even on datasets pre-viously analyzed with traditional statistical methods. While further experimentation is neededto clarify the biological significance of these relationships, they demonstrate the ability of thegradient boosting framework to automatically discover non-linear and interaction effects whichgeneral linear models often do not detect.The flexibility of the gradient boosted modeling framework allowed us to build models withat least three practical advantages for both ecological interpretation and public health (De’ath,2007). First, the multi-class and density model simultaneously predict the distribution and abun-dance of ticks, allowing tick population size to be estimated with a single model. Second, datapre-processing such as log-transformations is not required in the gradient boosting frameworkmaking both the predictions and error estimates more interpretable. Lastly, the density modelanalyzes tick density directly, a correlate of the human contact risk with a questing nymph, as op-posed to the number of ticks collected which is conditioned by the sampling effort (Khatchikianet al., 2012). While it is in principle possible to achieve these advantages using generalized lin-ear models (for an ecological example see Bah et al., 2022), the flexibility of the gradient boost-ing framework greatly simplified the process of implementing these multiple types of models(Natekin and Knoll, 2013).Applying the gradient boosted modeling framework to pathogens carried by I. scapularismayprovide additional improvements for disease risk forecasting and could identify the environ-mental features that correlate with human risk of contracting a I.scapularis-borne disease. Forexample, gradient boosted analyses of the distribution and abundance of ticks carrying Borre-lia burgdorferi, Babesia microti, Anaplasma phagocytophilum, or other tick-borne pathogens arelikely to identify ecological factors impacting pathogen populations and could predict the riskof encountering an infected tick. More broadly, the gradient boosted framework can improveecological models of many infectious disease systems (Ashby et al., 2017; Fischhoff et al., 2021;Giles et al., 2018; Han et al., 2015; Solano-Villarreal et al., 2019). The rapidly expanding envi-ronmental data sets can be efficiently analyzed by gradient boosted models in order to detectecological relationships and accurately predict disease risk in many systems, thus promoting abetter understanding of natural disease systems and aiding the development of public healthstrategies.
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