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Abstract—Recent advancements in Convolutional Neural Networks (CNNs) have significantly supported the field of breast cancer 

discovery using medical imaging. An improvised DenseNet architecture for the classification of histo-pathological breast cancer images is 
explored in this work. Leveraging the effectiveness of DenseNet in capturing intricate patterns through dense connectivity, our improvised 

architecture aims achieve high accuracy and efficiency of classification. The model integrates novel features such as optimized bottleneck 

layers and attention mechanisms, contributing to improved feature extraction and classification capabilities. The improvised DenseNet produced 

a accuracy of 93.39% on the breakhis dataset. A summary of key findings and future research directions, emphasizing the need of custom CNN 

models in breast cancer detection is provided. 
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I.  INTRODUCTION 

One of the biggest worldwide public health concerns is still 
breast cancer, particularly affecting women. Its early detection 
and accurate classification are vital for effective treatment 
strategies and ultimately improving survival rates. The advent of 
Convolutional Neural Networks (CNNs) in medical imaging, 
especially in analyzing histopathological images, has 
revolutionized the field of oncology diagnostics, creating new 
pathways for the accurate and effective detection of breast 
cancer The breast cancer diagnosis of is a critical aspect of early 
intervention and improved patient outcomes. Convolutional 
Neural Networks (CNNs) have emerged as powerful tools in the 
arena of medical imaging in recent years, revolutionizing the 
way breast cancer is detected and classified. The significance of 
CNNs in the diagnosis of breast cancer lies in their ability to 
autonomously analyze complex patterns and subtle features 
within medical images, particularly mammograms and histo-
pathological slides. 

Traditional methods of diagnosis often relied on human 
expertise, introducing the potential for subjective interpretation 
and human error. CNNs, as a subset of deep learning, offer a 
data-driven and automated approach that enhances accuracy and 
efficiency in identifying abnormal tissue patterns indicative of 
cancer. Their capacity to learn hierarchical representations 
allows CNNs to discern intricate details in medical images, 
aiding for early detection of lesions, tumors, and abnormalities. 
CNNs capability to process vast amounts of imaging data 
efficiently accelerates the diagnostic process, enabling timely 
interventions and tailored treatment plans. 

An architecture that translates the findings into a 
straightforward pattern of connectivity is proposed.  All levels 

relate to corresponding feature-map sizes directly with each 
other to guarantee the maximum information flow among 
connecting layers in the network. Each layer receives extra 
inputs from all former layers and transmits its individual feature 
maps to all following layers to maintain the feed-forward nature. 

The features are concatenated rather than summated before 
they are input to the layer. This ensures that the nth layer has ‘n’ 
inputs consisting of the attribute map of all the preceding 
convolution layers. This causes (n(n-1))/2 connections in the 
network. 

The DenseNet layers being thin as they have few filters per 
layer, add small set of feature maps to the collective knowledge 
of the system and keep the remaining features unchanged. 

II. RELATED WORK 

A DenseNet, is indicated by its dense connectivity outline, 
where each layer receives a direct input from all preceding 
layers. This thick connection facilitates feature reuse, 
encourages parameter efficiency, and enhances gradient flow 
through the network is projected by Huang et al. [1]. 

DenseNet were employed for the histopathological 
categorization of breast cancer images. The study demonstrated 
superior performance in difference to traditional methods, 
showcasing DenseNet's ability to capture complex patterns 
within tissue samples [2]. 

The extended use of DenseNet to mammography images, 
achieving high accuracy in recognizing between benign and 
malignant lesions [3]. The dense connectivity in DenseNet 
proved advantageous in acquiring hierarchical representations 
from diverse image features. 
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Transfer learning with DenseNet for breast tumor 
classification via mammograms was presented. The pre-trained 
model significantly improved classification accuracy, 
emphasizing the magnitude of leveraging existing knowledge 
for medical image analysis [4]. 

Integrated radiomic features with DenseNet-based models, 
achieving improved performance in distinguishing between 
different breast cancer subtypes was demonstrated [5]. This 
integration showcases the versatility of DenseNet in handling 
multimodal data for comprehensive diagnosis. 

Zhang [6] proposed a hybrid architecture combining 
DenseNet with attention mechanisms for breast cancer 
classification. The study demonstrated improved interpretability 
and highlighted the potential of hybrid models for better 
capturing relevant features, etc. 

III. ARCHITECTURE 

A. DenseNet 

The design of DenseNet which differentiates from other CNN 

models is shown in Fig 1. 

 
Fig 1: DenseNet architecture 

(Courtesy: https://www.researchgate.net/figure/Five-

layers-of-a-DenseNet-block-with-a-growth-rate-of-4-feature-

maps-per-layer-source_fig1_320170916) 

 

Densely Connected Convolutional Networks, is a profound 

learning architecture introduced by Huang et al. [8]. It addresses 

challenges associated with information flow and vanishing 

gradient problems in very deep networks by introducing dense 

connectivity between layers. 

Unlike traditional architectures where each layer connects 

only to its successive layer, DenseNet connects each layer to all 

subsequent layers in a dense and direct manner. This dense 

connectivity is accomplished by concatenating the feature maps 

from all earlier layers, allowing each layer to gather direct input 

from all its predecessors. Mathematically, for a known layer l, 

the output is calculated as (1): 

 

𝑥𝑙 = 𝐻𝑙([𝑥0, 𝑥1, . . . , 𝑥𝑙 − 1])            (1) 

 

Here, [x0,x1,…….,xl−1] denotes the chain of characteristic 

maps from all prior layers, and Hl represents the composite 

function of convolution, batch standardization, and non-

linearity for layer l. 

Feature mining is a fundamental technique that maximizes 
classification accuracy[7-10]. DenseNet is provided, which 
makes use of dense connections between layers, lowers the 
quantity of parameters, improves propagation, and promotes 
feature reuse [11]. 

[18-20] discusses the application of Convolutional Neural 
Networks (CNNs) for breast cancer histopathological image 
classification 

DenseNet introduces bottleneck layers to enhance 
computational efficiency. These bottleneck layers consist of a 
1x1 convolution followed by a 3x3 convolution. The 1x1 
convolution lowers the number of input channels before the 3x3 
convolution, reducing the computational burden while 
maintaining expressive power. Mathematically, the operation in 
a bottleneck layer can be expressed as (2): 

 
𝑦𝑙 = 𝐻𝑙([𝑥0, 𝑥1, . . . , 𝑥𝑙 − 1]) = F𝑙(𝑊𝑙 ⋅ [𝑥0, 𝑥1, . . . , 𝑥𝑙 − 1])    (2) 

 
Where Fl represents the bottleneck layer function, Wl 

denotes the weights, and yl is the output of layer l. 
Multiple dense blocks, each made up of numerous layers 

with dense connections, make up DenseNet. The dense blocks 
make it easier to understand complex patterns and encourage the 
reuse of features. Mathematically, a dense block with L layers 
can be expressed as (3): 

 
𝑥𝑙 + 1 = 𝐻𝑙([𝑥0, 𝑥1, … , 𝑥𝑙])             (3) 
 
For each layer in the dense block, the yield is achieved by 

concatenating the feature maps beginning from all former layers. 
To control the growth parameters and computational cost, 

DenseNet incorporates transition layers between dense blocks. 
These transition layers consist of a 1x1 convolution pursued by 
2x2 average pooling. The 1x1 convolution reduces the number 
of passages, and pooling reduces the spatial dimensions. 
Mathematically, the transition layer operation can be represented 
as (4): 

𝑍𝑙 = Θ𝑙([𝑥0, 𝑥1, … , 𝑥𝑙])             (4) 
 
Where Zl is the yield of the transition layer, and Θl represents 

the composite function of 1x1 convolution and average pooling. 
The transition layers are meant to aggregate the characteristic 

maps from a dense block and reduce its dimensions.  
DenseNet employs global average pooling before the 

decisive fully connected layer for classification. GAP reduces 
the spatial dimensions to 1x1, and the ensuing feature maps are 
fed into a SoftMax tier for classification. The classification can 
be expressed as (5):  

 

𝑝𝑟𝑒𝑑 = Softmax(𝑊fc ∗ Pool([𝑥0, 𝑥1, … , 𝑥𝐿]))           (5) 

 
Here, pred is the predicted probability distribution, Wfc 

represents the weights of the fully connected layer, and Pool 
denotes global average pooling. 

B. ResNet 

The Residual Network addressing the disappearing gradient 

problem linked with increasing network depth. 

Traditional networks learn the underlying mapping 

functions directly, but residual learning focuses on learning 
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residuals—differences between the input and the desired 

output. The yield of each residual block is computed as the sum 

of the input and the learned residual as (6): 

 

𝑦 = 𝑄(𝑥) + 𝑥              (6) 

 

Here, x is the input to the block, Q(x) is the residual function 

to be learned, and y is the output. 

Two convolutional layers with batch normalization and 

Rectified Linear Unit (ReLU) activation algorithms make up 

the residual cell block. By enabling the gradient to pass through 

the network directly, the skip connection helps to mitigate the 

vanishing gradient issue. Mathematically, the residual block 

operation is given by (7):  

 

𝑦 = 𝑄2(𝑄1(𝑥)) + 𝑥             (7) 

 

Here Q1, Q2 represents the two consecutive convolutional 

layers. 

In ResNet, the skip network can take two forms: identity 

shortcut or projection shortcut. The identity shortcut is used 

when the input and output proportions are the same, and the 

projection shortcut is employed when dimensions differ. 

Mathematically, the identity shortcut is (8): 

 

𝑦 = 𝑄2(𝑄1(𝑥)) + 𝑥             (8) 

 

The projection shortcut introduces a linear transformation 

Wsx to match dimensions: 

 

𝑦 = 𝑄2(𝑄1(𝑥)) + 𝑊𝑠𝑥            (9) 

 

The layer depth is achieved through the repetition of 

residual extensions and the down sampling of feature 

representations operating convolutional layers and max 

pooling. 

ResNet employs global average pooling (GAP) before the 

last completely connected layer for classification. GAP reduces 

the spatial dimensions to 1x1, and the subsequent feature maps 

are flattened for input into the SoftMax layer (10): 

 

Y = Softmax(𝑊fc ⋅ GAP(𝑥))           (10) 

 

Here, Y is the predicted probability distribution, Wfc 

represents the weights of the fully connected layer, and GAP 

denotes global average pooling. 

Resnet makes information preservation explicit through 

additive identity transformations. 

IV. METHODOLOGY 

The methodology followed is displayed in Fig 2. The 

processes include data collection and exploration. The 

preprocessing includes standardizing the images size and 

normalize pixel values to a common scale and augmentation to 

improve the dataset variability.  

The normalization also includes the process of stain 

normalization. Since the images obtained are stained with H&E, 

and the process of imagery being different, there exists a need 

for stain normalization to bring all the test and validation 

samples to the common scale. 

The quantity of samples available in the model are low when 

compared to the number of samples required to train a CNN 

model for optimal accuracy, augmentation techniques are 

employed which includes rotation, flip, picture-in-picture and 

other common techniques to surge the sample size. 

The following step is to derive the fitting model for the 

classifier. The purported model has a modified DenseNet-201 

architecture. The model employs four dense blocks and three 

transition layers. 

The model is trained and verified on the data for its 

categorization performance. The hyper parameter tuning is the 

ensuing step to upgrade the performance metrics. The learning 

rate and the batch size alongside the total epochs are critical 

parameters that dictate the training time and precision of the 

model. 

Selection of the optimizer is of critical importance as they 

decide the evaluation results. Adam and SGD optimizers were 

used. Metrics used with their corresponding formulae: 

 

Accuracy measures the overall correctness of the model 

predictions (11). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
         (11) 

  

A Confusion Matrix is a table that summarizes the model's 

performance. It shows the counts of True Positives, True 

Negatives, False Positives, and False Negatives.  

 

Accuracy is the metric considered for assessment of the 

model. 

 
Fig 2: Methodology followed. 
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Fig 3 shows the layers in the proposed model. 

 

 
Fig 3: Block diagram of the proposed improvised model. 

V. DATASET 

BreakHis: The BreakHis dataset is a histopathological 

image dataset designed for the development and evaluation of 

machine learning algorithms for breast cancer classification. 

The key characteristics, composition, and significance of the 

BreakHis dataset. The Breast Cancer Histopathological Image 

Classification (BreakHis) is composed of 9,109 high-resolution 

microscopic images of breast tissue specimens, providing a 

diverse and comprehensive representation of various breast 

cancer subtypes of breast lump tissue assembled from 82 

patients. 

The images are amassed using different magnifying 

considerations (40X, 100X, 200X, and 400X). 

They contain 2,480 benign and 5,429 malignant samples 

(700X460 pixels, 3-channel RGB, 8-bit depth in each channel, 

PNG format). 

These images were put in using the method of procedure 

biopsy and the class of the tumor, type of tumor with patient 

identification details along with magnification factor are 

furnished in the naming nomenclature. 

BreakHis images are accompanied by expert annotations 

indicating regions of interest (ROIs) within the tissue samples. 

These annotations identify areas relevant to the presence of 

malignant cells, facilitating the training and validation of 

machine learning models. 

Sample images from BreakHis dataset is presented in fig 4. 

 

 
 

Fig 4: Sample BreakHis dataset, benign and malignant 

images. 

VI. RESULTS: 

1) MODEL 1: RESNET WITHOUT AUGMENTATION  

 

The Resnet50 model was trained and verified on BreakHis 

dataset. The model configuration is shown in figure 5. 

 

 
 

Fig 5: Outline of the model1 

 

The total parameters managed by the model are 23,602,051. 

Of the total parameters, 23,544,835 parameters were trainable 

parameters while 57,216 were non-trainable parameters. 

The model was tutored on the Breakhis dataset without 

augmentation. Fig 6 projects the results of the model1’s 

performance. 

 

 
Fig 6: graph of Accuracy vs Epoch followed by Loss vs Epoch 

The training accuracy reached 96% for 16 epochs, the validation 

accuracy was 67.5%. 
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2) MODEL 1: RESNET WITH AUGMENTATION 

 

The Resnet50 model with the identical configuration was 

trained on the augmented BreakHis dataset. 

Fig 7 projects the results of the performance of the model1 

with information augmentation. 

A 90-degree rotation range , random horizontal and vertical 

flipping of images in the training dataset with a range of 2 set 

for random zoom and the range for brightness set between 0.5 

and 1.5 combined with scaling of images of both training and 

test dataset was performed. 

 

 
Fig 7: graph of Accuracy vs Epoch followed by Loss vs Epoch 

 

The training accuracy reached 85% for 14 epochs, the 

validation accuracy was 67.5%. 

B. MODEL 2: DENSENET  

 

The DenseNet model was trained and tested on the BreakHis 

dataset. The model configuration is shown in Fig 8 . 

The DenseNet has pre-trained weights with image data 

augmentation and early stopping as callback: 

 

 
Fig 8: Summary of the DenseNet201 model. 

 

The total parameters used by the model is 18,335,427. Of 

the total parameters, 18,102,531 parameters were trainable 

parameters while 232,896 were non-trainable parameters. 

One hyper-parameter that regulates how much the model is 

altered in response to the predicted error after each update of 

the model weights is the learning rate. Selecting the learning 

rate can be difficult since too small of a value could lead to an 

extended training process that could become stuck, while too 

large of a value could cause the training process to become 

unstable or acquire a suboptimal set of weights too quickly. A 

constant 0.0001 was used as the learning rate. 

 

A GlobalAveragePooling layer is used. It directs average 

pooling on the spatial proportions till every spatial dimension is 

one and allows other dimensions unchanged. 

 

It is ensued by a dropout layer set to 0.5 which means that 

there is a 50% chance that the output of a given neuron is forced 

to zero , this layer is used to prevent over-fitting. 

 

 Batch normalization is followed by a dense layer with 2 

neurons for 2 output classes i.e. benign and malignant. 

 

SoftMax is applied as the activation function. An activation 

function called SoftMax is used to convert numbers or logits 

into probabilities. A vector (let's say v) containing the 

probabilities of every possible result is the result of a SoftMax. 

Vector v's probabilities add up to one for every possible 

outcome or class. It is mathematically defined as (12): 

 

𝑆(𝑦𝑖) =
exp (𝑦𝑖)

∑ exp (𝑦𝑗)𝑛
𝑗=1

            (12) 

 

Where: y is an input vector to the SoftMax function S and 

consists of n elements for the n classes, yi is the ith element of 

the input vector. 

Exp(yi) is the standard exponential function applied on yi  

for values of yi<0, the exponential value is very close to zero 

but not zero and when yi is large, the exponential value is also 

large. 

∑ exp (𝑦𝑖)𝑛
𝑗=1  value ensures the value of the output vector 

S(yi) adds to 1 for the ith class and in the range of 0 to 1 for valid 

probability distribution. 

http://www.ijritcc.org/
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Fig 9 depicts the outcome of the performance of model 2. 

 
Fig 9: graph of Accuracy vs Epoch followed by Loss vs Epoch 

 

The accuracy of this model is around 75.41% . 

 

1) MODEL 2.1: DENSENET WITH EARLY STOPPING 

AS CALLBACK  

 

Training will stop when the chosen performance measure 

stops improving. In the case of this model the chosen 

performance parameter is validation accuracy. Often, the first 

indication of no further advancement may not be the best time 

to halt training. This is because the model may coast into a 

plateau of no progress or even get faintly worse before 

progressing much better. We can account for this by adding a 

pause to the trigger in terms of the number of epochs on which 

we would like to see no improvement. This can be done by 

setting the “patience” argument. 

The modification to the model generated the following 

results. 

Fig 10, 11 display the results of the performance of model 

2. 

 
Fig 10: graph of training and validation accuracy 

 

Fig 11: graph of training and validation loss. 

 

The CNN model-2 is 88.5% accurate in predicting the cancer 

 

2) MODEL 2.2: DENSENET WITH 

REDUCELRONPLATEAU AND MODELCHECKPOINT  AS 

CALLBACKS 

ReduceLROnPlateau : Lower the learning rate if a metric no 

longer improves. Once learning stalls, models frequently gain 

from lowering the learning rate by a factor of 2–10. This 

callback keeps an eye on a quantity and lowers the learning rate 

if a certain number of epochs (referred to as "patience") show 

no improvement. 

Here, the validation accuracy is monitored and after 5 

epochs with no improvement the learning rate will be reduced 

with a factor of 0.2 to a minimum of 0.0000001. 

ModelCheckpoint: callback is used in combination with 

training using model.fit() to save a model or weights (in a 

checkpoint file) at some interval, so the model or weights can 

be loaded later to continue the training from the state saved. The 
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validation accuracy is monitored and only the best performance 

is saved. 

The performance of the model is shown in Fig 12. 

 
Fig 12: graph of Accuracy vs Epoch followed by Loss vs Epoch 

The accuracy of this model is around 93.39% for 20 epochs. 

VII. CONCLUSIONS: 

Table 1: Training and validation accuracy of the proposed 

models. 

BreakHis dataset 

Training 

Accuracy(%

) 

Validation 

Accuracy(%) 

Model 1 without 

data augmentation. 
96 67.5 

Model 1 with data 

augmentation. 
85 67.5 

Model 2 base 

version 
85 75.41 

Model 2.1 with 

early stopping call 

back 

90.77 88.5 

Model 2.2 with 

Reduce on plateau 

and model 

checkpoint call back 

95 93.39 

 

Table 1 shows the accuracy of the model with different 

modifications. The model 2.2 delivered the highest validation 

accuracy of 93.39%. 

 

Table 2: comparison of training and validation accuracy of the 

proposed models with the models from literature. 

 

BreakHis dataset 
Validation 

Accuracy(%) 

Alexnet[ 10] 92.68 

ResNet[ 11] 98.57 

VGG16[12 ]  97.85 

Inception V3[13 ]  97.84 

SqueezeNet[ 14] 97.56 

DenTnet[15 ] 99.28 

Proposed Model -2 93.39 

 

Table 2 compares the performances of different models used for 

classifying the BreakHis dataset. 

• AlexNet: Achieved a validation accuracy of 92.68%. 

• ResNet: Outperformed other models with a validation 

accuracy of 98.57%. 

• VGG16: Demonstrated a strong performance with a 

validation accuracy of 97.85%. 

• Inception V3: Achieved a competitive validation 

accuracy of 97.84%. 

• SqueezeNet: Showed good performance with a 

validation accuracy of 97.56%. 

• DenTnet: Outperformed all other models with the 

highest validation accuracy of 99.28%. 

• Proposed Model -2: Achieved a validation accuracy of 

93.39%. 

 

These results highlight the effectiveness of deep learning 

models in classifying breast cancer histopathological images, 

with DenTnet standing out as the top-performing model on the 

BreakHis dataset. 

 

The split of the dataset for training and test/ validation plays 

a valuable role in establishing the accuracy of the model. 

The ResNet, VGG16, Inception V3, SqueezeNet, and 

DenTnet models perform a overfit to the data and hence produce 

high accuracy values. 

 

The dense connectivity of DenseNet and the residual 

learning mechanism of ResNet undeniably contribute to their 

robust feature extraction capabilities, allowing for nuanced 

discrimination crucial for accurate classification.  

 

DenseNet's emphasis on feature reuse and parameter 

efficiency is particularly advantageous for tasks requiring 

intricate pattern recognition. 
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ResNet's residual learning approach mitigates vanishing 

gradient issues, providing stability in training and facilitating 

the construction of deeper networks. 
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