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Abstract 

In the literature on service facility system, it is common to assume fixed service rate, such as flexible retrial arrival, this 

assumption is not realistic. In contrast retrial demands model rarely define the mechanism through which arrival of customers is 

classified into two types say priority customers and ordinary customers. For the given values of maximum inventory, maximum 

waiting space, reorder level and lead times, we determine the optimal ordering policy at various instants of time. The system is 

formulated as a Semi-Markov Decision Process and the optimum policy to be employed is found using linear programming method. 

Numerical examples are provided to illustrate the model. 

1. Introduction:  

In this model, we discuss the problem of optimally controlling 

the admission of two type of customers (priority and non - 

priority) to a service facility system with inventory for service 

completion. We consider a service facility system having 

finite waiting space. For the given values of maximum 

inventory and reorder level s, the service times and lead times 

are assumed to be exponentially distributed.  

For example, in real life situation where customer service 

is becoming more and more important. An important aspect of 

efficiency in service is product availability, which is related to 

replenishment policy and quick service. In many cases, not all 

customer demand for a single product requires the same 

service level. The type of inventory that, we wish to study are 

spare parts inventory in the airline or shipping industries and 

spare parts for refinery equipment.  

In all these cases, equipment is categorized in to many 

different classes and different service levels are defined for 

each type. Some of the equipment is very critical for the 

smooth running of the operations and needs to be serviced on 

a priority basis, while other equipment is less critical and will 

have lower priority. Typically, the equipment is ranked as 

vital, essential or auxiliary. Hence spare parts are rationed and 

when inventory levels are low at supply status. Only the vital 

equipment is serviced and the other equipment has to wait for 

a fresh supply of spare parts. 

We conclude that from previous models an integrated 

approach like Markov Decision Process model is most 

appropriate to study service facility system (Queues-

Inventory) and Maintenance systems. Sapna, K.P., and 

Berman, O., [1] studied one such system under MDP structure 

using LPP method to control the service rates. So for in the 

literature only admission control and service rate control 

problems are studied under MDP regime. Hild Mohamed et. al 

[3] analyzed a Markov decision problem: Optimal control of 

servers in a service facility holding perishable inventory with 

impatient customers. 

Dekker, R., Hill, R.M., and Kleijn, M.J., [2] considered a 

lost sales (S - 1, S) inventory system with priority demand 

classes. Sapna, K.P. [10] considered a lost-sales (s, Q) 

inventory system with demand classes - ordinary and priority. 

The demands of these two classes arrive according to 
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independent Poisson processes with different parameters. The 

distribution of the lead time is assumed to be exponential. This 

model was extended by Sivakumar, B. and Arivarignan, G. [8] 

by assuming MAP for two types of customers.  

Recently Karthick, T. et.al [4] considered a (s, S) 

inventory system with two types of arriving customers (Type-

1 or Type-2). The arrival of customers is assumed to follow a 

MAP and the lead time is assumed to have a phase-type 

distribution. Maheswari, P. et. al [6] analyze discrete time 

service facility system with two types of customers. 

Krishnakumar, S. et. al [7] considered retrial service facility 

system with ordinary customers and priority customers. 

Poisson streams and service times are assumed to follow an 

exponential distribution. 

Veinott, A.F., [11] was the first to consider the problems 

of several demand classes in inventory systems. He analyzed a 

periodic review inventory model with multiple demand classes 

and zero lead time and introduced the concept of a critical 

level policy. 

Nahmias, S. and Demmy, S., [9] introduced multiple 

demand classes. They considered two demand classes, Poisson 

arrival for demands, back-ordering and fixed lead time for 

supply of orders and derived approximate expressions for total 

cost. 

Kim, E., [5] considered the admission control and the 

inventory management problem of a make-to-order facility 

with a common component, which is purchased from a 

supplier under stochastic lead time processes and setup costs. 

The rest of the model is organized as follows. We provide 

a formulation of our Markov Decision model in the section 2. 

In section 3 Analysis of system and in 4, MDP formulation 

and in 5, steady state analysis is done. System performance 

measures are computed in section 6. In section 7, we present a 

procedure to prove the existence of a stationary optimal 

control policy and solve it by employing LP technique. 

2. Problem Formulation 

 

We  consider a single service Queueing  system, in which  two type of customers arrive 

the service facility according to independent Poisson process with parameter
1( 0)    for priority customer and 

2( 0)    for 

ordinary customers and served according to a FCFS queue discipline.  

 

• One unit (item) from inventory is used upto serve one customer. 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023 

___________________________________________________________________________________________________________________ 

 
    3517 
IJRITCC | September 2023, Available @ http://www.ijritcc.org 

• The capacity of the system is finite N   any customer who see N (when N is finite) customer in the system has 

to leave the system compulsory. 

• The service times follow an exponential distribution with parameter
r , r =0,1,2,…K 

• The maximum capacity of inventory is S (Instantaneous replenishment is done at inventory level is zero) and the 

service rate 
r  may be chosen from given set of K values  0 1 2 3, , , ,... K      

• Each  (1 r )r K     
can be chosen from given set of N values  0 1 2 3, , , ,... K     where r  depends on 

number of customer in orbit 0 ,when Z(t)=0, the service rate become 0 =0
                                         

 

3. Analysis 

Let X(t), Z(t) and I(t)  denotes the status of the server, number of customer in the orbit and inventory level at time t, respectively. 

Then ( ) ( )( ) , Z(t), : 0ItX t t   is a three dimensional continuous time stochastic process with state space, where  E1=

 0,1 (0 denotes the idle server and 1 denotes the busy server) 

 E2= {0,1,2,…,N}and E  3= {1,2,…,S}. 

   The infinitesimal generator A of the Markov process has entry of the form
( , , )

( , , )( )l m n

i j ka ). 

Some of the state transitions are given below: 

                    From state (0,j,k) only transitions into the following states are  possible: 

(i) (1,j,k) with rate 1 2 + for 0 j N  ;1 k S  (customer arrival) 

(ii) (1,j-1,k) with rate 1 2 1( )j  + + forj=1, 2,…N;1 k S  (Customer arrive from an orbit). 

                     From state (1,j,k) only transitions into the following states are possible: 

(i) (1,j+1,k)with rate 1    for 0 1j N  − ;1 k S  (customer arrival). 

                                 (ii)    (0,j-1,k-1) with rate 
for 

1 ;1j N k S   
 
(Service completion)   

No impatient customer. Customer leaves from system (or) orbit .The service of the system is finite, Arrival source to the 

system is finite. ie) The orbit size is always finite. 

Now, we have to convert this Markov process into continuous time MDP by considering the following five components, 

 

4. MDP Formulation 

(i)Decision epochs: The decision epochs are random points as time line at each service   Completion. 

(ii)State space: 

                E = (i, j, k) : i 0,1;0 j N, N ;1 k Se = =        

(iii)Action set:     
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 : 0

.e

e E

A a a r k

A A


=  = 

=
 

   A decision rule from the class of rules   is equivalent to a function : E A →  and is given by 

                   (i, j, k) : (i, j, k) E,a Aa =    . 

(iv)Transition probability : 

(l,m,n)

( , , ) ( )i j kp a -a transition probability from state (i,j,k) to the state (l,m,n). 

(v) Cost: 

         Cost occurred when action ‘a’ is taken at state (i,j,k) is given by ( ) ( )( ), , | , , ,C l m n i j k a
. 

The long-run expected (average) cost rate when policy  is adopted is given by 

               1 2 3 (1)C c I c W c gB
    = + + +              

when in the steady state , for given policy  is given by r


is 

the expected reorder rate,  W


 is the average waiting time for 

a customer, 


   is the  service expected cost due to different 

service  rate due to d rate, c1 denotes the holding cost / unit 

time/ unit item, c2 denotes the waiting cost /customer / unit 

time , c3 denotes the service cost / customer and g  denotes the 

balking cost/customer associated with using the different 

service rates.                    

5. Steady state Analysis:  

 Let f denote the stationary policy, which is 

deterministic time invariant and Markovian Policy (MD). 

From the assumptions made in our system, it can be seen that 

( ) ( )( ) , Z(t), : 0ItX t t  is the controlled process

( ) ( )( ) , Z (t) I : 0,f ffX t tt  when policy f  is 

adopted. Since the process ( ) ( )( ) , Z (t) I : 0,f ffX t tt 

is a Markov Process with finite state space E. The process is 

completely Ergodic, if every stationary policy gives rise to an 

irreducible Markov chain. It can be seen that for every 

stationary policy  the Markov process is completely Ergodic 

and also the optimal stationary policy
*  exists, because the 

state and action spaces are finite 

 

 Our objective is to find an optimal policy 
*  for which 

*

C C   for every MD policy in
MD . 

  For any fixed MD policy 
MD and (i,j,k),(l,m,n) E ,define  

(l,m,n, t) pr{X (t) ,Z (t) m,I (t) / X (0) i,Z (0) j, I (0) k};(i, j,k),(l,m,n) Eijp l      = = = = = =   

Now (l, m, t)ijp
satisfies the Kolmogorov forward differential equation. P’(t)=P(t)A, where A is an infinitesimal generator of 

the Markov process {(X (t),Z (t), I (t)) : t 0}R R R   
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  For each MD policy  , we get a Markov chain with state space E and action set A which are finite, 

(l,m,n) lim (l,m,n; t)ij
t

p p 

→
= exists and is independent of initial state (i,j,k)conditions. 

The balance equations are obtained by using the fact that transition out of a state is equal to transition into a state 

1 2

1 2 1

1 1 2 1

1 1 2 1

1

( )P (0,0,S) (1,0,1) (2)

( j )P (0, j,S) (1, j,1), j 1,2,..., N (3)

( ) P (1,0,S) ( )P (0,0,S) (0,1,S) (4)

( ) P (1, j,S) ( )P (0, j,S) (j 1) (0, j 1,S)

(1, j 1,S) (5)

P (1, N,S

P

P

P

P

P

 

 

  

  





  

   

    

    





+ =

+ + = =

+ = + +

+ = + + + +

+ −

1 2 1

1 2

1 2 1

1 1 2 1

1

) ( )P (0, N,S) (1, N 1,S) (6)

( )P (0,0,k) (1,0,k 1), 1 k S 1 (7)

( j ) P (0, j,k) (1, j,k 1);

j 1,2,...N,1 k 1 (8)

( ) P (1,0,k) ( )P (0,0,k) (0,1,k), 1 k 1 (9)

( ) P (1, j,k)

P

P

P

S

P S

 

 

 

  



  

  

   

    

 

= + + −

+ = +   −

+ + = +

=   −

+ = + +   −

+
1 2 1

1

( )P (0, j,k) (j 1) (0, j 1,k)

(1, j 1,k), 1 k 1 (10)

P

P S

 



  



= + + + +

+ −   −
  

Together with the above set of equations, the total probability condition  

              

( , )

(j, r,k) 1 (11)
j r E

P



=
 

We get the steady state probabilities {Pπ(i,j,k), (i,j, k)  E} uniquely. 

 

6. System Performance Measures. 

(i) The average inventory level in the system is given by  

       

1

0 1 0

(i, j,k) (12)
S N

i k j

I k P 

= = =

= 
 

(ii) Mean waiting time in the system is given by 
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1 1 1 2 1

1 11 1

(1, j, k) (0, j, k). (13)
N S N S

j jk k

j j
W P P  

 

    

 = == =

   + + +
= +   

   
   

 

(iii)The expected service rate is given by 

0 1

(1, j,k) (14)
N S

j k

P
   

= =

=  

(iv) The mean Balking rate is given by  

       
1 2

1

( ) (1, N,k) (15)
S

k

B P
  

=

= +   

The long run expected cost rate is given by 

1
1 1 1 2 1

1 2 3

0 1 0 1 1 1 1 0 1

1 2

1

(i, j,k) (1, j,k) (0, j,k) c (1, j,k)

( ) (1, N,k) (16)

S N N S N S N S

i k j j k j k j k

S

k

j j
C c k P c P P P

g P

    

 



    


 

 



= = = = = = = = =

=

    + + +
= + + +    

    

+ +

    



 

7.  Linear Programming Problem: 

7.1 Formulation of LPP 

 

In this section we propose a LPP model within a MDP framework.   First we define the variables, D(i,j,a) as 

a conditional probability expression

 

(i, j, k,a) Pr ' '/ stateis (i, j, k)D decisionis a=

 
                 Since 0 ≤ D (i,j,k,a)≤1, this is compatible with Randomized time invariant Markovian policies. Here, the Semi-Markovian 

decision problem can be formulated as a linear programming problem. 

    Hence 

0 ( , , ) 1 ( , ,k, ) 1,i 0,1;0 ;0 .
a A

D i j k and D i j a j N k S


  = =    
 

            For the reformulation of the MDP as LPP, we define another variable y(i,j,k,a) as follows. 

y( , ,k, ) (i, j,k,a) (i, j,k) (17)i j a D P=

 
From the above definition of the transition probabilities 

( , , ) (i, j,k,a),(i, j,k) E,a A (18)
a A

P i j k y



=  
  

Expressing P∏(i,j) in terms of y(i,j,a), the expected total cost rate functions(33) is  
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Obtained and the LPP formulation is of the form 

Minimize 

 

1
1 1 1 2 1

1 2 3

0 1 0 1 1 1 1 0 1

1 2

1

(i, j,k) (1, j,k) (0, j,k) c (1, j,k)

( ) (1, N,k) (19)

S N N S N S N S

i k j j k j k j k

S

k

j j
C c k P c P P P

g P

    

 



    


 

 



= = = = = = = = =

=

    + + +
= + + +    

    

+ +

    

  

Subject to the constraints, 

(i) y(i, j,k,a) 0;(i, j,k) E,a A  

 

0,1 (i, j) E

) (i, j,k,a) 1,
l a A

ii y
=  

=  
 

And the balance equation (2)-(26) obtained by replacing 

(i, j, k) with (i, j, k,a).
a A

P y




 

7.1 Lemma: 

The optimal solution of the above Linear Programming Problem  yield a deterministic policy. 

Proof: 

          From the equations (34) and (35) 

0

(i, j,k,a)
D(i, j,k,a) , , r 0,1,2,...k (20)

(i, j,k, )
rN

r

k

y
a

y




=

= = =

  

(i, j,k) (i, j,k,a),(i, j,k) E (21)
a A

P y



= 
 

Since the decision process is completely ergodic every basic feasible solution to the above linear 

Programmingproblem has the property that for each 

(i, j,k) E, y(i, j,k,a) 0 

for exactly are 

. Hence, for each 

(i, j,k) ,E

D (i, j,k,a)=1, for a unique  and  for other values of a Thus given the number of customers 

in the orbit, we have to choose the service rate 


for which 

 D (i,j,k,a)=1 . Hence the basic feasible solution of the LPP yields a deterministic policy 

8. Numerical illustration and Discussion: 

  In this section we consider a service facility system to illustrate the method described in section 4, through numerical examples. We 

implemented TORA software to solve LPP by simplex algorithm. 

 The following table describes the solution for LPP problem by varying the arrival (Poisson) rates from 1.5 for priority 

customer, 1 for ordinary customer and an exponential service rates from 4 to 9. The expected cost is computed by taking waiting cost 

per customer is 0.5 and the service cost per customer is 0.8 

 

 

a A
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Arrival rate: → 1 = 1.5 

2 = 1 

 

1 = 1.5 

2 = 1 

 

1 = 1.5 

2 = 1 

 

1 = 1.5 

2 = 1 

 
Service rate:  

 = 4 6.1209 6.1965 7.0213 7.3453 

 = 5 7.4301 8.2861 8.2134 8.4036 

 = 6 9.4342 9.4013 9.3976 9.2317 

 = 7 10.1759 10.1211 10.0759 10.0643 

 = 8 11.8934 11.6450 10.5512 11.9654 

 = 9 12.6430 12.7182 12.5407 12.3742 

Table 1: The Expected total cost 

 From the above table,  

(a) The minimum expected cost for arrival rates  1 = 1.5, 2 = 1 will be obtained by adjusting the service rate  as

5 =
per unit 

time. 

         The minimum expected cost for arrival rate 1 = 1.5, 2 = 1will be obtained  at  service rate 6 

(waiting cost per customer, the service cost per customer) (c1, c2)

 

Expected total cost 

(0.5, 0.8) 7.4301 

(1, 0.8) 8.6429 

(1.5, 0.8) 9.6307 

(2, 0.8)           10.1625 

Table 2: The Expected total cost for varying waiting cost per customer 

(a)  

(waiting cost per customer, the service cost per customer) (c1, c2)

 

Expected total cost 

(0.5, 0.8) 7.4301 

(0.5, 1.6) 9.0832 

(0.5, 2.4) 9.4581 

(0.5, 3.2) 10.1126 

 

6. Conclusions and future research: 

 Analysis of inventory control at service facility is 

fairly recent system study. Most of previous work determined 

optimal ordering policies or system performance measures. 

We approached the problem in a different way with two type 

of customers given a service rate we determine the optimal 

controlling the admission of customers to determine the 

optimal order quantity or reorder level to be employed to 

minimize the long – run expected cost rate. Thus the 

admission control using inventory in service facility is 

established. In future we may extend this model to multi type 

of customer with discrete time MDP. 
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