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ABSTRACT 
Loss of muscle function is the condition referred to as paralysis. Parts of the body may be completely paralysed or only 

partially. The quality of life is enhanced by the early identification of paralysis. In people with paralysis and neuromuscular 
diseases, EMG signals can be used to analyse muscular activation. In this study, EMG signals are analysed by feature extraction and 
divided into two categories: normal and paralysed. The obtained findings demonstrate that the extracted features in the suggested 
work perform better for EMG signal categorization.  The conditions of Amyotrophic Lateral Sclerosis (ALS) and Myopathy are 
taken into consideration in this study to examine the paralysis state. Using time and frequency domain approaches, characteristics 
were retrieved from the EMG of healthy and paralysed participants. Multilayer Perceptron (MLP), Support Vector Machine (SVM), 
Random Forest (RF), Gradient Boosting (XGBOOST), and K-Nearest Neighbour (KNN) Classifiers are the classifier models used 
in the study. With time domain EMG information, classifiers like MLP, SVM, RF, XGBOOST, and KNN are used. The frequency 
domain EMG characteristics are applied to the MLP, RF, XGBOOST, and KNN classifiers. With time domain EMG features, MLP 
achieved a classification accuracy of 76.5%, SVM with 77.2%, RF with 76.1%, XGBOOST with 77.1%, and KNN with 75.8%.  In 
comparison to classifier models employing time domain EMG information, the SVM classifier performs better. The classification 
accuracy for MLP, RF, XGBOOST, and KNN using frequency domain EMG features is 77.7%, 76.6%, and 75%, respectively. In 
comparison to other classifier models with frequency domain features, the MLP and RF classifiers perform better. Time and 
frequency domains of the EMG of Normal, ALS, and Myopathy diseases are investigated. It has been noted that the EMG signal 
and its characteristics differ significantly (p<0.05) between the Normal and Paralysis conditions. EMG is utilised in the current 
study to analyse and categorise paralysis, which helps with early diagnosis and improved treatment options. 

KEYWORDS: Paralysis, Als, Myopathy, Emg, Time Domain Features, Frequency Domain Features, Mlp Classifier, Svm Classifier 

Rf Classifier, Xgboost Classifier, Knn Classifier.  

I. INTRODUCTION  

 
A neuromuscular condition known as paralysis defines 

the loss of muscle function. One or more bodily areas have a 
decrease of muscle function.  Damage to the nervous system 
causes paralysis [1].  

 The assessment of muscle and nerve damage leads 
to the diagnosis of paralysis. Electromyographic (EMG) 
signals are analysed to determine how well the muscles and 
nerves are working. Assessment can also be done with the 
help of additional testing modalities like MRI, CT, or X-rays. 
EMG is used to perform the nerve function test. A nerve 
function test evaluates how the muscles react when they are 
stimulated. [2].  

The quality of life is improved by medical interventions, 
physical therapy, mobility aids, and management 
techniques.The identification of impaired muscle actions is 
made possible through analysis of the paralysed state, which 
also results in better treatment alternatives. 

 A visual representation of muscle electrical activity 
is called an electromyogram. An electromyography is a 
device used to capture the electrical potential generated when 
a muscle cell is electrically or neurologically stimulated. To 
analyse the muscular activity, determining the degree of 
recruitment or activation, the EMG signals can be examined. 
EMG and activity of voluntary muscular constructions are 
related [3]. 

 An EMG test may be used to assess the 
neuromuscular disorders. An EMG test aids in the diagnosis 
of degenerative ailments, motor tissues, nerve damage, and 
neuromuscular diseases. Neuromuscular illnesses such as 
amyotrophic lateral sclerosis, peripheral neuropathies, 
muscular dystrophy, and myasthenia gravis can be evaluated 
and managed using electromyography [4]. For the analysis of 
muscular paralysis the evaluation and assessment of ALS 
and Myopathy disorders can be used. Most of neuromuscular 
disorder results in paralysis, including ALS and Myopathy 
conditions.  

 Lou Gehrig’s illness or Amyotrophic Lateral 
Sclerosis is a degenerative neuromuscular condition. The loss 
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of motor nerve cells in the brain and spinal cord is the 
condition of ALS. Muscular weakness occurs due to the 
muscles function loss. The muscle function loss results when 
the motor neurons are unable to deliver signals to the 
muscles. ALS has no negative effects on a person’s 
intelligence, capacity to see or hear, or even their sense of 
taste, smell, or touch [5]. 

 ALS is also referred to as a distinctive condition. 
ALS strikes suddenly and seldom. The illness can affect 
persons most frequently between the ages of 40 and 70. 
Many patients with ALS can even live longer because of 
intensive research and development into the main cause of 
ALS, prevention, and sophisticated treatment for the disease. 
The timely and proper diagnosis increases the normal life 
time of the ALS subjects. 

 The term “Myopathy” is used to describe diseases 
related to muscle. The person with Myopathy disease, the 
muscles work less effectively than normal, it may be due to 
abnormal development of muscle, damaged muscle, or 
lacking important components in the muscle system [6]. 
Proteins and other structural elements work in unison to 
contract a muscle. Myopathy may result from a deficiency in 
one of these parts. 

 A significant portion of the examination of patients 
with neuromuscular diseases involves electro diagnostic 
tests. The main purpose of electromyography (EMG) is to 
supplement clinical examinations. Peripheral nerve system 
problems are diagnosed using EMG [7]. 

 The EMG is acquired using surface electrodes or 
needle electrodes, placed or inserted for specific muscles 
under investigation. EMG of ALS and Myopathy conditions 
provide the performance analysis of muscular activity in 
subjects with paralysis. 

 EMG Features are the distinctive pattern 
representations of reduced dimensional signals. Finding a 
few traits that are exceptionally distinctive and instructive is 
the aim of feature extraction. Time Domain (TD), Frequency 
Domain (FD), and Time-Frequency domain (TFD) features 
are used to study the EMG characteristics. TD represents 
signal characteristics versus time. FD represents the signal 
characteristics versus frequency. Frequency spectrum of 
signal indicates the frequencies contained in the signal. TFD 
features provide the information about both temporal and 
spectral characteristics of the signal. Several aspects are 
considered for the EMG signal categorization, which 
includes features taken independently and number of features 
in groups taken for analysis in TD, FD, and TFD [8]. 
Machine learning allows software applications and 
algorithms for systems to identify patterns, make decisions. 
Machine learning algorithms works on input data and predict 
new output values. EMG classification is performed with the 
aid of machine learning techniques.LITERATURE 
SURVEY 

Muscle fibers constitute the muscular system. Skeletal 
muscles contribute majority to the total body mass. Skeletal 
muscles attached to the bones and other organs are 
responsible for performing a wide range of movements and 
function. Muscle contractions result in movements of the 
body. The loss of muscular activity results in Paralysis. 

Natalie Slivinski [9], describes the condition of paralysis. 
Paralysis refers to inability to move certain parts of the body 
due to disturbance in signal transmission between brain and 

body parts. Paralysis can occur either temporarily or 
permanent. Dennis L. Kasper et.al [10], discussed about 
Muscle weakness and Paralysis. Muscle Weakness refers to 
reduction of power in one or more muscles. Complete 
Paralysis indicates severe muscle weakness in which the 
muscle cannot able to contract. Paresis refers to partial 
paralysis indicates less severe muscle weakness.  

  EMG describes the electrical activity of the 
muscles. The ability of EMG signals to differentiate 
neuromuscular diseases aid in early diagnosis of Paralysis. In 
the study by Eric Verin et.al [11], the EMG of diaphragm is 
evaluated for diaphragmatic strength in patients with 
unilateral diaphragmatic paralysis. The study revealed that 
the diaphragmatic strength after diaphragmatic paralysis 
recover with time by re-innervations of the diaphragm or 
muscular modification of the diaphragm. The algorithm 
developed by Dow D.E. et.al [12], uses EMG signals to 
detect the inspiratory events from diaphragmatic paralysis 
which in turn helps to control the assisted inspirations. 

 The work by Melo M.C et.al [13], presents a 
proposal for the creation of a EMG based computational 
system in real time. This system can be used for treatment of 
patients with stroke.    

 Use of several EMG methods for examination will 
be beneficial for Myopathy diagnosis. The turns amplitude 
studies and manual study of the individual MUAPs are most 
helpful. Power spectrum analysis, multi-channel surface 
EMG, and measurement of the firing rate of motor units may 
also be utilized in the diagnostics but are less frequently [14]. 
Low-amplitude, short-duration, and polyphasic shapes of 
individual MUAPs are indicative of both muscle fibre 
degradation and regeneration in patients with myopathy [15].  

The motor unit firing rate is a further parameter that 
needs to be examined. Early recruitment may occur in 
Myopathy that is more MUAPs may be present for the level 
of muscle contraction in comparison to normal subjects, as a 
result of the muscle’s weakness. Although it has been 
demonstrated that the study of individual MUAPs is more 
sensitive for detecting Myopathy than the examination of the 
EMG signal frequency spectrum [16], the frequency 
spectrum of the EMG can still be used.  

  A biological signal called an 
electromyography signal is used to quantify the electrical 
current produced in muscles during neuromuscular activities. 
The study by N. Sengar et.al [17] describes a method for 
identifying Amyotrophic Lateral Sclerosis disease using 
machine learning and EMG data obtained from the biceps 
brachii muscles. Using signal processing, the work proposes 
a basic analysis and classification of EMG signals obtained 
from healthy and ALS participants for automated ALS 
disease screening. To automate the diagnosis of ALS disease, 
some EMG signal parameters, including maximum 
amplitude and mean of amplitude, are selectively analyzed 
and categorized.  

   
 Feature extraction is a crucial step in the analysis of 

signals in order to obtain the precise or required parameters 
from the obtained EMG signals. Typically, time domain, 
frequency domain, and time-frequency domain analyses are 
used to identify characteristics in the study of EMG data, 
Tsai, A.C et al, Hogan, N et al, Englehart, K et al, [18] 
[19][20]. In time domain analysis, signal amplitude, which 
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varies over time, is used to evaluate the features. During the 
monitoring process, the fluctuations in signal amplitude are 
related to the type and state of the muscle [21]. Frequency 
domain representations of the signal can be used to estimate 
the majority of distinguishable information. The Fourier 
transform should be applied to the signal being studied in the 
frequency domain. Parameters including the mean frequency, 
and power spectral density (PSD) are used to evaluate the 
signal.  

The study by Archana B. Kanwade, and V.K. Bairagi 
[22], described the EMG signal feature extraction in the time 
and frequency domain for various muscle states in myopathy, 
neuropathy, and healthy subjects. Peak amplitude, the Root 
Mean Square (RMS), the mean, median, variance, and the 
total number of peaks are only a few examples of time 
domain and frequency domain features that are extracted.. 
RMS value, integration, mean amplitude, and the total peaks 
in both domains are used to compare the results.  

The study by Artameeyanant, P et.al [23] discussed the 
detection of myopathy and ALS, from EMG based feature 
extraction method. Six useful features are statistically chosen 
in the study. The features are average cluster coefficient, 
average degree, density, average weight, kurtosis, and 
skewness.  

EMG features describe the characteristics of the EMG 
signal and gives information about the muscular activity. The 
article by Angkoon Phinyomark et.al. [24], described the 
some of the EMG features, which can be used to analyze the 
muscular activity.  

A Bakiya et.al [25] discussed the accurate differentiation 
of aberrant EMG signals, Myopathy, and Amyotrophic 
Lateral Sclerosis, which plays a significant role in automatic 
diagnostic aid tools. Since an effective classifier are essential 
for computer assisted identification of anomalies, Bat 
algorithm is used to model a deep neural network classifier 
for a certain feature subset using features that are taken from 
time and time-frequency characteristics. The research 
demonstrates the value of both conventional and deep neural 
networks when diagnosing aberrant signals in the 
neuromuscular system utilizing effective categorization. 
     

The study by Elamvazuthia et.al [26], describe the 
classification of the neuromuscular illness based on EMG 
signal. Five Features were extracted using feature extraction 
techniques, and features are Autoregressive (AR), Zero 
Crossing, Root Mean Square, Waveform length, and Mean 
Absolute Value. The classification was performed using the 
Multilayer Perceptron.    

 The study by Abdulhamit Subasi [27], suggested to 
use an evolutionary design method to optimize automatic 
parameter adjustment when creating an SVM-based classifier 
(ESVM). Using normal, myopathic, and neurogenic datasets, 
a typical application to classify EMG signals is used to 
demonstrate and assess the effectiveness of ESVM. The 
discrete wavelet transform was used in the proposed method 
to decompose the EMG signals into frequency sub-bands, 
and a set of statistical features were then recovered from the 
sub-bands to reflect the distribution of wavelet coefficients. It 
is demonstrated that ESVM can get a high accuracy of 97% 
for EMG datasets by utilizing tenfold cross-validation. The 
heart of ESVM, which is a variety of SVMs, is designed to 

be an effective tool for the quick diagnosis of neuromuscular 
problems.  

  The study by Richa Singh and Ram Bilas 
Pachori et.al [28], proposed a new approach to classify 
normal and abnormal EMG signals in order to diagnose ALS 
(amyotrophic lateral sclerosis). Each level of intrinsic model 
functions (IMFs) has its own computation of features such 
cross information potential (CIP), Correntropy (COR), 
Cauchy-Schwartz quadratic mutual information (QMIED), 
and Euclidean distance quadratic mutual information 
(QMIED). For the classification of normal and ALS EMG 
data, the derived features are fed into three different 
classifiers, the: JRip rules classifier reduces error pruning 
(REP) tree classifier, and random forest classifier. The 
classification process’s outcomes demonstrate that the 
suggested classification approach performs far better than the 
pre-existing methods in classifying normal and ALS EMG 
data.  

  The study by Shashank Kumar Singh et.al 
[29], focusses on the development of a reliable sign language 
recognition system using surface electromyography signal. 
To create a classifier that can accurately and consistently 
identify American Sign Language (ASL) from surface 
electromyography data, the boosting-based approach is used. 
Ten adult volunteers’ surface Electromyography signals were 
collected to create data set. The accuracy of 99.09% achieved 
for the classification model after training it with the Extreme 
gradient boosting technique.  

 The study by S. Samui et.al [30], discussed on the 
Extreme Gradient Boosting (EGB) method, one of the most 
widely used pattern recognition techniques for analyzing 
surface electromyography signals and determining the 
underlying muscle motions. The experiment is conducted on 
the dataset of sEMG signals that were gathered from eleven 
subjects in five different upper limb positions. The suggested 
technique is based on the feature extraction, which 
transforms the sEMG signal into correlated time-domain 
descriptors (cTDD), a collection of descriptive values in 
Euclidean space that aid in learning the gradient boosting 
classifier. The Baysian optimization method has been used to 
adopt and fine-tune the classifier for each subject to achieve 
the best results for the categorization of EMG signals.  

 The study by Mohammad Tafhim Khan et.al [31], 
demonstrate method for classifying EMG signals as a tool for 
diagnosing neuromuscular disorders. Three groups of EMG 
signals with wavelet features are used as input to classifiers. 
The classifiers KNN and SVM are employed. While the 
SVM classifier can classify this data with an accuracy of 
92.33%, the KNN approach can do it with up to 82% 
accuracy.  

 In the study by H. Kucuk et.al [32], a total of 10 
feature vectors are used to represent MUAPs in an EMG data 
collection that includes both healthy and Amyotrophic 
Lateral Sclerosis illness subjects. The K-Nearest Neighbor 
and Support vector machine classifiers are two pattern 
recognition techniques that are used and contrasted. For the 
data set and feature vectors, the K-NN classifier has a little 
greater success rate than the SVM classifier in terms of 
classification accuracy. 
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III METHODOLOGY  

The approach used in this research work is described in 
the block diagram displayed in figure 1. For feature 
extraction in the time, and frequency domain, EMG data 
from amyotrophic lateral sclerosis, myopathy, and normal 
conditions are used. 

 
 
 
 
 
 
 
 
 
Figure 1: Block Diagram of the Proposed Method 
 
To extract features in frequency domain FFT has been 

applied to EMG data. For classifier models, the features that 
were retrieved from the EMG served as input. It is done to 
categorize paralysis and normal conditions. To assess the 
effectiveness of the classifier models, the classification 
accuracy, precision and recall values are calculated. 

 In the present work the dataset [33], used consists of 
EMG signals recorded from needle electrodes. The electrode 
insertion levels are low, medium, and deep. The recordings 
were performed for steady isometric contractions. The EMG 
signals sampling frequency is selected to 23.435 kHz.  The 
table 1 give the details of the EMG data set. All EMG data 
samples are recorded for the duration 11.2 seconds.  

 

Table 1: Details of EMG Data 

Group Age 
Number of EMG 

recordings 

Normal 21-37 300 

ALS 35-67 332 

Myopathy 19-63 315 

 
The EMG has a sampling rate of 23.435 kHz. 

Rectangular windows of 300.37 msec with a 99.84 msec 
overlap are utilised for feature extraction. 110 segments were 
produced from 11.20 seconds of data using the window 
approach.  

 For time domain analysis the Features considered in 
the work are Mean Value, Variance, Mean Absolute Value 
(MAV), Root Mean Square (RMS), Waveform Length (WL), 
Zero crossing (ZC), Log Detector (LD), Difference Absolute 
Standard Deviation Value (DASDV), Average Amplitude 
Change (AAC), Variance Absolute Value (VAV), Kurtosis 
of signal, and Skewness of signal. 

 The EMG Data from Normal, ALS, and Myopathy 
Conditions are used. By application FFT, the Data is 
represented in frequency domain. For frequency domain 
analysis the features considered are Mean Frequency (MNF), 
Median Frequency (MDF), Power Spectral Density (PSD), 
and Power Spectrum Deformation. 

 The classifier models employed are Multilayer 
Perceptron, Support Vector Machine, Random Forest, 
Gradient Boosting, and K-Nearest Neighbour Classifiers. 
The MLP classifier consists of twelve inputs, forty eight 
hidden processing elements, and three outputs (MLP(12-48-
3)). The twelve statistical feature values are inputs, forty 
eight hidden layers are in the model, and three outputs are in 
the model for classification of ALS, Myopathy, and Normal 
condition.  

The SVM classifier is used with kernel = 'rbf'. In RF 
classifier fifteen estimators used with maximum depth of the 
tree equal to fifteen. The XGBOOST classifier is employed 
with learning rate 1.0, with fifteen estimators, and maximum 
depth of the estimator equal to fifteen. The KNN classifier is 
used with K value chosen to nine. For time domain analysis 
all five classifier models are employed. For frequency 
domain and time-frequency domain analysis MLP, RF, 
XGBOOST, and KNN classifier models are employed. 
 

IV RESULTS AND DISCUSSION 
  
TIME DOMAIN FEATURE EXTRACTION 
 The samples of normal, Amyotrophic Lateral Sclerosis, and 
Myopathy are taken from the dataset for analysis. In this 
work twelve time domain features Mean, Variance, Mean 
Absolute Value, Root Mean Square, Waveform Length, Zero 
crossing, Log Detector, Difference Absolute Standard 
Deviation Value, Average Amplitude Change, Variance 
Absolute Value, Kurtosis of signal, and Skewness of signal, 
are considered. 

 The time domain features are extracted from 
Normal data, ALS Data and Myopathy Data. The Normal 
data consist of 300 data samples, ALS data consist of 332 
samples and Myopathy data consist of 315 samples. Each 
sample recorded for 11.2 seconds duration. From the 
application of rectangular window of size 300.37 msec, with 
overlap size of 99.84 msec, each sample in the data set yield 
110 segments. The feature values are computed for each 
segment of the samples. 

 Statistical F-Test has been carried to analyse the 
Data. From the statistical F-test analysis all twelve features 
are found significant to differentiate Normal data with ALS 
and Myopathy Data with p<0.05, and hence the Paralysis 
condition from Normal condition. The figures 2 to 13 show 
the time domain features extracted from ALS, Myopathy and 
Normal Data. The features are represented using Box Plots. 

 

 
Figure 2: Mean of EMG Data 
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Figure 3: Variance of EMG Data 

 
 

 
Figure 4: Mean Absolute of EMG Data 

 
 

 
Figure 5: Root Means Square of EMG Data 

 
 

 
Figure 6: Waveform Length of EMG Data 

 
 

 
Figure 7: Zero Crossings of EMG Data 

 

 

 
Figure 8: Log Detector of EMG Data 

 
 

 
Figure 9: DASDV of EMG Data 

 
 

 
Figure 10: Average Amplitude Change of EMG Data 

 
 

 
Figure 11: Variance Absolute Value of EMG Data 

 
 

 
Figure 12: Kurtosis of EMG Data 
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Figure 13: Skewness of EMG Data 

 
 

Figure 2: Time Domain EMG Features extracted from ALS, 

Myopathy and Normal Data. 

The ALS data and Myopathy data have greater Mean 
peak values than the Normal data. The range of Mean values 
is greater in ALS and Myopathy data when compared to 
Normal data. The muscle fatigue is more in ALS and 
Myopathy subjects. Because of fatigued muscle fibers less 
force is produced. In order to maintain the constant muscle 
force additional motor units are recruited and flexor joint 
torque for maintaining the isometric position. Hence the 
EMG magnitude increases with increase in muscle fatigue. 

The range of Variance values is greater in ALS and 
Myopathy data when compared to Normal data. Because of 
increased EMG magnitude due to muscle fatigue in ALS and 
Myopathy subjects, the signal power also increases, which is 
indicated by increased range of variance values. 

The ALS data and Myopathy data have higher MAV 
peak values than the Normal data. The range of MAV values 
is greater in ALS and Myopathy data when compared to 
Normal data. The MAV values in ALS and Myopathy 
subjects are greater due to increased motor recruitment to 
produce the constant muscle force during isometric 
contractions. 

The ALS data and Myopathy data have higher RMS peak 
values than the Normal data. The range of RMS values is 
greater in ALS and Myopathy data when compared to 
Normal data. The root mean square values describe the force 
or torque produced by the muscles. To maintain the isometric 
position the torque produced in ALS and Myopathy subjects 
are greater compared to Normal subjects. 

The ALS data and Myopathy data have higher WL peak 
values than the Normal data. The range of WL values is 
greater in ALS and Myopathy data when compared to 
Normal data. The higher cumulative values describe the 
increased complexity.  

The ALS data and Myopathy data have higher ZC rates 
than the Normal data. The range of ZC is greater in ALS and 
Myopathy data when compared to Normal data. 

The ALS data and Myopathy data have higher LD peak 
values than the Normal data. The range of LD values is 
greater in ALS and Myopathy data when compared to 
Normal data. The LD values describe the exerted muscle 
force. The ALS data and Myopathy data have higher 
DASDV peak values than the Normal data. The range of 
DASDV values is greater in ALS and Myopathy data when 
compared to Normal data.  

The ALS data and Myopathy data have higher AAC peak 
values than the Normal data. The range of AAC values is 

greater in ALS and Myopathy data when compared to 
Normal data. 

The ALS data has higher VAV peak than the Normal 
data. Myopathy data 

has lower VAV peak than the Normal data.  
The ALS data and Myopathy data have higher Kurtosis 

peak values than the Normal data. The range of Kurtosis 
values is greater in ALS and Myopathy data when compared 
to Normal data. The decrease in muscle contractions yield 
increase in Kurtosis values. The ALS and Myopathy subjects 
possess muscle weakness results in decreased muscle 
contraction. 

The ALS data and Myopathy data have higher Skewness 
peak values than the Normal data. The range of Skewness 
values is greater in ALS and Myopathy data when compared 
to Normal data. 

 FREQUENCY DOMAIN FEATURE EXTRACTION 

The frequency domain features are extracted from Normal, 

ALS, and Myopathy Data. The feature values are further 

used for analysis and classification of Paralysis. Features 

Mean Frequency, Median Frequency, Power Spectral 

Density, and Power Spectrum Deformation are extracted. 

The values of features obtained from frequency domain are 

considered for the statistical analysis. The features are found 

statistically significant to differentiate paralysis condition 

with normal condition with p<0.05. The figures 14 to 17 

show the frequency domain features extracted from ALS, 

Myopathy and Normal Data. The features are represented 

using Box Plots. 

 
Figure 14: Mean Frequency of EMG Data 

 

 

 
Figure 15: Median Frequency of EMG Data 
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Figure16: Power Spectral Density of EMG Data 

 

 
Figure 17: Power Spectrum Deformation of EMG Data 

 

Figure 3: Frequency Domain EMG Features extracted from 

ALS, Myopathy and Normal Data. 

 

The Mean Frequency peak values are found in ALS data and 

Myopathy data compared to Normal data. The range of Mean 

Frequency values are greater in ALS data and Myopathy data 

compared to Normal data. The muscle fatigue is more in 

ALS and Myopathy subjects. The muscle fatigue is described 

as decrease in the muscle force. The decrease in the muscle 

force causes increase in the Mean Frequency. 

The Median Frequency peak values are found in ALS data 

and Myopathy data compared to Normal data. The range of 

MDF values are greater in ALS data and Myopathy data 

compared to Normal data. The Median Frequency values 

increases with decrease in muscle force resulted from muscle 

fatigue in ALS and Myopathy subjects. 

The Power Spectral Density peak values are found in ALS 

data and Myopathy data compared to Normal data. The range 

of Power Spectral Density values are greater in ALS data and 

Myopathy data compared to Normal data. 

 

Classification of Paralysis and Normal condition 

The accurate characterisation of electromyographic signals is 

essential for the diagnosis of neuromuscular disorders. These 

characterizations are frequently generated using machine 

learning based pattern categorization algorithms. In order to 

develop precise and computationally effective methods for 

EMG signal characterisation, a number of classifiers have 

been used. This work focuses on neuromuscular pathology, 

and presents machine learning algorithms used for 

classification of EMG signals based on normal and paralysis 

conditions. The performance analysis of classifier models are 

evaluated by computing Accuracy, Precision, Recall or 

Sensitivity, Specificity, Misclassification Rate, F1-Score, and 

plotting Receiver Operating Characteristic(ROC) Curves.  

Accuracy is obtained by computing fraction of the total 

samples correctly classified. Equation (1) shows the formula 

used for calculation of Accuracy. 

Accuracy = (TP+TN) / (TP+TN+FP+FN) 

Where TP is true positives, TN is true negatives, FP is false 

positives, and FN is false negatives. 

Precision is obtained by computing the ratio of true positives 

to total predicted positives. Equation (2) shows the formula 

used for calculation of Precision. 

Precision = TP / (TP+FP) 

Recall or Sensitivity is obtained by computing the ratio of 

true positives to total positives. 

Equation (3) shows the formula used for calculation of 

Recall or Sensitivity. 

Recall or Sensitivity = TP / (TP+FN) 

 

Specificity is obtained by computing the fraction of all 

negatives samples are correctly predicted as negatives. 

Equation (4) shows the formula used for calculation of 

Specificity. 

Specificity = TN / (TN+FP) 

 

Misclassification Rate is obtained by computing the fraction 

of predictions which are incorrect. Equation (5) shows the 

formula used for calculation of Misclassification Rate. 

 

Misclassification Rate = (FP+FN) / (TP+TN+FP+FN) 

 

F1-Score is obtained by computing harmonic mean of 

Precision and Recall. Equation (6) shows the formula used 

for calculation of F1-Score. 

F1-Score = (2*(Precision*Recall) / (Precision+Recall)) = 

2TP / (2TP+FP+FN)  

 

Receiver Operating Characteristic Curves show the 

performance of a classification model at all classification 

thresholds. This curve plots True Positive Rate versus False 

Positive Rate.  

 

In this work the training data set sizes taken are 90%, 80%, 

70%, and 60%, for corresponding test data set sizes of 10%, 

20%, 30% and 40% respectively. The obtained Accuracy, 

Precision, Recall or Sensitivity, Specificity, Misclassification 

Rate, F1-Score, are tabulated and   ROC curves are plotted.  

 

The table 2 shows the Performance Analysis of MLP 

Classifier Model using time domain EMG features. 

 

Table 2:  Performance Analysis of MLP Classifier with Time 

Domain EMG Features 

MLP Classifier 

 

Test 

Sample 

Size = 

40% 

Test 

Sample 

Size = 

30% 

Test 

Sample 

Size = 

20% 

Test 

Sample 

Size = 

10% 

Accuracy 0.72 0.76 0.77 0.68 

Precision 0.73 0.77 0.77 0.72 
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Sensitivity 0.72 0.76 0.77 0.69 

Specificity 0.84 0.87 0.87 0.83 

Misclassification 

Rate 
0.28 0.24 0.23 0.32 

F1-Score 0.72 0.76 0.77 0.70 

 

The figures 18(a), 18(b), 18(c), and 18(d) show the ROC 

curves plotted for MLP Classifier with test sample sizes of 

40%, 30%, 20%, and 10% respectively, for time domain 

EMG features 

 

Figure 18(a): ROC curve for MLP Classifier with test sample 

size of 40%, for time domain EMG features. 

AUC FOR ALS V/S REST: 95.87%    

AUC for Myopathy v/s rest: 93.79%    

AUC for Normal v/s rest: 91.7%   

 

Figure 18(b): ROC curve for MLP Classifier with test 

sample size of 30%, for time domain EMG features. 

AUC for ALS v/s rest: 95.85% 

AUC for Myopathy v/s rest: 94.09%    

AUC for Normal v/s rest: 92.06%   

 

Figure 18(c): ROC curve for MLP Classifier with test  

sample size of 20%, for time domain EMG features. 

AUC for ALS v/s rest: 96.03%    

AUC for Myopathy v/s rest: 94.28%    

AUC for Normal v/s rest: 92.53%   

 

Figure 18(d): ROC curve for MLP Classifier with test 

sample size of 10%, for time domain EMG features. 

AUC for ALS v/s rest: 96.01%    

AUC for Myopathy v/s rest: 94.18%    

AUC for Normal v/s rest: 92.18%   

Since AUC values are higher, it shows the better 

performance of the MLP Classifier. 

 

The table 3 shows the Performance Analysis of SVM 

Classifier Model using time domain EMG features. 

 

Table 3: Performance Analysis of SVM Classifier with Time 

Domain EMG Features 

 

The figures 19(a), 19(b), 19(c), and 19(d) show the ROC 

curves plotted for SVM Classifier with test sample sizes of 

40%, 30%, 20%, and 10% respectively, for time domain 

EMG features. 

 

 

Figure 19(a): ROC curve for SVM Classifier with test 

sample size of 40%, for time domain EMG features. 

SVM Classifier 

Test 

Sample 

Size = 

40% 

Test 

Sample 

Size = 

30% 

Test 

Sample 

Size = 

20% 

Test 

Sample 

Size = 

10% 

Accuracy 0.75 0.76 0.77 0.77 

Precision 0.76 0.78 0.78 0.81 

 Sensitivity 0.75 0.76 0.77 0.78 

Specificity 0.86 0.87 0.88 0.84 

Misclassification 

Rate 
0.25 0.24 0.23 0.23 

F1-Score 0.75 0.77 0.77 9.79 
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AUC for ALS v/s rest: 94.34%    

AUC for Myopathy v/s rest: 90.39%    

AUC for Normal v/s rest: 88.62%   

 

Figure 19(b): ROC curve for SVM Classifier with test 

sample size of 30%, for time domain EMG features. 

AUC for ALS v/s rest: 94.42%    

AUC for Myopathy v/s rest: 90.46%    

AUC for Normal v/s rest: 88.92%   

 

Figure 19(c): ROC curve for SVM Classifier with test 

sample size of 20%, for time domain EMG features. 

AUC for ALS v/s rest: 94.61%    

AUC for Myopathy v/s rest: 90.69%    

AUC for Normal v/s rest: 89.16%   

 

Figure 19(d): ROC curve for SVM Classifier with test 

sample size of 10%, for time domain EMG features. 

AUC for ALS v/s rest: 94.71%    

AUC for Myopathy v/s rest: 90.64%    

AUC for Normal v/s rest: 89.14%   

 

The table 4 shows the Performance Analysis of RF 

Classifier Model using time domain EMG features. 

 

Table 4:  Performance Analysis of RF Classifier with Time 

Domain EMG Features 

 

The figures 20(a), 20(b), 20(c), and 20(d) show the ROC 

curves plotted for RF Classifier with test sample sizes of 

40%, 30%, 20%, and 10% respectively, for time domain 

EMG features 

 

 

 
 

Figure 20(a): ROC curve for RF Classifier with test sample 

size of 40%, for time domain EMG features.  

AUC for ALS v/s rest: 97.67%    

AUC for Myopathy v/s rest: 97.18%    

AUC for Normal v/s rest: 96.42%   

RF Classifier 

Test 

Sample 

Size = 

40% 

Test 

Sample 

Size = 

30% 

Test 

Sample 

Size = 

20% 

Test 

Sample 

Size = 

10% 

Accuracy 0.75 0.74 0.74 0.76 

Precision 0.75 0.74 0.74 0.77 

Sensitivity 0.75 0.74 0.74 0.76 

Specificity 0.86 0.86 0.86 0,87 

Misclassification 

Rate 
0.25 0.26 0.26 0.24 

F1-Score 0.75 0.74 0.74 0.76 
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Figure 20(b): ROC curve for RF Classifier with test sample 

size of 30%, for time domain EMG features. 

AUC for ALS v/s rest: 97.88%    

AUC for Myopathy v/s rest: 97.36%    

AUC for Normal v/s rest: 96.68%    

  
Figure 20(c): ROC curve for RF Classifier with test sample 

size of 20%, for time domain EMG features. 

AUC for ALS v/s rest: 98.06%    

AUC for Myopathy v/s rest: 97.56%    

AUC for Normal v/s rest: 96.92%    

  
Figure 20(d): ROC curve for RF Classifier with test sample 

size of 10%, for time domain EMG features. 

AUC for ALS v/s rest: 98.2%    

AUC for Myopathy v/s rest: 97.78%    

AUC for Normal v/s rest: 97.03%   

 

The table 5 shows the Performance Analysis of XGBOOST 

Classifier Model using time domain EMG features 

 

Table 5:  Performance Analysis of XGBOOST Classifier 

with Time Domain EMG Features 

XGBOOST 

Classifier 

Test 

Sample 

Size = 

40% 

Test 

Sample 

Size = 

30% 

Test 

Sample 

Size = 

20% 

Test 

Sample 

Size = 

10% 

Accuracy 0.77 0.73 0.74 0.73 

Precision 0.77 0.72 0.74 0.75 

Sensitivity 0.77 0.72 0.74 0.72 

Specificity 0.88 0.84 0.86 0.85 

Misclassification 

Rate 
0.23 0.27 0.26 0.27 

F1-Score 0.77 0.72 0.74 0.73 

 

. The figures 21(a), 21(b), 21(c), and 21(d) show the ROC 

curves plotted for XGBOOST Classifier with test sample 

sizes of 40%, 30%, 20%, and 10% respectively, for time 

domain EMG features. 

 
Figure 21(a): ROC curve for XGBOOST Classifier with test 

sample size of 40%, for time domain EMG features. AUC 

for ALS v/s rest: 98.02%    

AUC for Myopathy v/s rest: 97.79%    

AUC for Normal v/s rest: 97.17%   

 

 
Figure 21(b): ROC curve for XGBOOST Classifier with test 

sample size of 30%, for time domain EMG features. AUC 

for ALS v/s rest: 98.06%    

AUC for Myopathy v/s rest: 97.93%    

AUC for Normal v/s rest: 97.36%   
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Figure 21(c): ROC curve for XGBOOST Classifier with test 

sample size of 20%, for time domain EMG features. AUC 

for ALS v/s rest: 98.22%    

AUC for Myopathy v/s rest: 97.94%    

AUC for Normal v/s rest: 97.49%   

 

 

Figure 21(d): ROC curve for XGBOOST Classifier with test 

sample size of 10%, for time domain EMG features. AUC 

for ALS v/s rest: 98.45%    

AUC for Myopathy v/s rest: 98.13%    

AUC for Normal v/s rest: 97.67%   

 

The table 6 shows the Performance Analysis of KNN 

Classifier Model using time domain EMG features. 

 

Table 6:  Performance Analysis of KNN Classifier with 

Time Domain EMG Features 

 

The figures 22(a), 22(b), 22(c), and 22(d) show the ROC 

curves plotted for KNN Classifier with test sample sizes of 

40%, 30%, 20%, and 10% respectively, for time domain 

EMG features. 

 

 

 
 Figure 22(a): ROC curve for KNN Classifier with test 

sample size of 40%, for time domain EMG features. 

AUC for ALS v/s rest: 91.7%    

AUC for Myopathy v/s rest: 91.7%    

AUC for Normal v/s rest: 91.7%   

 
Figure 22(b): ROC curve for KNN Classifier with test 

sample size of 30%, for time domain EMG features 

AUC for ALS v/s rest: 92.06%    

AUC for Myopathy v/s rest: 92.06%    

 AUC for Normal v/s rest: 92.06%   

KNN Classifier 

Test 

Sample 

Size = 

40% 

Test 

Sample 

Size = 

30% 

Test 

Sample 

Size = 

20% 

Test 

Sample 

Size = 

10% 

Accuracy 0.76 0.73 0.73 0.73 

Precision 0.76 0.74 0.74 0.76 

Sensitivity 0.76 0.73 0.73 0.73 

Specificity 0.87 0.85 0.85 0.86 

Misclassification 

Rate 
0.24 0.27 0.27 0.27 

F1-Score 0.76 0.73 0.73 0.74 
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Figure 22(c): ROC curve for KNN Classifier with test 

sample size of 20%, for time domain EMG features.  

AUC for ALS v/s rest: 92.53%    

AUC for Myopathy v/s rest: 92.53%    

AUC for Normal v/s rest: 92.53%   

 
Figure 22(d): ROC curve for KNN Classifier with test 

sample size of 10%, for time domain EMG features. 

AUC for ALS v/s rest: 92.18%    

AUC for Myopathy v/s rest: 92.18%    

AUC for Normal v/s rest: 92.18%   

The better classification accuracy is achieved with SVM 

classifier model compared to MLP, RF, XGBOOST, and 

KNN classifier models. 

 

For the analysis and classification of muscular paralysis, the 

features extracted in frequency domain are used. The 4 

features are extracted from the EMG Dataset. The features 

considered are Mean Frequency, Median Frequency, Power 

Spectral Density, and Frequency Deformation.  These 

features are used as input to the classifier models employed. 

The classifier models employed are MLP, RF, XGBOOST, 

and KNN classifier models. 

The training data set sizes taken are 90%, 80%, 70%, and 

60%, for corresponding test data set sizes of 10%, 20%, 

30% and 40%. The obtained Accuracy, Precision, Recall or 

Sensitivity, Specificity, Misclassification Rate, F1-Score, 

are tabulated and   ROC curves are plotted.  

 

The table 7 shows the Performance Analysis of MLP 

Classifier Model using frequency domain EMG features. 

 

Table 7:  Performance Analysis of MLP Classifier with 

Frequency Domain EMG Features 

 

MLP 

Classifie

r 

Test 

Sample 

Size = 

40% 

Test 

Sample 

Size = 

30% 

Test 

Sample 

Size = 

20% 

Test 

Sample 

Size = 

10% 

Accuracy 0.73 0.74 0.78 0.71 

Precision 0.74 0.75 0.78 0.73 

Sensitivit

y 

0.73 0.74 0.78 0.71 

Specificit

y 

0.86 0.86 0.88 0.84 

Misclassi

fication 

Rate 

0.27 0.26 0.22 0.29 

F1-Score 0.73 0.74 0.78 0.72 

 

The figures 23(a), 23(b), 23(c), and 23(d) show the ROC 

curves plotted for MLP Classifier with test sample sizes of 

40%, 30%, 20%, and 10% respectively, for frequency 

domain EMG features. 

 
Figure 23(a): ROC curve for MLP Classifier with test 

sample size of 40%, for frequency domain EMG features.

 AUC for ALS v/s rest: 94.68%    

AUC for Myopathy v/s rest: 88.73%    

AUC for Normal v/s rest: 80.29%   

  

 
Figure 23(b): ROC curve for MLP Classifier with test 

sample size of 30%, for frequency domain EMG features.
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AUC for ALS v/s rest: 95.75%    

AUC for Myopathy v/s rest: 89.71%    

AUC for Normal v/s rest: 80.68%   

  
Figure 23(c): ROC curve for MLP Classifier with test 

sample size of 20%, for frequency domain EMG features.

 AUC for ALS v/s rest: 96.47%    

AUC for Myopathy v/s rest: 93.22%    

AUC for Normal v/s rest: 84.28% 

   

  
Figure 23(d): ROC curve for MLP Classifier with test 

sample size of 10%, for frequency domain EMG features.

 AUC for ALS v/s rest: 95.07%    

AUC for Myopathy v/s rest: 89,97%    

AUC for Normal v/s rest: 92.18%   

 

The table 8 shows the Performance Analysis of RF 

Classifier Model using frequency domain EMG features. 

 

Table 8:  Performance Analysis of RF Classifier with 

Frequency Domain EMG Features 

 

The figures 24(a), 24(b), 24(c), and 24(d) show the ROC 

curves plotted for RF Classifier with test sample sizes of 

40%, 30%, 20%, and 10% respectively, for frequency 

domain EMG features.  

 
Figure 24(a): ROC curve for RF Classifier with test sample 

size of 40%, for frequency domain EMG features. AUC 

for ALS v/s rest: 94.51%    

AUC for Myopathy v/s rest: 87.87%    

AUC for Normal v/s rest: 78.34%   

 

 
Figure 24(b): ROC curve for RF Classifier with test sample 

size of 30%, for frequency domain EMG features.  

AUC for ALS v/s rest: 95.78%    

AUC for Myopathy v/s rest: 90.42%    

AUC for Normal v/s rest: 83.05%    

Figure 24(c): ROC curve for RF Classifier with test sample 

size of 20%, for frequency domain EMG features.  

AUC for ALS v/s rest: 96.04%    

AUC for Myopathy v/s rest: 91.73%    

AUC for Normal v/s rest: 83.21%    

RF Classifier 

Test 

Sample 

Size = 

40% 

Test 

Sample 

Size = 

30% 

Test 

Sample 

Size = 

20% 

Test 

Sample 

Size = 

10% 

Accuracy 0.72 0.76 0.78 0.74 

Precision 0.71 0.75 0.77 0.75 

Sensitivity 0.71 0.75 0.77 0.75 

Specificity 0.84 0.87 0.88 0.86 

Misclassification 

Rate 
0.28 0.24 0.22 0.26 

F1-Score 0.71 0.75 0.77 0.75 
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Figure 24(d): ROC curve for RF Classifier with test sample 

size of 10%, for frequency domain EMG features.  

AUC for ALS v/s rest: 94.88%    

AUC for Myopathy v/s rest: 88.52%    

AUC for Normal v/s rest: 78.68%    

 

The table 9 shows the Performance Analysis of XGBOOST 

Classifier Model using frequency domain EMG features. 

 

Table 9:  Performance Analysis of XGBOOST Classifier 

with Frequency Domain EMG Features 

 

The figures 25(a), 25(b), 25(c), and 25(d) show the ROC 

curves plotted for XGBOOST Classifier with test sample 

sizes of 40%, 30%, 20%, and 10% respectively, for 

frequency domain EMG features. 

 
Figure 25(a): ROC curve for XGBOOST Classifier with test 

sample size of 40%, for frequency domain EMG features. 

AUC for ALS v/s rest: 91.57%    

AUC for Myopathy v/s rest: 86.80%    

AUC for Normal v/s rest: 72.84%   

 
Figure 25(b): ROC curve for XGBOOST Classifier with test 

sample size of 30%, for frequency domain EMG features. 

AUC for ALS v/s rest: 92.59%    

AUC for Myopathy v/s rest: 81.37%    

AUC for Normal v/s rest: 74.01%    

  
Figure 25(c): ROC curve for XGBOOST Classifier with test 

sample size of 20%, for frequency domain EMG features. 

AUC for ALS v/s rest: 94.73%    

AUC for Myopathy v/s rest: 92.61%    

AUC for Normal v/s rest: 83.48%    

  
Figure 25(d): ROC curve for XGBOOST Classifier with test 

sample size of 10%, for frequency domain EMG features. 

AUC for ALS v/s rest: 92.47%    

AUC for Myopathy v/s rest: 88.18%    

XGBOOST 

Classifier 

Test 

Sample 

Size = 

40% 

Test 

Sample 

Size = 

30% 

Test 

Sample 

Size = 

20% 

Test 

Sample 

Size = 

10% 

Accuracy 0.69 0.70 0.77 0.76 

Precision 0.67 0.68 0.76 0.76 

Sensitivity 0.67 0.68 0.76 0.76 

Specificity 0.82 0.82 0.87 0.86 

Misclassification 

Rate 
0.31 0,30 0.23 0.24 

F1-Score 0.67 0.68 0.76 0.76 
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AUC for Normal v/s rest: 76.66%    

 

The table 10 shows the Performance Analysis of KNN 

Classifier Model using frequency domain EMG features. 

 

Table 10:  Performance Analysis of KNN Classifier with 

Frequency Domain EMG Features 

 

The figures 26(a), 26(b), 26(c), and 26(d) show the ROC 

curves plotted for KNN Classifier with test sample sizes of 

40%, 30%, 20%, and 10% respectively, for frequency 

domain EMG features. 

 
Figure 26(a): ROC curve for KNN Classifier with test 

sample size of 40%, for frequency domain EMG features.

  

AUC for ALS v/s rest: 80.29%    

AUC for Myopathy v/s rest: 80.29%    

AUC for Normal v/s rest: 80.29%   

 

 
Figure 26(b): ROC curve for KNN Classifier with test 

sample size of 30%, for frequency domain EMG features.

 AUC for ALS v/s rest: 80.68%    

AUC for Myopathy v/s rest: 80.68%    

AUC for Normal v/s rest: 80.68%    

  
Figure 12(c): ROC curve for KNN Classifier with test 

sample size of 20%, for frequency domain EMG features.

 AUC for ALS v/s rest: 84.28%    

AUC for Myopathy v/s rest: 84.28%    

AUC for Normal v/s rest: 84.28%   

 

Figure 12(d): ROC curve for KNN Classifier with test 

sample size of 10%, for frequency domain EMG features.

 AUC for ALS v/s rest: 78.07%    

AUC for Myopathy v/s rest: 78.07%    

AUC for Normal v/s rest: 78.07% 

   

V CONCLUSION AND FUTURE SCOPE 

 

The EMG features in the time domain, and frequency 

domain, are considered for analysis of paralysis disease. 

Here, the features are extracted from EMG are used for 

analysis and classification purpose. The normal, ALS and 

Myopathy data samples are used for training and testing the 

samples with different sizes, for analysing the paralysis 

disease. The MLP, SVM, RF, XGBOOST and KNN are 

used as classification models. In time domain analysis SVM 

classifier found to be better with classification accuracy 

77%. In frequency domain analysis, the MLP, and RF 

classifiers found to be better with classification accuracy 

KNN 

Classifier 

Test 

Sample 

Size = 

40% 

Test 

Sample 

Size = 

30% 

Test 

Sample 

Size = 

20% 

Test 

Sample 

Size = 

10% 

Accuracy 0.71 0.73 0.75 0.69 

Precision 0.71 0.73 0.74 0.69 

Sensitivity 0.70 0.72 0.74 0.69 

Specificity 0.84 0.85 0.86 0.82 

Misclassific

ation Rate 
0.29 0.27 0.25 0.31 

F1-Score 0.70 0.72 0.74 0.69 
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77.7%. The present work can be extended for development 

of portable system for acquisition and analysis of EMG, for 

the assessment of muscular activity. 
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