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Abstract— The world’s knowledge is believed to double every ten months, and this vast pool of information often contains incomplete 

data, imperfections, uncertainties, and vague elements. Converting such data into meaningful patterns is a crucial task for data analysts. In this 

research, we have explored various mathematical models for this purpose. Among these models, we focused on Pawlak’s Rough Set model 

applied through Rough Graphs. Our work presents a novel form of Rough Neighborhood System, as demonstrated in this paper. 
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I.  INTRODUCTION  

In 1982, Zdzisław Pawlak introduced Rough Set Theory as a 
mathematical framework for dealing with uncertainty and 
imperfection in data. He employed equivalence relations to 
identify patterns within inconsistent or imprecise data. The 
central idea behind Rough Set Theory is to approximate sets 
using two fundamental operators, Lower and Upper 
Approximations. Lower Approximation captures the set of 
elements that are certainly in the rough set, while Upper 
Approximation encompasses elements that may or may not 
belong to the set. The theory has found applications in data 
analysis, knowledge representation, and decision support 
systems, particularly in cases where data is incomplete or 
uncertain. 

Abu-Donia conducted research that involved comparing 
various binary relation-based approximations. This work 
focused on examining different types of right neighborhoods, 
which are used to define relationships between elements based 
on binary relations [1]. By providing comparative results, this 
research contributed to the understanding of how different 
approaches to approximations can yield distinct outcomes, thus 
helping researchers and practitioners choose the most 
appropriate method for their specific applications. 

Kay Zeng introduced a model that leverages kernel 
functions, particularly the Gaussian Kernel function, to construct 
Rough Neighborhoods. This model is employed in feature 
selection, a crucial aspect of machine learning and data analysis. 
The use of kernel functions allows for more flexible and nuanced 
representations of neighborhoods, potentially leading to better 
feature selection results in complex datasets. 

Qi Wang and colleagues proposed the Local Neighborhood 
Rough Set model. This model is designed to provide more 
optimal results compared to classical Rough Set models, 
particularly in the context of data analysis [2,3,4]. By 
introducing the concept of local neighborhoods, they aimed to 
capture relationships between elements that are not immediately 

apparent in classical Rough Set models [8-16]. Experimental 
results supported the idea that the Local Neighborhood Rough 
Set model can yield improved outcomes in certain scenarios. 
Furthermore, the combination of the Classical Rough 
Neighborhood model with the Decision Theoretic Rough Set 
model [5-7] led to the introduction of new approximations, 
enhancing the versatility of the Rough Set framework. 

Shoubin and collaborators delved into the construction of a 
remote neighborhood system model [20-28]. This model 
incorporates the concept of a modular lattice, a mathematical 
structure that represents the relationships and interactions 
between various elements. By applying this concept to 
neighborhood systems, they provided a detailed framework for 
analyzing data with a focus on remote or indirect relationships. 
This approach can be valuable in situations where understanding 
the connections between elements requires a more complex and 
nuanced representation than traditional neighborhood systems. 

In this paper we have introduced '  and '' -neighborhood 
based lower and upper approximation and implemented for 
rough graph. 

II. PRELIMINARIES 

A. Definition 1 [1] 

For a given pair (𝑈, 𝑅), where 𝑈 is a non-empty set and 𝑅 is 
any binary relation, the right neighborhood of an element 𝑥 is 
defined as the set of all elements 𝑦 in the universe 𝑈 for which 
the relation 𝑅 holds between 𝑥 and 𝑦. In other words, 𝑥𝑅𝑦 for 
each element 𝑦 in the right neighborhood. 

B. Definition 2 [1] 

Let 𝑅 be a binary relation on a non-empty set 𝑈 and let 𝐴 be 
a subset of 𝑈 . The definition of the lower approximation 𝑅𝐴 
concerning the set 𝐴 with respect to relation 𝑅 is defined as the 
set of all elements 𝑥 in 𝑈 such that for each element 𝑎 in 𝐴 there 
exists a pair (𝑥, 𝑎) in 𝑅 represented mathematically as 
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( )[  {       ,  ,  }.]AR x U a A x a R=    ∣
 

The definition of the upper approximation 𝑅𝐴 concerning the 
set 𝐴  with respect to relation 𝑅  is defined as the set of all 
elements 𝑥 in 𝑈 for which there exists at least one element 𝑎 in 
𝐴 such that the pair (𝑥, 𝑎) is in 𝑅 represented mathematically as: 

( ) {         ,  ,  }.AR x U a A x a R=    ∣
 

C. Definition 3 [3] 

Let (𝑈, 𝐴, 𝑔, 𝛿) be kernel neighborhood function ∀𝑎, 𝑏 ∈  𝑈 
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where 𝛿 > 0, 𝑔− Gaussian kernel function and 
[ ]gx 

− kernel 
neighborhood granule of 𝑥. 

For any fuzzy subset 𝑋 ⊆  𝐹(𝑈) defining lower and upper 
approximation of 𝑥 as 

 {    | [ ] }

 {    | [ ] 0}

X i l

X

i l

P k X k X

P k X k X





=  

=   
 

D. Definition 4 [2] 

        Let 𝐺 =  (𝐾(𝐺), 𝐿(𝐺)) be a graph. For each 𝑘 ∈  𝐾(𝐺). 

The 𝑗-neighbourhood systems for 𝑥, ∀𝑗 ∈  {𝑟, 𝑙, <  𝑟 >, <  𝑙 >

, 𝑖, 𝑢, <  𝑖 >, <  𝑢 >} are defined by 

i) 𝑁𝑟(𝑥) = {𝑦 ∈ 𝐾(𝐺): 𝑥𝑅𝑦}  

ii) 𝑁𝑙(𝑥) = {𝑦 ∈ 𝐾(𝐺): 𝑦𝑅𝑥}  

iii) 
 ( ) ( )
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= 
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v) 𝑁𝑖(𝑥) = 𝑁𝑟(𝑥) ∩ 𝑁𝑙(𝑥)  

vi) 𝑁𝑢(𝑥) = 𝑁𝑟(𝑥) ∪ 𝑁𝑙(𝑥) 

vii) 𝑁{<𝑖>}(𝑥) = 𝑁{<𝑟>}(𝑥) ∩ 𝑁{<𝑙>}(𝑘) 

viii) 𝑁{<𝑢>}(𝑥) = 𝑁{<𝑟>}(𝑥) ∪ 𝑁{<𝑙>}(𝑘) 

E. Definition 5 [2] 

          Let 𝐺 =  (𝐾(𝐺), 𝐿(𝐺)) be a graph. For each 𝑥 ∈  𝐾(𝐺). 

The 𝑗-adhesion neighbourhood are defined ∀𝑗 ∈  {𝑟, 𝑙, <  𝑟 >

, <  𝑙 >, 𝑖, 𝑢, <  𝑖 >, <  𝑢 >} are follows 

i) 𝑃𝑟(𝑥) = {𝑦 ∈ 𝐾(𝐺): 𝑥𝑅 = 𝑦𝑅}  

ii) 𝑃𝑙(𝑥) = {𝑦 ∈ 𝐾(𝐺): 𝑅𝑥 = 𝑅𝑦} 

iii) 
( ) {   ( ) : }r

x yR y xR
P x y K G yR xR 

 
=   = 

 

iv) 
( ) {   ( ) : }l

x Ry y Rx
P x y K G Ry Rx 

 
=   = 

 
v) 𝑃𝑖(𝑘) = 𝑃𝑟(𝑥) ∩ 𝑃𝑙(𝑥) 

vi) 𝑃𝑢(𝑘) = 𝑃𝑟(𝑥) ∪ 𝑃𝑙(𝑥) 

vii)  𝑃{<𝑖>}(𝑥) = 𝑃{<𝑟>}(𝑥) ∩ 𝑃{<𝑙>}(𝑥) 

viii)  𝑃{<𝑢>}(𝑥) = 𝑃{<𝑟>}(𝑥) ∪ 𝑃{<𝑙>}(𝑥) 

III. MAIN RESULTS 

A. E- neighborhood via set 

1) Definition 3.1 

      Let (𝑈, 𝑅, j
)  be a 𝐸 -neighbourhood space. A 𝛿′  of 

rough set based on 𝐸 -neighbourhood ( 𝛿′ 𝐸 -neighbourhood 

rough set) of 𝐴 ⊆  𝑈 in (𝑈, 𝑅, j
) or with respect to j

is a pair

( ( ), ( ))R

jR jN A N A  

, defined by 

( ) { ( ) : ( ) }jR j jN A E x E x A  =  
 

called the 𝛿′ lower approximation of 𝐴. 

( ) [ ( )]R c c

j jRN A N A  
=

 
called the 𝛿′ upper approximation of 𝐴. 
The accuracy measure of 𝛿′ 𝐸 -neighbourhood is denoted 

( )j A A
 by and it is defined as 

| ( ) |
( ) , | ( ) | 0

| ( ) |

jR R
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j

N A
A N A
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2) Preposition 3.1 

Let (U, R, 
j
) be a 𝐸-neighbourhood space. The following 

condition holds for every 𝐴, 𝐵 ⊆  𝑈: 

i) 
( )jRN  


=

 

ii) 
( )jRN A A  

 

iii) If A B then 
( ) ( )jR jRN A N B  


 

iv) 
( ) ( ) ( )jR jR jRN A N B N A B    

  
 

v) 
( ) [ ( )]R c c

jR jN A N A  
=

 

vi) 
( ( )) ( )jR jR jRN N A N A    

=
 

Proof:- 

i) 𝛿′𝑁𝑗𝑅(𝜙) =∪ {𝐸𝑗(𝑥): 𝐸𝑗(𝑥) ⊆ 𝜙} = 𝜙 

 
ii) Since 𝐸𝑗(𝑋) ⊆ 𝐴, then 

𝛿′𝑁𝑗𝑅(𝐴) ⊆ 𝐴 

iii) Since 𝐴 ⊆ 𝐵, then 
∪ {𝐸𝑗(𝑥): 𝐸𝑗(𝑥) ⊆ 𝐴} ⊆∪ {𝐸𝑗(𝑥): 𝐸𝑗(𝑥) ⊆ 𝐵} 

⟹𝛿′ 𝑁𝑗𝑅(𝐴) ⊆𝛿′ 𝑁𝑗𝑅(𝐵) 

iv) Since,𝛿′𝑁𝑗𝑅(𝐴) ⊆ 𝐴 then 𝛿′𝑁𝑗𝑅(𝐵) ⊆ 𝐵,then 

 
𝛿′𝑁𝑗𝑅(𝐴) ∪𝛿′ 𝑁𝑗𝑅(𝐵) ⊆ 𝛿′𝑁𝑗𝑅(𝐴 ∪ 𝐵) 

 

v) If 𝑥 ∈𝛿′ 𝑁𝑗𝑅(𝐴)  for every 𝑥 ∈ 𝐴 ,there exists 𝐸𝑗 (𝑥) ⊆
𝐴.Then for every 𝑥 ∈ 𝑈 − (𝑈 − 𝐴),there exits 𝐸𝑗(𝑥) such that 

𝐸𝑗(𝑥) ∩ (𝑈 − 𝐴) = 𝜙.Then 𝑥 ∉𝛿′ 𝑁𝑗
𝑅(𝑈 − 𝐴) but 

 

𝑥 ∈ 𝑈−𝛿′𝑁𝑗𝑅(𝑈 − 𝐴) 

∴𝛿′ 𝑁𝑗
𝑅(𝐴) = 𝑈 − (𝛿′𝑁𝑗𝑅(𝑈 − 𝐴)) 

=(𝛿′𝑁𝑗𝑅(𝑈 − 𝐴))𝑐 

=(𝛿′𝑁𝑗𝑅(𝐴𝑐))𝑐 
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vi) If 𝑥 ∈ 𝛿′𝑁𝑗𝑅(𝐴) , for every 𝑥 ∈ 𝐴 ,there exists 𝐸𝑗(𝑥) ⊆

𝐴.Since 𝛿′𝑁𝑗𝑅(𝐴) ⊆ 𝐴,then  

 
𝛿′𝑁𝑗𝑅 (𝛿′𝑁𝑗𝑅(𝐴)) =𝛿′ 𝑁𝑗𝑅(𝐴) 

3) Proposition 3.2 

Let (𝑈, 𝑅, 𝛾𝑗) be a 𝐸-neighbourhood space. The following 

condition holds for every 𝐴, 𝐵 ⊆ 𝑈: 
 

i)𝛿′𝑁𝑗
𝑅(𝑈) = 𝑈 

ii)𝐴 ⊆𝛿′ 𝑁𝑗
𝑅(𝐴) 

iii)𝛿′𝑁𝑗𝑅(𝐴) ⊆𝛿′ 𝑁𝑗
𝑅(𝐵) 

iv)If 𝐴 ⊆ 𝐵,then 𝛿′𝑁𝑗
𝑅(𝐴) ⊆ 𝛿′𝑁𝑗

𝑅(𝐵) 

v)𝛿′𝑁𝑗
𝑅(𝐴 ∪ 𝐵) = 𝛿′𝑁𝑗

𝑅(𝐴) ∪ 𝛿′𝑁𝑗
𝑅(𝐵) 

vi)𝛿′𝑁𝑗
𝑅(𝐴) = [𝛿′𝑁𝑗𝑅(𝐴𝑐)]

𝑐
 

vii)𝛿′𝑁𝑗
𝑅 (𝛿′𝑁𝑗

𝑅(𝐴)) = 𝛿′𝑁𝑗
𝑅(𝐴) 

 
Proof:- 
(i),(ii),(iii) follows from the definition 3.1 

iv) By definition 2.1 and ,if 𝐴 ⊆ 𝐵, then 
𝛿′𝑁𝑗

𝑅(𝐴) = [𝛿′𝑁𝑗𝑅(𝐴𝑐)]
𝑐
 

=∩ {[𝑁𝑗(𝑥)]
𝑐
: [𝑁𝑗(𝑥) ⊆ 𝐴𝑐]

𝑐
} 

⊆∩ {[𝑁𝑗(𝑥)]
𝑐
: [𝑁𝑗(𝑥) ⊆ 𝐵𝑐]

𝑐
} 

= 𝛿′𝑁𝑗
𝑅(𝐵) 

∴𝛿′ 𝑁𝑗
𝑅(𝐴) ⊆𝛿′ 𝑁𝑗

𝑅(𝐵) 

 
v) It follows from (iv) and by definition 3.1 
vi) By definition 3.1 
vii) It follows from (ii) and by definition 3.1 
 

4) Example 3.1 

 
Let 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝐴 = {𝑎, 𝑏} and  

𝑅 = {(𝑎, 𝑎), (𝑏, 𝑏), (𝑎, 𝑐), (𝑎, 𝑑), (𝑑, 𝑏), (𝑏, 𝑑)} 
 

 𝑎 𝑏 𝑐 𝑑 

𝐸𝑟 {𝑎, 𝑏, 𝑑} {𝑎, 𝑏, 𝑑} 𝜙 {𝑎, 𝑏, 𝑑} 

𝐸𝑙 {𝑎, 𝑐, 𝑑} {𝑏, 𝑑} {𝑎, 𝑐, 𝑑} 𝑈 

𝐸<𝑟> 𝑈 𝑈 𝑈 𝑈 

𝐸<𝑙> {𝑎, 𝑏} {𝑎, 𝑏, 𝑑} 𝜙 {𝑏, 𝑑} 

𝐸𝑖 {𝑎, 𝑑} {𝑏, 𝑑} 𝜙 {𝑎, 𝑏, 𝑑} 

𝐸𝑢 𝑈 {𝑎, 𝑏, 𝑑} {𝑎, 𝑐, 𝑑} 𝑈 

𝐸<𝑖> {𝑎, 𝑏} {𝑎, 𝑏, 𝑑} 𝜙 {𝑏, 𝑑} 

𝐸<𝑢> 𝑈 𝑈 𝑈 𝑈 

 
TABLE 1: 𝐸 − neighborhood of a point 

 

 𝛿′𝑁𝑗𝑅(𝐴) 𝛿′𝑁𝑗
𝑅(𝐴) 

𝑗 = 𝑟 𝜙 𝑈 

𝑗 = 𝑙 𝜙 𝑈 

𝑗 =< 𝑟 > 𝜙 𝑈 

𝑗 =< 𝑙 > {𝑎, 𝑏} 𝑈 

𝑗 = 𝑖 𝜙 𝑈 

𝑗 = 𝑢 𝜙 𝑈 

𝑗 =< 𝑖 > {𝑎, 𝑏} 𝑈 

 𝛿′𝑁𝑗𝑅(𝐴) 𝛿′𝑁𝑗
𝑅(𝐴) 

𝑗 =< 𝑢 > 𝜙 𝑈 

TABLE 2: 𝛿′  lower and upper approximation of A 
 

5) Definition 3.2 

      Let (𝑈, 𝑅, 𝛾𝑗)  be a 𝐸 -neighbourhood space.A 𝛿″  of 

rough set based on 𝐸 -neighbourhood (𝛿″  𝐸 −neighbourhood 
rough set ) of 𝐴 ⊆  𝑈 in (𝑈, 𝑅, 𝛾𝑗) or with respect to 𝛾𝑗 is a pair 

(𝛿″𝑁𝑗𝑅(𝐴),𝛿″ 𝑁𝑗
𝑅(𝐴)), defined by 

𝛿″𝑁𝑗𝑅(𝐴) = [𝛿″𝑁𝑗
𝑅(𝐴𝑐)]

𝑐
 

called the 𝛿″ lower approximation of 𝐴. 
 

𝛿″𝑁𝑗
𝑅(𝐴) =∪ {𝐸𝑗(𝑥): 𝐸𝑗(𝑥) ∩ 𝐴 ≠ 𝜙} 

 
called the 𝛿″ upper approximation of 𝐴. 
 

The accuracy measure of 𝛿″ 𝐸 −neighbourhood is denoted by 
𝛿″𝒜𝑗(𝐴)  and it is defined as 

 

𝛿″𝒜𝑗(𝐴) =
|𝛿″𝑁𝑗𝑅(𝐴)|

|𝛿″𝑁𝑗
𝑅(𝐴)|

 , |𝛿″𝑁𝑗
𝑅(𝐴)| ≠ 0 

 

6) Preposition 3.3 

Let (𝑈, 𝑅, 𝛾𝑗) be a 𝐸 −neighbourhood space.The following 

conditions holds for every 𝐴, 𝐵 ⊆ 𝑈: 
i) 𝛿″𝑁𝑗𝑅(𝑈) = 𝑈 

ii) 𝐴 ⊆ 𝛿″𝑁𝑗𝑅 (𝛿″𝑁𝑗
𝑅(𝐴)) 

iii) If 𝐴 ⊆ 𝐵 ⇒ 𝛿″𝑁𝑗𝑅(𝐴) ⊆ 𝛿″𝑁𝑗𝑅(𝐵) 

iv) 𝛿″𝑁𝑗𝑅(𝐴 ∩ 𝐵) = 𝛿″𝑁𝑗𝑅(𝐴) ∩ 𝛿″𝑁𝑗𝑅(𝐵) 

v) 𝛿″𝑁𝑗𝑅(𝐴) ∪ 𝛿″𝑁𝑗𝑅(𝐵) ⊆ 𝛿″𝑁𝑗𝑅(𝐴 ∪ 𝐵) 

vi) 𝛿″𝑁𝑗𝑅(𝐴) = (𝛿″𝑁𝑗
𝑅(𝐴𝑐))

𝑐

 

Proof:  

i) It follows from definition 3.2 

ii) It also follows from definition 3.2 

iii) If 𝐴 ⊆ 𝐵,then 

𝛿″𝑁𝑗𝑅(𝐴) = [∪ {𝑃𝑗(𝑥): 𝑃𝑗(𝑥) ∩ 𝐴𝑐 ≠ 𝜙}]
𝑐

⊆ [∪ {𝑃𝑗(𝑥): 𝑃𝑗(𝑥)𝐵𝑐 ≠ 𝜙}]
𝑐
 

= 𝛿″𝑁𝑗𝑅(𝐵) 

iv) By definition 3.2, we have 
 

𝛿″𝑁𝑗𝑅(𝐴 ∩ 𝐵) =∩ [{𝑃𝑗(𝑥): 𝑃𝑗(𝑥) ∩ (𝐴 ∩ 𝐵)𝑐 ≠ 𝜙}]
𝑐
 

 
Since 𝐴 ∩ 𝐵 ⊆ 𝐴  and 𝐴 ∩ 𝐵 ⊆ 𝐵 , then 𝑃𝑗(𝑥) ⊆ 𝐴  and 

𝑃𝑗(𝑥) ⊆ 𝐵.Then by (iii), we have 

 
𝛿″𝑁𝑗𝑅(𝐴 ∩ 𝐵) ⊆𝛿″ 𝑁𝑗𝑅(𝐴) and 
𝛿″𝑁𝑗𝑅(𝐴 ∩ 𝐵) ⊆𝛿″ 𝑁𝑗𝑅(𝐵) 

∴𝛿″ 𝑁𝑗𝑅(𝐴) ∩𝛿″ 𝑁𝑗𝑅(𝐵) =∩ [{𝑃𝑗(𝑥): 𝑃𝑗(𝑥) ∩ 𝐴𝑐 ≠ 𝜙}]
𝑐
 

 

and ∩ [{𝑃𝑗(𝑥): 𝑃𝑗(𝑥) ∩ 𝐵𝑐 ≠ 𝜙}]
𝑐

 = ∩ [{𝑃𝑗(𝑥): 𝑃𝑗(𝑥) ∩

(𝐴 ∩ 𝐵)𝑐 ≠ 𝜙}]
𝑐
 

 
𝛿″𝑁𝑗𝑅(𝐴 ∩ 𝐵) =𝛿″ 𝑁𝑗𝑅(𝐴) ∩ 𝛿″𝑁𝑗𝑅(𝐵) 
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v) The proof is similar by (iv) 

vi) If 𝑥 ∈ 𝛿″𝑁𝑗𝑅(𝐴)  for every 𝑥 ∈ 𝐴 ,there exists 𝑃𝑗(𝑥) ⊆
𝐴.Then for every 𝑥 ∈ 𝑈 − (𝑈 − 𝐴), there exists 𝑃𝑗(𝑥) such that 

𝑃𝑗(𝑥) ∩ (𝑈 − 𝐴) = 𝜙. So 

𝑥 ∉ 𝛿″𝑁𝑗
𝑅(𝑈 − 𝐴), 𝑥 ∈ 𝑈 − (𝛿″𝑁𝑗

𝑅(𝑈 − 𝐴)) ∴𝛿″ 𝑁𝑗𝑅(𝐴)

= (𝛿″𝑁𝑗
𝑅(𝐴𝑐))

𝑐

 

7) Preposition 3.4 

Let (𝑈, 𝑅, 𝛾𝑗) be a 𝐸 −neighbourhood space.The following 

condition holds for every 𝐴, 𝐵 ⊆ 𝑈 
 

i) 𝛿″𝑁𝑗
𝑅(𝜙) = 𝜙 

ii) 𝛿″𝑁𝑗
𝑅 (𝛿″𝑁𝑗𝑅(𝐴)) ⊆ 𝐴 

iii) If 𝐴 ⊆ 𝐵 → 𝛿″𝑁𝑗
𝑅(𝐴) ⊆ 𝛿″𝑁𝑗

𝑅(𝐵) 

iv) 𝛿″𝑁𝑗
𝑅(𝐴 ∩ 𝐵) ⊆ 𝛿″𝑁𝑗

𝑅(𝐴) ∩ 𝛿″𝑁𝑗
𝑅(𝐵) 

v) 𝛿″𝑁𝑗
𝑅(𝐴 ∪ 𝐵) = 𝛿″𝑁𝑗

𝑅(𝐴) ∪𝛿″ 𝑁𝑗
𝑅(𝐵) 

vi) 𝛿″𝑁𝑗
𝑅(𝐴) = (𝛿″𝑁𝑗𝑅(𝐴𝑐))

𝑐

 

 
Proof:- 
Similar to proposition 3.3. 

 

 
𝜹″𝑵𝒋𝑹(𝑨) 𝜹″𝑵𝒋

𝑹(𝑨) 

j=r {a,b,c} {a,b} 

j=l {a,b} {a,b} 

𝒋 =< 𝒓 > {a,b} {a,b} 

𝒋 =< 𝒍 > {a,b,c} {a,b} 

j=i {a,b,c} {a,b} 

j=u {a,b} {a,b} 

𝒋 =< 𝒊 > {c} {a,b} 

𝒋 =< 𝒖 > {a,b} {a,b} 

 
TABLE 3: 𝛿″ lower and upper approximation of 𝐴 

 

B. 𝑗 − neighborhood via graph 

1) Definition 4.1 

      Let 𝐺 = (𝐾(𝐺), 𝐿(𝐺)) be a graph and 𝐻 be a subgraph 
of 𝐺. Define a first type of lower and upper approximation of 𝐻 

which are denoted by 𝑁
_

𝑗(𝐾(𝐻)) and 𝑁𝑗(𝐾(𝐻)) respectively. 

𝑁
_

𝑗(𝐾(𝐻)) = {𝑥 ∈ 𝐾(𝐺): 𝑁𝑗(𝑥) ⊆ 𝐾(𝐻)}  

𝑁𝑗(𝐾(𝐻)) = 𝐾(𝐻) ∪ {𝑥 ∈ 𝐾(𝐺): 𝑁𝑗(𝑥) ∩ 𝐾(𝐻) ≠ 𝜙} 

 

2) Definition 4.2 

Let 𝐺 = (𝐾(𝐺), 𝐿(𝐺)) be a graph and 𝐻 be a subgraph of 𝐺. 

Define the 𝑗 −boundary, 𝑗 −positive, 𝑗 −negative region and 

𝑗 −accuracy measure of 𝐻 in terms of 𝑗 −neighborhood is 

denoted by 𝐵𝑁𝐷𝑁𝑗
, 𝑃𝑂𝑆𝑁𝑗

, 𝑁𝐸𝐺𝑁𝑗
, and 𝒜𝑁𝑗

 

i) 𝐵𝑁𝐷𝑁𝑗
(𝐾(𝐻)) = 𝑁𝑗(𝐾(𝐻)) − 𝑁

_
𝑗(𝐾(𝐻)) 

ii) 𝑃𝑂𝑆𝑁𝑗
(𝐾(𝐻)) = 𝑁

_
𝑗(𝐾(𝐻)) 

iii) 𝑁𝐸𝐺𝑁𝑗
(𝐾(𝐻)) = 𝐾(𝐺) − 𝑁𝑗(𝐾(𝐻)) 

iv) 𝒜𝑁𝑗
=

|𝑁
_ 𝑗(𝐾(𝐻))|

|𝑁𝑗(𝐾(𝐻))|
 |𝑁𝑗(𝐾(𝐻))| ≠ 0 

3) Example 4.1 

       Let 𝐺 be a simple graph. 𝑗 −neighbourhood systems are 

defined as follows: 

 

            
                    
                            FIGURE 1 

If 𝑗 = {𝑟} and 𝑗 ∈ {𝑙, < 𝑟 >, < 𝑙 >, 𝑖, 𝑢, < 𝑖 >, < 𝑢 >}, then 
we have, 

i)
( ) { , , }, ( ) { , }, ( ) { }, ( ) { , , }, ( ) { }j j j j jN a b d e N b c d N c e N d a b c N e d= = = = =

  
ii) If j= {< 𝑟 >, < 𝑙 >, < 𝑖 >, < 𝑢 >} , then

( ) { , , }, ( ) { }, ( ) { }, ( ) { }, ( ) { }j j j j jN a a b c N b b N c c N d d N e e= = = = =
 

Let 𝑗 = 𝑟, 𝐾(𝐻) = {𝑎, 𝑏, 𝑐, 𝑑}.Then 

iii) 𝑁𝑟(𝐾(𝐻))={a,b,c,d} and 𝑁
_

𝑟(𝐾(𝐻)) = {𝑏, 𝑑, 𝑒} 

iv) 𝐵𝑁𝐷𝑁𝑟
(𝐾(𝐻)) = {𝑎, 𝑒} 

v) 𝑃𝑂𝑆𝑁𝑟
(𝐾(𝐻)) = {𝑏, 𝑑, 𝑒} 

vi) 𝑁𝐸𝐺𝑁𝑟
(𝐾(𝐻)) = {𝑒} 

vii) 𝒜𝑁𝑟
(𝐾(𝐻)) =

3

4
 

4) Definition 4.3 

Let 𝐺 = (𝐾(𝐺), 𝐿(𝐺)) be a graph and 𝐻 be a subgraph of 𝐺. 
Define the 𝛼′ type of lower and upper approximation of 𝐻 which 

are denoted by 𝛼′𝑁
_

𝑗(𝐾(𝐻)) and 𝛼′𝑁𝑗(𝐾(𝐻)) respectively. 

𝛼′
𝑁 𝑗(𝐾(𝐻)) =∪ {𝑁𝑗(𝑥): 𝑁𝑗(𝑥) ⊆ 𝐾(𝐻)} 

𝛼′𝑁𝑗(𝐾(𝐻)) = [𝛼′𝑁
_

𝑗(𝐾(𝐻))
𝑐
]

𝑐

 

5) Definition 4.4 
Let 𝐺 = (𝐾(𝐺), 𝐿(𝐺)) be a graph and 𝐻 be a subgraph of 

𝐺. Define the 𝛼′𝑗-boundary,𝛼′𝑗-positive,𝛼′𝑗-negative region 
and 𝛼′𝑗-accuracy measure of 𝐻 in terms of 𝑗 −neighbourhood 
is denoted by 𝐵𝑁𝐷𝛼′𝑁𝑗

, 𝑃𝑂𝑆𝛼′𝑁𝑗
, 𝑁𝐸𝐺𝛼′𝑁𝑗

, and 𝒜𝛼′𝑁𝑗
 

i) 𝐵𝑁𝐷𝛼′𝑁𝑗
(𝐾(𝐻)) = 𝛼′𝑁𝑗(𝐾(𝐻)) − 𝛼′𝑁

_
𝑗(𝐾(𝐻)) 

ii) 𝑃𝑂𝑆𝛼′𝑁𝑗
(𝐾(𝐻)) = 𝛼′𝑁

_
𝑗(𝐾(𝐻)) 

iii) 𝑁𝐸𝐺𝛼′𝑁𝑗
(𝐾(𝐻)) = 𝐾(𝐺) − 𝛼′𝑁𝑗(𝐾(𝐻)) 

iv) 𝒜𝛼′𝑁𝑗
=

|𝛼′𝑁
_ 𝑗(𝐾(𝐻))|

|𝛼′𝑁𝑗(𝐾(𝐻))|
,       |𝛼′𝑁𝑗(𝐾(𝐻))| ≠ 0 

6) Example 4.2 
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Continued from example 4.1. Let 𝑗 = 𝑟, 𝐾(𝐻) =
{𝑏, 𝑑, 𝑒}.Then 

i) 𝛼′𝑁𝑟(𝐾(𝐻)) = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} and 𝛼′𝑁
_

𝑟(𝐾(𝐻)) = {𝑏, 𝑑, 𝑒} 

ii) 𝐵𝑁𝐷𝛼′𝑁𝑗
(𝐾(𝐻)) = {𝑎, 𝑐} 

iii) 𝑃𝑂𝑆𝛼′𝑁𝑗
(𝐾(𝐻)) = {𝑏, 𝑑, 𝑒} 

iv) 𝑁𝐸𝐺𝛼′𝑁𝑗
(𝐾(𝐻)) = 𝜙 

v) 𝒜𝛼′𝑁𝑗
(𝐾(𝐻)) =

3

5
 

 

7) Definition 4.5 

      Let 𝐺 = (𝐾(𝐺), 𝐿(𝐺)) be a graph and 𝐻 be a subgraph of 

𝐺. Define the 𝛼″ type of lower and upper approximation of 𝐻 

which are denoted by 𝛼″𝑁
_

𝑗(𝐾(𝐻))  and 𝛼″𝑁𝑗(𝐾(𝐻)) 

respectively, 

𝛼″
𝑁
−

𝑗(𝐾(𝐻)) = [𝛼″
𝑁𝑗(𝐾(𝐻))

𝑐
]

𝑐
 

𝛼″𝑁𝑗(𝐾(𝐻)) =∪ {𝑁𝑗(𝑥): 𝑁𝑗(𝑥) ∩ 𝐾(𝐻) ≠ 𝜙} 

 
8) Definition 4.6 

Let 𝐺 = (𝐾(𝐺), 𝐿(𝐺)) be a graph and 𝐻 be a subgraph of 𝐺. 
Define the 𝛼″𝑗-boundary,𝛼″𝑗-positive,𝛼″𝑗-negative region and 
𝛼″𝑗-accuracy measure of 𝐻 in terms of j-neighborhood which 
will be denoted by 𝐵𝑁𝐷𝛼″𝑁𝑗

, 𝑃𝑂𝑆𝛼″𝑁𝑗
, 𝑁𝐸𝐺𝛼″𝑁𝑗

, and 𝒜𝛼″𝑁𝑗
 

𝐵𝑁𝐷𝛼″𝑁𝑗
(𝐾(𝐻)) = 𝛼″𝑁𝑗(𝐾(𝐻)) − 𝛼″𝑁

_
𝑗(𝐾(𝐻)) 

ii) 𝑃𝑂𝑆𝛼″𝑁𝑗
(𝐾(𝐻)) = 𝛼″𝑁

_
𝑗(𝐾(𝐻)) 

iii) 𝑁𝐸𝐺𝛼″𝑁𝑗
(𝐾(𝐻)) = 𝐾(𝐺) − 𝛼″𝑁𝑗(𝐾(𝐻)) 

iv) 𝒜𝛼″𝑁𝑗
(𝐾(𝐻)) =

|𝛼″𝑁
_ 𝑗(𝐾(𝐻))|

|𝛼″𝑁𝑗(𝐾(𝐻))|
,|𝛼″𝑁𝑗(𝐾(𝐻))| ≠ 0 

9) Example 4.3 

Continued from example 4.1. Let 𝑗 =< 𝑟 >, 𝐾(𝐻) =

{𝑏, 𝑑}.Then 

i) 𝛼″𝑁<𝑟>(𝐾(𝐻)) = {𝑎, 𝑏, 𝑐, 𝑑} and 𝛼″𝑁
_

𝑟(𝐾(𝐻)) = {𝑏, 𝑑} 

ii) 𝐵𝑁𝐷𝛼″𝑁<𝑟>
(𝐾(𝐻)) = {𝑎, 𝑐} 

iii) 𝑃𝑂𝑆𝛼″𝑁<𝑟>
(𝐾(𝐻)) = {𝑏, 𝑑}  

iv) 𝑁𝐸𝐺𝛼″𝑁<𝑟>
(𝐾(𝐻)) = {𝑒} 

v) 𝒜𝛼′𝑁<𝑟>
(𝐾(𝐻)) =

1

2
 

C. 𝑗 − adhesion neighborhood via graph 

1) Definition 5.1 

Let 𝐺 = (𝐾(𝐺), 𝐿(𝐺)) be a graph and 𝐻 be a subgraph of 𝐺. 
Define the second type of lower and upper approximation of 𝐻 

which are denoted by 𝑃
_
𝑗(𝐾(𝐻))  and 𝑃𝑗(𝐾(𝐻))  respectively, 

and it is defined by, 

𝑃
_
𝑗(𝐾(𝐻)) = {𝑥 ∈ 𝐾(𝐺): 𝑃𝑗(𝑥) ⊆ 𝐾(𝐻)}  and 

𝑃𝑗(𝐾(𝐻)) = 𝐾(𝐻) ∪ {𝑥 ∈ 𝐾(𝐺): 𝑃𝑗(𝑥) ∩ (𝐾(𝐻)) ≠ 𝜙)} 

2) Definition 5.2 
Let 𝐺 = (𝐾(𝐺), 𝐿(𝐺)) be a graph and 𝐻 be a subgraph of 𝐺. 

Define the 𝑗 −boundary, 𝑗 −positive, 𝑗 −negative regions and 
𝑗 − accuracy measure of 𝐻  in terms of 𝑗 −  adhesion 

neighborhood is denoted by 𝐵𝑁𝐷𝑃𝑗
, 𝑃𝑂𝑆𝑃𝑗

, 𝑁𝐸𝐺𝑃𝑗
, 𝒜𝑃𝑗

 

respectively 

i) 𝐵𝑁𝐷𝑃𝑗
(𝐾(𝐻)) = 𝑃(𝐾(𝐻)) − 𝑃

_
(𝐾(𝐻)) 

ii) 𝑃𝑂𝑆𝑃𝑗
(𝐾(𝐻)) = 𝑃𝑂𝑆𝑃

_ 𝑗
(𝐾(𝐻)) 

iii) 𝑁𝐸𝐺𝑃𝑗
= 𝐾(𝐺) − 𝑁𝐸𝐺𝑃𝑗

(𝐾(𝐻)) 

iv) 𝒜𝑃𝑗
(𝐾(𝐻)) =

|𝑃
_ 𝑗(𝐾(𝐻))|

|𝑃𝑗(𝐾(𝐻))|
 ,       |𝑃𝑗(𝐾(𝐻))| ≠ 0 

3) Example 5.1 

Let 𝐺 be a simple graph. 𝑗 −adhesion neighborhood system 
is defined as follows: 

 

                 
                                   FIGURE 2 

If j={r} and 𝑗 ∈ {𝑙, < 𝑟 >, < 𝑙 >, 𝑖, 𝑢, < 𝑖 >, < 𝑢 >}, then 
we have, 

i) If 𝑗 = {𝑟, 𝑙, 𝑖, 𝑢}, then 
𝑃𝑗(𝑎) = {𝑎, 𝑑}, 𝑃𝑗(𝑏) = {𝑏, 𝑐}, 𝑃𝑟(𝑐) = {𝑏, 𝑐}, 𝑃𝑗(𝑑) = {𝑎, 𝑑} 

 
ii) If  𝑗 = {< 𝑟 >, < 𝑙 >, < 𝑖 >, < 𝑢 >}, then 

𝑃𝑗(𝑎) = {𝑎, 𝑑}, 𝑃𝑗(𝑏) = {𝑏, 𝑐}, 
𝑃𝑗(𝑐) = {𝑏, 𝑐}, 𝑃𝑗(𝑑) = {𝑎, 𝑑} 

Let 𝑗 = 𝑟, 𝐾(𝐻) = {𝑎, 𝑏}. Then 

iii) 𝑃𝑗(𝐾(𝐻)) = {𝑎, 𝑏, 𝑐, 𝑑} and 𝑃
_
𝑗(𝐾(𝐻)) = 𝜙 

iv) 𝐵𝑁𝐷𝑃𝑗
(𝐾(𝐻)) = {𝑎, 𝑏, 𝑐, 𝑑} 

v) 𝑃𝑂𝑆𝑃𝑗
(𝐾(𝐻)) = 𝜙 

vi) 𝑁𝐸𝐺𝑃𝑗
(𝐾(𝐻)) = 𝜙 

vii) 𝒜𝑃𝑗
(𝐾(𝐻)) = 0 

 

4) Definition 5.3 

Let 𝐺 = (𝐾(𝐺), 𝐿(𝐺)) be a graph and 𝐻 be a subgraph of 𝐺 . 

Define the 𝛽′ lower and upper approximation of 𝐻 which are 

denoted by 𝛽′𝑃
_
𝑗(𝐾(𝐻)) and 𝛽′𝑃𝑗(𝐾(𝐻)) respectively, 

𝛽′𝑃
_
𝑗(𝐾(𝐻)) =∪ {𝑃𝑗(𝑥): 𝑃𝑗(𝑥) ⊆ 𝐾(𝐻)} 𝛽′𝑃𝑗(𝐾(𝐻))

= [𝛽′𝑃
_
𝑗(𝐾(𝐻))

𝑐
]

𝑐

 

 

5) Definition 5.4 

Let 𝐺 = (𝐾(𝐺), 𝐿(𝐺)) be a graph and 𝐻 be a subgraph of 𝐺 . 

Define the 𝛽′𝑗-boundary,𝛽′𝑗-positive,𝛽′𝑗-negative region and 

𝛽′𝑗 -accuracy measure of H in terms of j-neighborhood is 

denoted by 𝐵𝑁𝐷𝛽′𝑃𝑗
, 𝑃𝑂𝑆𝛽′𝑃𝑗

, 𝑁𝐸𝐺𝛽′𝑃𝑗
, and 𝒜𝛽′𝑃𝑗

 

i) 𝐵𝑁𝐷𝛽′𝑃𝑗
(𝐾(𝐻)) = 𝛽′𝑃𝑗(𝐾(𝐻)) − 𝛽′𝑃

_
𝑗(𝐾(𝐻)) 

ii) 𝑃𝑂𝑆𝛽′𝑃𝑗
(𝐾(𝐻)) = 𝛽′𝑃

_
𝑗(𝐾(𝐻)) 
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iii) 𝑁𝐸𝐺𝛽′𝑃𝑗
(𝐾(𝐻)) = (𝐾(𝐺)) − 𝛽′𝑃𝑗(𝐾(𝐻)) 

iv) 𝒜𝛽′𝑃𝑗
=

|𝛽′𝑃
_ 𝑗(𝐾(𝐻))|

|𝛽′𝑃𝑗(𝐾(𝐻))|
,       |𝛽′𝑃𝑗(𝐾(𝐻))| ≠ 0 

6) Example 5.2 

Let 𝑗 = 𝑟, 𝐾(𝐻) = {𝑏, 𝑐}.Then 

i) 𝛽′𝑃
_
𝑗(𝐾(𝐻))={b,c} and 𝛽′𝑃𝑗(𝐾(𝐻)) = {𝑎, 𝑑} 

ii) 𝐵𝑁𝐷𝛽′𝑃𝑗
(𝐾(𝐻)) = {𝑎, 𝑑} 

iii) 𝑃𝑂𝑆𝛽′𝑃𝑗
(𝐾(𝐻)) = {𝑏, 𝑐} 

iv) 𝑁𝐸𝐺𝛽′𝑃𝑗
(𝐾(𝐻)) = {𝑏, 𝑐} 

v) 𝒜𝛽′𝑃𝑗
= 1 

7) Definition 5.5 

Let 𝐺 = (𝐾(𝐺), 𝐿(𝐺)) be a graph and 𝐻 be a subgraph of 𝐺. 
Define the 𝛽″ lower and upper approximation of 𝐻 which are 

denoted by 𝛽″𝑃
_
𝑗(𝐾(𝐻))  and 𝛽″𝑃𝑗(𝐾(𝐻))  respectively. It is 

defined as follows 
𝛽″𝑃

_
𝑗(𝐾(𝐻)) = [𝛽″𝑃𝑗(𝐾(𝐻))

𝑐
]

𝑐
𝛽″𝑃𝑗(𝐾(𝐻))

=∪ {𝑃𝑗(𝑥): 𝑃𝑗(𝑥) ∩ 𝐾(𝐻) ≠ 𝜙} 

8) Definition 5.6 

    Let 𝐺 = (𝐾(𝐺), 𝐿(𝐺)) be a graph and 𝐻 be a subgraph of 𝐺. 

Define the 𝛽″𝑗-boundary,𝛽″𝑗-positive,𝛽″𝑗-negative region and 

𝛽″𝑗-accuracy measure of 𝐻  in terms of 𝑗 −neighbourhood is 

denoted by 𝐵𝑁𝐷𝛽″𝑃𝑗
, 𝑃𝑂𝑆𝛽″𝑃𝑗

, 𝑁𝐸𝐺𝛽″𝑃𝑗
, and 𝒜𝛽″𝑃𝑗

 

i) 𝐵𝑁𝐷𝛽″𝑃𝑗
(𝐾(𝐻)) = 𝛽″𝑃𝑗(𝐾(𝐻)) − 𝛽″𝑃

_
𝑗(𝐾(𝐻)) 

ii) 𝑃𝑂𝑆𝛽″𝑃𝑗
(𝐾(𝐻)) = 𝛽″𝑃

_
𝑗(𝐾(𝐻)) 

iii) 𝑁𝐸𝐺𝛽″𝑃𝑗
(𝐾(𝐻)) = 𝐾(𝐺) − 𝛽″𝑃𝑗(𝐾(𝐻)) 

iv) 𝒜𝛽″𝑃𝑗
(𝐾(𝐻)) =

|𝛽″𝑃
_ 𝑗(𝐾(𝐻))|

|𝛽″𝑃𝑗(𝐾(𝐻))|
,       |𝛽″𝑃𝑗(𝐾(𝐻))| ≠ 0 

9) Example 5.3 

Continued from example 5.1. Let 𝑗 = 𝑟, 𝐾(𝐻) = {𝑎, 𝑏}. Then 

i) 𝛽″𝑃
_
𝑗(𝐾(𝐻)) = {𝑎, 𝑑} and 𝛽″𝑃𝑗(𝐾(𝐻)) = {𝑎, 𝑏, 𝑐, 𝑑} 

ii) 𝐵𝑁𝐷𝛽″𝑃𝑗
(𝐾(𝐻)) = {𝑏, 𝑐} 

iii) 𝑃𝑂𝑆𝛽″𝑃𝑗
(𝐾(𝐻)) = {𝑎, 𝑑} 

iv) 𝑁𝐸𝐺𝛽″𝑃𝑗
(𝐾(𝐻)) = 𝜙 

v) 𝒜𝛽″𝑃𝑗
(𝐾(𝐻)) =

1

2
 

D. 𝐸 − neighborhood via graph 

1) Definition 6.1 

Let 𝐺 = (𝐾(𝐺), 𝐿(𝐺)) be a graph, for each 𝑥 ∈  𝐾(𝐺).The 
𝐸 −neighbourhood system for 𝑥,∀𝑗 ∈ {𝑟, 𝑙, 𝑖, 𝑢, < 𝑟 >, < 𝑙 >, <
𝑖 >, < 𝑢 >} are defined by 
i) 𝐸𝑟(𝑥)={𝑦 ∈ 𝐾(𝐺): 𝑁𝑟(𝑦) ∩ 𝑁𝑟(𝑥) ≠ 𝜙} 
ii) 𝐸𝑙(𝑥)={𝑦 ∈ 𝐾(𝐺): 𝑁𝑙(𝑦) ∩ 𝑁𝑙(𝑥) ≠ 𝜙} 
iii) 𝐸<𝑟>(𝑥)={𝑦 ∈ 𝐾(𝐺): 𝑁<𝑟>(𝑦) ∩ 𝑁<𝑟>(𝑥) ≠ 𝜙} 
iv) 𝐸<𝑙>(𝑥)={𝑦 ∈ 𝐾(𝐺): 𝑁<𝑙>(𝑦) ∩ 𝑁<𝑙>(𝑥) ≠ 𝜙} 
v) 𝐸𝑖(𝑥)={𝐸𝑟(𝑥) ∩ 𝐸𝑙(𝑥)} 
vi) 𝐸𝑢(𝑥))={𝐸𝑟(𝑥) ∪ 𝐸𝑙(𝑥)} 

vii) 𝐸<𝑖>(𝑥)={𝐸<𝑟>(𝑥) ∩ 𝐸<𝑙>(𝑥)} 
viii) 𝐸<𝑢>(𝑥)={𝐸<𝑟>(𝑥) ∪ 𝐸<𝑙>(𝑥)} 

 

2) Example 4.1 
Let 𝐺  be a simple graph. 𝐸 − neighborhood system is 

defined as follows: 

               
 
                                    FIGURE 3 

If 𝑗 = {𝑟} and 𝑗 ∈ {𝑙, < 𝑟 >, < 𝑙 >, 𝑖, 𝑢, < 𝑖 >, < 𝑢 >}, then we 
have, 

i) If 𝑗 = {𝑟, 𝑙, 𝑖, 𝑢}, then 
𝐸𝑗(𝑎) = {𝑎, 𝑐, 𝑑}, 𝐸𝑗(𝑏) = {𝑏, 𝑐, 𝑑, 𝑒}, 𝐸𝑗(𝑐)

= {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} 
𝐸𝑗(𝑑) = {𝑎, 𝑏, 𝑐, 𝑑}, 𝐸𝑗(𝑒) = {𝑏, 𝑐, 𝑒}  

ii) If j= {< 𝑟 >, < 𝑙 >, < 𝑖 >, < 𝑢 >} , then 
𝐸𝑗(𝑎) = {𝑎, 𝑑}, 𝐸𝑗(𝑏) = {𝑏, 𝑒}, 𝐸𝑗(𝑐) = {𝑐} 

𝐸𝑗(𝑑) = {𝑎, 𝑑}, 𝐸𝑗(𝑒) = {𝑏, 𝑒} 

3) Definition 6.2 

Let 𝐺 = (𝐾(𝐺), 𝐿(𝐺)) be a graph and 𝐻 be a subgraph of 𝐺. 
Define the third type of lower and upper approximation of 

𝐻 which are denoted by 𝐸
_

𝑗(𝐾(𝐻)) and 𝐸𝑗(𝐾(𝐻)) respectively. 

It is defined as follow, 

𝐸
_

𝑗(𝐾(𝐻)) = {𝑥 ∈ 𝐾(𝐺): 𝐸𝑗(𝑥) ⊆ 𝐾(𝐻)}𝐸𝑗(𝐾(𝐻))

= 𝐾(𝐻) ∪ {𝑥 ∈ 𝐾(𝐺): 𝐸𝑗(𝑥) ∩ (𝐾(𝐻))
≠ 𝜙} 

4) Definition 6.3 

Let 𝐺 = (𝐾(𝐺), 𝐿(𝐺))  be a graph and 𝐻  be a subgraph of 

𝐺. Define the 𝑗 −boundary, 𝑗 −positive, 𝑗 −negative region and 

𝑗 −accuracy measure of 𝐻  in terms of 𝐸 −neighbourhood is 

denoted by 𝐵𝑁𝐷𝐸𝑗
, 𝑃𝑂𝑆𝐸𝑗

, 𝑁𝐸𝐺𝐸𝑗
, and 𝒜𝐸𝑗

 

i) 𝐵𝑁𝐷𝐸𝑗
(𝐾(𝐻)) = 𝐸𝑗(𝐾(𝐻)) − 𝐸

_
𝑗(𝐾(𝐻)) 

ii) 𝑃𝑂𝑆𝐸𝑗
(𝐾(𝐻)) = 𝐸

_
𝑗(𝐾(𝐻)) 

iii) 𝑁𝐸𝐺𝐸𝑗
(𝐾(𝐻)) = 𝐾(𝐺) − 𝐸𝑗(𝐾(𝐻)) 

iv) 𝒜𝐸𝑗
(𝐾(𝐻)) =

|𝐸
_ 𝑗(𝐾(𝐻))|

|𝐸𝑗(𝐾(𝐻))|
, |𝐸𝑗(𝐾(𝐻))| ≠ 0 

5) Example 6.2 

Continued from example 6.1 Let 𝑗 = 𝑟, 𝐾(𝐻) =
{𝑎, 𝑏, 𝑐}.Then 

i) 𝐸𝑗
_

(𝐾(𝐻)) = {𝑐, 𝑑} and 𝐸𝑗(𝐾(𝐻)) = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} 

ii) 𝐵𝑁𝐷𝐸𝑗
(𝐾(𝐻)) = {𝑎, 𝑏, 𝑒} 

iii) 𝑃𝑂𝑆𝐸𝑗
(𝐾(𝐻)) = {𝑐, 𝑑} 
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iv) 𝑁𝐸𝐺𝐸𝑗
(𝐾(𝐻)) = 𝜙 

v) 𝒜𝐸𝑗
(𝐾(𝐻)) =

2

5
 

6) Definition 6.4 

    Let 𝐺 = (𝐾(𝐺), 𝐿(𝐺)) be a graph and 𝐻 be a subgraph of 𝐺. 

Define the 𝛿′ lower and upper approximation of 𝐻 which are 

denoted by 𝛿′𝐸
_

𝑗(𝐾(𝐻)) and 𝛿′𝐸𝑗(𝐾(𝐻)) respectively, 

𝛿′𝐸
_

𝑗(𝐾(𝐻)) =∪ {𝐸𝑗(𝑥): 𝐸𝑗(𝑥) ⊆ 𝐾(𝐻)} 𝛿′𝐸𝑗(𝐾(𝐻))

= [𝛿′𝐸
_

𝑗(𝐾(𝐻))
𝑐
]

𝑐

 

7) Definition 6.5 

Let 𝐺 = (𝐾(𝐺), 𝐿(𝐺)) be a graph and 𝐻 be a subgraph of 𝐺. 
Define the 𝛿′𝑗 -boundary,𝛿′𝑗 -positive,𝛿′𝑗 -negative region and 
𝛿′𝑗 -accuracy measure of 𝐻  in terms of 𝐸 − neighborhood is 

denoted by 𝐵𝑁𝐷𝛿′𝐸𝑗
, 𝑃𝑂𝑆𝛿′𝐸𝑗

, 𝑁𝐸𝐺𝛿′𝐸𝑗
, and 𝒜𝛿′𝐸𝑗

 

i) 𝐵𝑁𝐷𝛿′𝐸𝑗
(𝐾(𝐻)) = 𝛿′𝐸𝑗(𝐾(𝐻)) − 𝛿′𝐸

_
𝑗𝐾(𝐻) 

ii) 𝑃𝑂𝑆𝛿′𝐸𝑗
(𝐾(𝐻)) = 𝛿′𝐸

_
𝑗(𝐾(𝐻)) 

iii) 𝑁𝐸𝐺𝛿′𝐸𝑗
(𝐾(𝐺)) = (𝐾(𝐻)) − 𝛿′𝐸𝑗(𝐾(𝐻)) 

iv) 𝒜𝛿′𝐸𝑗
(𝐾(𝐻)) =

|𝛿′𝐸
_ 𝑗(𝐾(𝐻))|

|𝛿′𝐸𝑗(𝐾(𝐻))|
, |𝛿′𝐸𝑗(𝐾(𝐻))| ≠ 0 

8) Example 6.3 

Continued from example 6.1. Let 𝑗 = 𝑟 𝐾(𝐻) =
{𝑏, 𝑑, 𝑒}.Then 
 

i) 𝛿′𝐸
_

𝑗(𝐾(𝐻))={b,e} and 𝛿′𝐸𝑗(𝐾(𝐻)) = {𝑎, 𝑏, 𝑑, 𝑒} 

ii) 𝐵𝑁𝐷𝛿′𝐸𝑗
(𝐾(𝐻)) = {𝑎, 𝑑} 

iii) 𝑃𝑂𝑆𝛿′𝐸𝑗
(𝐾(𝐻)) = {𝑏, 𝑒} 

iv) 𝑁𝐸𝐺𝛿′𝐸𝑗
(𝐾(𝐻)) = {𝑐} 

v) 𝒜𝛿′𝐸𝑗
(𝐾(𝐻)) = 1 

9) Definition 6.6 

Let 𝐺 = (𝐾(𝐺), 𝐿(𝐺)) be a graph and 𝐻 be a subgraph of 𝐺. 
The 𝛿″ lower and upper approximation of 𝐻 which are denoted 

by 𝛿″𝐸
_

𝑗(𝐾(𝐻)) and 𝛿″𝐸𝑗(𝐾(𝐻)) respectively and it is defined 

by 
𝛿″𝐸

_
𝑗(𝐾(𝐻)) = [𝛿″𝐸𝑗(𝐾(𝐻))

𝑐
]

𝑐
𝛿″𝐸𝑗(𝐾(𝐻))

=∪ {𝐸𝑗(𝑥); 𝐸𝑗(𝑥) ∩ 𝐾(𝐻) ≠ 𝜙} 

10) Definition 6.7 

Let 𝐺 = (𝐾(𝐺), 𝐿(𝐺)) be a graph and 𝐻 be a subgraph of 𝐺. 
Define the 𝛿″𝑗-boundary,𝛿″𝑗-positive,𝛿″𝑗-negative region and 
𝛿″𝑗 -accuracy measure of 𝐻  in terms of 𝐸 −neighborhood is 
denoted by 𝐵𝑁𝐷𝛿″𝐸𝑗

, 𝑃𝑂𝑆𝛿″𝐸𝑗
, 𝑁𝐸𝐺𝛿″𝐸𝑗

, and 𝒜𝛿″𝐸𝑗
 

i) 𝐵𝑁𝐷𝛿″𝐸𝑗
(𝐾(𝐻)) = 𝛿″𝐸𝑗(𝐾(𝐻)) − 𝛿″𝐸

_
𝑗(𝐾(𝐻)) 

ii) 𝑃𝑂𝑆𝛿″𝐸𝑗
(𝐾(𝐻)) = 𝛿″𝐸

_
𝑗(𝐾(𝐻)) 

iii) 𝑁𝐸𝐺𝛿″𝐸𝑗
(𝐾(𝐻)) = 𝐾(𝐺) − 𝛿″𝐸𝑗(𝐾(𝐻)) 

iv) 𝒜𝛿″𝐸𝑗
(𝐾(𝐻)) =

|𝛿″𝐸
_ 𝑗(𝐾(𝐻))|

|𝛿″𝐸𝑗(𝐾(𝐻))|
, |𝛿″𝐸𝑗(𝐾(𝐻))| ≠ 0 

 

11) Example 6.7 
 

Continued from example 6.1. Let 𝑗 =< 𝑟 >, 𝐾(𝐻) =
{𝑎, 𝑏, 𝑐, 𝑑}.Then 

i) 𝛿″𝐸
_

𝑗(𝐾(𝐻)) = {𝑎, 𝑐, 𝑑} and 𝛿″𝐸𝑗(𝐾(𝐻)) = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} 

ii) 𝐵𝑁𝐷𝛿″𝐸𝑗
(𝐾(𝐻)) = {𝑑, 𝑒} 

iii) 𝑃𝑂𝑆𝛿″𝐸𝑗
(𝐾(𝐻)) = {𝑎, 𝑐, 𝑑} 

iv) 𝑁𝐸𝐺𝛿″𝐸𝑗
(𝐾(𝐻)) = 𝜙 

v) 𝒜𝛿″𝐸𝑗
(𝐾(𝐻)) =

3

5
 

IV. CONCLUSION 

The paper presents an extended exploration of rough 
neighborhoods at various levels, thereby contributing to an 
enriched understanding of Rough Sets in the context of 
Knowledge Discovery. This research delves into the concept of 
rough neighborhoods across different levels and provides 
valuable insights and findings that have the potential to enhance 
and broaden the application of Rough Sets in the field of 
knowledge discovery. The future work introduces a novel 
approach by applying different types of neighborhoods, 
represented through graphs, to the core concept of rough set 
theory, particularly in the context of data mining, which focuses 
on the reduction of information systems. This innovative 
approach demonstrates that visualizing reducts using graphs is 
significantly more intuitive and accessible compared to the 
traditional Pawlak’s rough set theory. By employing these 
graphical representations, the paper not only enhances the clarity 
and interpretability of the reduction process but also opens up 
new possibilities for advancing the field of data mining in 
conjunction with rough set theory. 
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