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Abstract—The most often used adaptive filter (AF) is the least-mean-square (LMS) filter. This filter has many applications in the area of 

communication and signal processing. System identification represents a significant use case for adaptive filters. This paper represents a new 

structure/model of system identification and adaptive noise cancellation (ANC) using state-of-the-art LMS-AF. The paper expressed the 

algorithm of updated LMS-AF. The major parts of the proposed model are- two adaptive filters, one LMS filter, one correlation function, and 

one auto-correlation function. The research investigation for the proposed model is based on the self-adaptation or self-learning method to obtain 

the maximum signal to noise ratio (SNR) based on the real-time inputs. The proposed structure/model converges towards the ideal LMS-ANC 

system. This paper also includes mathematical analysis, simulation, results, and discussion. The most important comparison parameters are the 

SNR and mean-square-error (MSE). 
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I.  INTRODUCTION 

The filtering is the fundamental method to computation of 
signals contaminated by additive white Gaussian noise [1–3]. 
This method is noise cancellation techniques which can be 
justified after the evaluation and comparison of SNRs. The 
following digital filters are used as noise cancellation process- 
FIR [4], IIR [5], Wiener [6], Kalman [7], LMS [8,9] and RLS 
[10,11], etc. Nowadays, most popular and widely filter is LMS 
adaptive filters in the application of communication systems 
due to low computation complexity [12–14]. The major 
applications of adaptive filters are plant or system identification 
[15], noise cancellation [16,17], echo cancellation [18], ECG 
signal analysis [19,20], prediction [21], line enhancer [22], 
channel equalization [23], inverse modelling [24], channel 
identification [25], etc. The concepts of LMS-ANC can be 
expressed with the help of figure 1 [1,26–28]. Figure 1 consists, 
an adaptive filter, one LMS algorithm block and one subtractor 
block [2,29]. The adaptive filter has FIR filter structure of filter 
length L. Adaptive filter generates an output y(n) after the 
updating of FIR filter weights as a consequence of reference 
input signal x(n) which is generated from the noise source. This 
filtered signal y(n) is subtracted in the primary input signal d(n) 
and received error/system output signal e(n). The signal d(n) is 
jointly generated from the signal and noise sources. It means 
signal d(n) is a noisy information/message signal I(n). The FIR 
filter weights are adjusted and updated by the LMS algorithm. 
The LMS algorithm depends on the signals x(n) and e(n). 

 

 

Figure 1.  Adaptive noise cancelling concept. 

In the present and past researches, the adaptive filter 
cancels the unwanted noise signal approximately from the 
noise included information/message signal. The basics of the 
paper belong to the reference paper [30] but the novelty of the 
paper is the perfect noise cancellation from the primary input 
signal using self-learning/adaptation technique. In results, e(n) 
will be equivalent to I(n) when x′(n) is same as y(n). Signals 
I(n) and x(n) are uncorrelated but x(n) and x′(n) are correlated. 

II. LMS-ANC ALGORITHM 

The LMS algorithm is robust and simple [31]. This 
algorithm for an adaptive noise cancellation had classified into 
three parts: output signal algorithm, error signal algorithm, and 
weight updating algorithm [23,25,32–34]. The weight updating 
algorithm is the backbone of LMS algorithm. The algorithms 
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are discussed as follows: The output signal algorithm is given 
in eq. (1), 

)()()( nXnWny T=   (1) 

The error signal algorithm is expressed in eq. (2),  

)()()( nyndne −=   (2) 

The MSE of error signal is as given in the eq. (3), 

)]([)( 2 neEn =    (3) 

Using eq. (1), eq. (2) and eq. (3), 

X
T

X
T PnWnWRnWndEn )(2)()()]([)( 2 −+=  (4) 

Where, 

 )()( nXnXER T
X =  and  )()( nXndEPX =  

RX is denoted as autocorrelation vector of x(n) and PX is 
denoted as correlation vector of d(n) and x(n). Evaluating the 
gradient vector with respect to W(n) using eq. (4), 

XXW PnWRn
nW

n 2)(2)]([
)(

)( −=



=   (5) 

The optimum weight vector will be as follows for the 
minimum value of MSE, 

)()( nWnW opt=    (6) 

The gradient vector will be zero for the optimal result of 
weight vector. Using eq. (5) and eq. (6); the optimal vector 
value is expressed as, 

XXopt PRnW 1)( −=    (7) 

 

 

Figure 2.  Weight updating using the steepest descent method. 

The Wopt(n) is the optimum wiener solution of LMS 
algorithms for noise cancellation. The MSE is minimized at 
this optimum solution of the weight vector. This weight update 
algorithm is based on the minimum MSE technique. As per the 
condition of the minimum MSE, e(n) will be equivalent to I(n) 
when x′(n) is same as y(n) because I(n) and x(n) are 
uncorrelated. The LMS algorithm adapts the property of noise 
and approximately cancels the noise from the primary input 
signal. Figure 2 shows the weight updating technique using 
steepest descent method [35]. This method depends on the 
negative gradient vector of square error signal. The weight 
update algorithm is described as, 













−+=+ )}({

)(
)()1( 2 ne

nW
nWnW   (8) 

After the simplification of eq. (8) using eq. (2): 

)()()()1( nXnenWnW +=+   (9) 

Where, the step-size µ range is expressed as, 

max

2
0


     (10) 

Where,  
λmax = Maximum Eigen value of autocorrelation vector RX 
µ = Step-size of the LMS-AF 
W(n) = Weight matrix of the LMS-AF, dimension Lx1 
X(n) = Input signal matrix of the LMS-AF, dimension Lx1 
y(n) = Output signal of the LMS-AF, dimension 1x1 
d(n) = Primary input signal of the LMS-AF, dimension 1x1 
e(n) = System output of the LMS-AF, dimension 1x1 
W(n+1) = Updated weight matrix of the LMS-AF, 

dimension Lx1 and , λmax is defined in the eq. (11) which 
depends on the energy of x(n) [36,37]. Therefore, the step-size 
of LMS-AF will depend on energy of the signal. 

 2

max )()1( nxEL +=   (11) 

 TL nwnwnwnW )(...)()()( 110 −=  (12) 

 TLnxnxnxnX )1(...)1()()( +−−=  (13) 

Where, L = Filter length of 1st LMS-AF 
The convergence rate of e(n) is the important analysis 

parameter. This parameter is calculated [38] using eq. (1), eq. 
(2) and eq. (9). 

)1)(()1( 2xLnene −=+   (14) 

Where, e(0) = k, W(0) = 0, d(n) = k, x(n) = x, and µ << 1. 
The signals d(n) and x(n) are considered as constant for the 
convergence rate analysis of system output signal e(n). 

III. ANALYSIS OF THE PROPOSED MODEL 

The self-learning/adaptation technique of ANC concepts 
model is revealed in figure 3 with two adaptive filters. The 
signals d(n) and x(n) are used as inputs of the given model. The 
input d(n) which is a combination of I(n) and x1(n) generated 
from the signal source and noise source respectively. The 
weights of FIR filter used in the adaptive filter-1 are decided as 
per LMS algorithm by use of signals x(n) and e(n). The 
reference input noise signal x(n) is also generated from the 
noise source. The FIR filter length is L. These weights are also 
passed to the FIR filter of adaptive filter-2 through digital 
multiplier with noise factor δ(n). The proposed parameter noise 
factor δ(n) is determined with the help of real-time inputs 
which are d(n) and x(n). The digital multiplier can be replaced 
by digital amplifier with gain as noise factor δ(n). The y1(n) 
signal of adaptive filter-2 passes to the subtractor. The 
subtractor subtracts y1(n) from d(n) and generates system 
output e1(n). This innovative model gives the system output 
e1(n) is equivalent to the information/message signal I(n). 

A. Algorithms 

The algorithms and other mathematical analysis of the 
proposed model based on self-learning/adaptation technique are 
described in this sub-section. The LMS algorithms of the 
proposed model are expressed in the eq. (15) to eq. (27). 
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Figure 3.  ANC concept using self-learning/adaptation technique. 

The filtered signal algorithm of adaptive filter-1 is specified 
in eq. (15), 

)()()( nXnWny T=   (15) 

The error signal algorithm is expressed in eq. (16),  

)()()( nynxne −=   (16) 

The weight update LMS algorithm is in eq. (17), 

)()()()1( nenXnWnW +=+   (17) 

The digital multiplier or digital amplifier algorithm is 
expressed in eq. (18), 

)()()(1 nWnnW =   (18) 

The filtered output signal algorithm of adaptive filter-2 is 
given in eq. (19), 

)()()( 11 nXnWny T=   (19) 

The system output algorithm of proposed model is 
expressed in eq. (20), 

)()()( 11 nyndne −=   (20) 

B. Error signal convergence rate 

The convergence rate of e1(n) for the proposed model is 
defined in the eq. (21). 

))(1)(()1( 2
11 xLnnene −=+   (21) 

Where, e1(0) = k, W(0) = 0, d(n) = k, x(n) = x and µ << 1. 

C. Determination of noise factor δ(n) 

 

Figure 4.  Block diagram for the determination of noise factor δ(n). 

Figure 4 presents the block diagram for the determination 
of noise factor δ(n) used in figure 3. The noise factor δ(n) is 
used for the perfect ANC. The factor δ(n) is determined by d(n) 
and x(n). These input signals are same as inputs given for the 

proposed model of figure 3. The determination of noise factor 
δ(n) is based on the correlation functions [39]. The correlation 
function αdx(n) is determine with the help of eq. (22), 


=

−=
n

i
dx nixidn

0

)()()(    (22) 

The auto-correlation function βxx(n) is determine with the 
help of eq. (23), 


=

−=
n

i
xx nixixn

0

)()()(    (23) 

The inverse function of autocorrelation function of 
reference input noise signal x(n) is generated i.e. 1/βxx(n). The 
noise factor δ(n) is evaluated with the help eq. (24), 
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   (24) 

If information/message signal I(n) is sinusoidal and noise is 
proportional to any function f(n). Therefore, signals I(n), x′(n), 
d(n) and x(n) can be defined as, 

)()( 0nASinnI =    (25) 

)()()(' nfnBnx =    (26) 

)()()()(')()( 0 nfnBnASinnxnInd +=+=   (27) 

)()()( nfnCnx =    (28) 

The correlation function αdx(n) is calculated with the help of 
eq. (22), (27) and (28), 

))((*)()())(),(()( 2 nfCorrnCnBnxndCorrndx ==  (29)   

Where, signals I(n) and x(n) are non-correlated but signals 
x′(n) and x(n) are correlated. Corr(.) is the notation of 
correlation function. The auto-correlation function βxx(n) is 
calculated with the help of eq. (23) as, 

))((*)())(),(()( 22 nfCorrnCnxnxCorrnxx ==  (30) 

The noise factor δ(n) is calculated with the help eq. (24), eq. 
(29) and eq. (30), 
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  (31) 

The noise factor δ(n) is self calculated as per the given 
signals d(n) and x(n) by the model given in figure 4. The 
calculated value of noise factor δ(n) passes into the proposed 
model of noise cancellation as shown in figure 3 for the 
maximum SNR of system output e1(n). 

TABLE I.  PARAMETERS USED IN THE MATLAB SIMULATION FOR THE 

DETERMINATION OF NOISE FACTOR δ(n) 

S.

N. 

Parameter Symbol Value/ 

Range 

Reference 

eq.(s) 

1 Magnitude of 
information/message signal 

I(n)  

A 2 25, 27 

2 Frequency of 

information/message signal 
I(n) in radian/second 

ω0 20 25, 27 

3 Noise magnitude present in 

the signal d(n) 

B(n) 0.1-5 26, 27 

4 Reference noise magnitude C(n) 1 27 

5 Noise function as Gaussian 

noise 

f(n) Mean = 0, 

Variance = 

0.75 

26, 27, 28 

6 Sample-time - 0.001 - 

7 Number of 

Samples/Iterations 

N 1001 - 
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The MATLAB model of figure 4 is simulated using the 
parameters given in Table 1 and the results are made known in 
figures 5, 6 & 7.  According to the parameter’s values and eq. 
(38), the value of the noise factor δ(n) will be equal to B(n). 
Figure 5 shows that the value of B(n) is approximately same as 
calculated value of noise factor δ(n). Figure 6 also gives the 
percentage error in the calculated value of noise factor δ(n). 
The figures 6 and 7 present that the percentage error in the 
calculated value of noise factor δ(n) is higher if B(n) << 1 or 
B(n) → 0. If B(n) << 1 or B(n) → 0 represents the noise factor 
in signal d(n) is very less, therefore, no need to apply the noise 
cancellation process or we can ignore this limiting value. As 
per the simulation results; if B(n) > 0.5 approximately, the 
absolute value of the percentage error for the calculated value 
of noise factor δ(n) is less than 4% at the parameter’s values 
given in table 1. 

 

 

Figure 5.  Characteristics of the calculated noise factor δ(n) w.r.t. constant 

B(n) and number of iterations N. 

 

Figure 6.  Characteristics for the percentage error value of calculated noise 

factor δ(n) with respect to constant B(n) and the number of iterations N. 

 

Figure 7.  Characteristics of percentage error of calculated noise factor δ(n) 

with respect to constant B(n). 

D. Optimum value of weight vector 

The MSE of the signal e1(n) is as given in the eq. (32), 

)]([)( 2
11 neEn =    (32) 

Using eq. (20) and eq. (32), 

X
T

X
T PnWnnWRnWnndEn )()(2)()()()]([)( 22

1  −+=  (33) 

Where, 

 )()( nXnXER T
X =  and  )()( nXndEPX =  

RX is the autocorrelation vector of signal x(n) and PX is the 
correlation vector of signals d(n) and x(n). Evaluating the 
gradient vector with respect to W(n) using eq. (33), 

XXW PnnWRn
nW

n
n )(2)()(2

)(

)(
)( 2 


 −=




=   (34) 

The optimum weight vector will be as follows for the 
minimum value of MSE, 

)()( , nWnW opt =   (35) 

The gradient vector will be zero for the optimal result. 
Using eq. (34) and eq. (35); the optimal value of the weight 
matrix is expressed as, 

)(
)(

1
)( 1

, XXopt PR
n

nW −=



  (36) 

The Wopt,δ(n) is the optimum wiener solution of LMS 
algorithms for noise cancellation. The MSE is minimized at 
this optimum solution. The relation between optimum weight 
vector Wopt,δ(n) for the proposed model and the optimum 
weight vector Wopt(n) of traditional LMS using eq. (7) and eq. 
(36) is defined as, 

)(
)(

1
)(, nW

n
nW optopt


 =   (37) 

Therefore, the ratio of optimum weight vector Wopt,δ(n) for 
the proposed model and the optimum weight vector Wopt(n) of 
traditional LMS is constant because δ(n) is a constant factor. 

E. MSE 

The minimum MSE of the projected model using eq. (33) 
and eq. (35) is, 

X
T
opt

optX
T
opt

PnWn

nWRnWnndEn

)()(2

)()()()]([)(

,

,,
22
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 (38) 

Using eq. (35) and eq. (37), 
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(39) 

Eq. (39) is simplified as eq. (40) using the identities (AB)T 
= BTAT and AA-1 = I,  

XX
T
X PRPndEn 12

min,1 )]([)( −−=   (40) 

Where, (.)T denotes the transpose of the given matrix and 
(.)-1 demotes the inverse of matrix. Using eq. (37) and (40), 

)()()]([)( ,
2

min,1 nWPnndEn opt
T
X  −=  (41) 

F. The optimum value of error signal e1(n) 

The error signal e1(n) of the proposed model given in eq. 
(20). This value is optimized as per the condition given in eq. 
(35). Therefore, 

)()()()()( ,,1 nXnWnndne T
optopt −=   (42) 

After the simplification of eq. (42) using eq. (36), 
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)()()( 1
,1 nXRPndne X

T
Xopt

−−=   (43) 

The optimal value of signal e1,opt(n) is comparable to I(n) 
and d(n) is  comparable to I(n) + x1(n). So, 

)()()( 1,1 nxndne opt −=    (44) 

On comparing the eq. (42), eq. (43) and eq. (44), 

)()()()()( ,
1

1 nXnWnnXRPnx T
optX

T
X == −  (45) 

The factor δ(n) is determined by eq. (46), 
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T
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X
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T
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−

==  (46) 

IV. SIMULATION, RESULT AND DISCUSSION 

The projected model is a combination of figures 3 and 4. 
The input signals are d(n) and x(n). The value of factor δ(n) 
determines using the model simulated on MATLAB of the 
block diagram of figure 4. The values of noise factor δ(n) pass 
into model of block diagram of figure 3. The combination of 
adaptive filter-1 and LMS algorithm blocks of figure 3, work as 
system identification. This combined part identifies the weights 
of filter according to the signal x(n). The determined values of 
noise factor δ(n) and weights are passes into the adaptive filter-
2 through digital multiplier/amplifier. The subtractor and 
adaptive filter-2 work together as a noise canceller. 

TABLE II.  PARAMETERS USED IN THE MATLAB SIMULATION FOR THE 

DETERMINATION OF NOISE FACTOR δ(n) AT FIXED B(n) 

S.

N. 

Parameter Symbol Value/ 

Range 

Eq.(s) used 

1 Magnitude of 

information/message signal I(n)  

A 2 25, 27 

2 Frequency of 

information/message signal I(n) 

in radian/second 

ω0 2 25, 27 

3 Noise magnitude in signal d(n) B(n) 1.05 26, 27 

4 Reference noise magnitude C(n) 1 28 

5 Noise function as random noise f(n) - 26, 27, 28 

6 Number of samples - 1-2000 - 

 

 

Figure 8.  Characteristics of (a) constant B(n), δmin(n) - minimum value of 
constant δ(n), δmax(n) - maximum value of constant δ(n), δdev(n) - deviation in 

the constant δ(n), δav(n) - average value of constant δ(n), δlim(n) - limiting 

value of constant δ(n) (b) percentage error in the average value of noise factor 
δ(n), percentage error in the limiting value of noise factor δ(n) w.r.t. number 

of samples for the sinusoidal information/message signal. 

The proposed model for the determination of noise factor 
δ(n) at fixed B(n) is simulated on the parameters given in table 
2. According to the eq. (31), the value of B(n) will be the same 
as noise factor δ(n) if C(n) is unity. The C(n) is taken as unity 
for the reference here. The two types of values of B(n) can be 
used for the simulation – fixed and random. The value of B(n) 
and C(n) will be constant because these are the magnitudes of 

input signals x1(n) and x(n) respectively. The factor δ(n) will be 
fixed only because signals x1(n) and x(n) generated from the 
common source. The simulation results are described here for 
the fixed value of constant B(n). The figure 8 present different 
forms determined noise factor δ(n) when B(n) is fixed i.e. 
assumed as 1.05 for 2500 samples of sinusoidal information/ 
message signal using MATLAB model of figure 4 and sample-
time is 0.01 sec. Figures 8(a) to 8(h) shows the characteristics 
of constant B(n), δmin(n) is the minimum value of noise factor 
δ(n), δmax(n) is the maximum value of noise factor δ(n), δmax(n) 
is the deviation in noise factor δ(n), δav(n) is the average value 
of noise factor δ(n), δlim(n) is the limiting value of noise factor 
δ(n), percentage error in the average value of noise factor δ(n) 
and percentage error in the limiting value of noise factor δ(n) 
respectively and dependent on samples of I(n). All the results 
of sub-figures of noise factor δ(n) describe that the value of 
noise factor δ(n) converges to constant values of B(n). 

The more than a few parameters of noise factor are 
classified from eq. (47) to eq. (53). 

 )(,),1(),0(min)(min nn  =   (47) 

 )(,),1(),0(max)(max nn  =   (48) 

)()()( minmax nnndev  −=    (49) 


=

=
n

i
av i

n
n

0

)(
1

)(    (50) 

)()(lim nn  =    (51) 

( ) )(/100*)()()( nBnBnnoferrorPercentag avav −=   (52) 

( ) )(/100*)()()( limlim nBnBnnoferrorPercentag −=   (53) 

Where, min(.) and max(.) demote the minimum value and 
maximum value of given elements. 

Figure 9 presents the simulation results of traditional and 
proposed LMS-ANC models using the manual control of noise 
factor δ(n) based on the block diagram of figure 3. The figure 
also presents the SNR and MSE characteristics for the 
parameters given in table 3. The traditional LMS-ANC is 
independent of noise factor δ(n) therefore the characteristics of 
SNR and MSE of figures 9(a) and 9(b) respectively only 
depend on the other parameters of table 3. The simulation 
results of proposed LMS-ANC using the manual control of 
noise factor δ(n) gives the better SNR and MSE with respect to 
tradition LMS-ANC for the given range of noise factor δ(n). 

TABLE III.  PARAMETERS USED IN THE MATLAB SIMULATION FOR THE 

PROPOSED MODEL AT FIXED B(n) 

S.N. Parameter Symbol Value/ 

Range 

Eq.(s) used 

1 Magnitude of 

information/message signal 

I(n)  

A 2 25, 27 

2 Frequency of 

information/message signal 

I(n) in radian/second 

ω0 2 25, 27 

3 Noise magnitude in signal 
d(n) 

B(n) 1.05 26, 27 

4 Reference noise magnitude C(n) 1 28 

5 Noise function as random 

noise 

f(n) - 26, 27, 28 

6 Number of samples - 1-2000 - 

7 Filter Length L 2 12, 13 

8 Initial filter weights w0(0), 

w1(0) 

0 9 

9 Step-size μ 0.01-0.25 9, 17 

10 Noise factor δ(n) 0.1-5 18, 19, 20 
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TABLE IV.  COMPARATIVE STUDY OF SNR RANGE FOR BOTH TRADITION 

AND PROPOSED LMS-ANC FOR THE MANUAL CONTROL OF NOISE FACTOR δ(n) 

= 0.1 TO 5 

S.N. Particular SNR for 

Tradition 

LMS (in dB) 

SNR for 

Proposed 

LMS (in dB) 

1 Minimum 22.0730 31.0901 

2 Maximum 53.4488 73.5309 

3 Deviation = Maximum-Minimum 31.3758 42.4408 

TABLE V.  COMPARATIVE STUDY OF SNR RANGE FOR BOTH TRADITION 

AND PROPOSED LMS-ANC FOR THE SELF-DETERMINED OF NOISE FACTOR δ(n) 

S.N. Particular SNR for 

Tradition 

LMS (in dB) 

SNR for 

Proposed 

LMS (in dB) 

1 Minimum -4.6337 33.5373 

2 Maximum 53.5900 71.5344 

3 Deviation = Maximum-Minimum 58.2237 37.9971 

 

 

Figure 9.  Contour plot of SNR and MSE w.r.t. step-size (μ) and noise factor 

δ(n) for the manual control of noise factor δ(n) = 0.1 to 5 (a) SNR - 

Traditional LMS (b) SNR - Proposed LMS (c) MSE - Traditional LMS (d) 

MSE - Proposed LMS. 

 

Figure 10.  Contour plot of SNR and MSE w.r.t. step-size (μ) and noise factor 
δ(n) for self-determined of noise factor δ(n) (a) SNR - Traditional LMS (b) 

SNR - Proposed LMS (c) MSE - Traditional LMS (d) MSE - Proposed LMS. 

 

Figure 11.  Characteristics of constant δ(n) with respect to sample-time/time. 

 

Figure 12.  Characteristics of SNR respect to sample-time/time at (a) step-size 

μ = 0.01, (b) step-size μ = 0.1, (c) step-size μ = 0.2 and (d) step-size μ = 0.25. 

The comparative study of the SNR range is also given in 
table 4. Figure 9 and Table 4 present that the tradition LMS-
ANC has a wide range of SNR with respect to proposed LMS-
ANC for the given parameters. Figure 9 and Table 4 also 
present that the proposed LMS-ANC gives the improved SNR 
at any value of noise factor δ(n). The value of noise factor δ(n) 
is equal to constant B(n) using eq. (31) if C(n) is unity. 
Therefore, proposed LMS-ANC gives the maximum SNR at 
noise factor δ(n) = constant B(n) = 1.05. 

Figure 10 presents the simulation results of traditional and 
proposed LMS-ANC models using the self-learning/adapting of 
noise factor δ(n) based on the block diagram of figures 3 and 4. 
The figure also presents the SNR and MSE characteristics for 
the parameters given in table 3 but noise factor δ(n) is self-
determined. The traditional LMS-ANC is independent of noise 
factor δ(n) therefore the characteristics of SNR and MSE of 
figures 10(a) and 10(b) respectively only depend on the other 
parameters of table 3. The simulation results of proposed LMS-
ANC using the self-control of noise factor δ(n) gives the better 
SNR characteristics and MSE characteristics with respect to 
tradition LMS-ANC and proposed LMS-ANC for manual 
control for the given range of noise factor δ(n). The 
comparative study of SNR range is also given in table 5. Figure 
10 and Table 5 present that the tradition LMS-ANC has a wide 
range of SNR with respect to proposed LMS-ANC for the 
given parameters. The figure 10 and table 5 also present that 
the proposed LMS-ANC gives the improved SNR at any value 
of noise factor δ(n) but the value of noise factor δ(n) is self-
determined. 

 

 

Figure 13.  Scatter plotting of SNR w.r.t. step-size (μ) and noise factor δ(n) for 

self-determined of noise factor δ(n). 
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(a) 

 
(b) 

Figure 14.  Characteristics of multiple LMS-ANC algorithms for the 

comparison of SNRs at (a) step-size (μ) = 0.01 (b) step-size (μ) = 0.05. 

  

  

  

  

  

  

  

  

  

Figure 15.  Characteristics of multiple LMS-ANC algorithms for the 

comparison of SNRs w.r.t. sample time and the step-sizes for (a) Traditional 
(b) Cascaded at N = 1 (c) Cascaded at N = 2 (d) Cascaded at N = 3 (e) Leaky 

(f) Signum-Error (g) Signum-Data (h) Signum-Signum (i) Leaky Signum-

Signum (j) Normalised (k) Modified-Normalized (l) Signum-Data Normalized  
(m) Variable-Step (n) Iterative at σ = 0.05 (o) Iterative at σ = 0.5 (p) Iterative 

at σ = 0.9 (q) Iterative at σ = 2 (r) Proposed. 

The value of noise factor δ(n) is equal to constant B(n) 
using eq. (31) if C(n) is unity. Therefore, the ideal value of 
noise factor δ(n) = B(n) = 1.05. So, the proposed LMS-ANC 
gives the maximum SNR at δ(n) = B(n) = 1.05. Figure 11 
presents the characteristics of noise factor δ(n) with respect to 
sample-time or time and the values of the parameter are 
determined using the model of figure 4. The characteristics 
determined using the parameters given in table 3 and adopting 
the behaviour of noise factor δ(n) with the help of eq. (31) and 
related previous equations. The minimum, maximum, deviated, 
average, limiting values and percentage error of average values 
of noise factor δ(n) are 1.05, 1.8602, 0.8102, 1.08, 1.05 and 
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2.8614% respectively. The noise factor δ(n) converges to its 
ideal value on time-axis. Figure 12 is a part of figure 10 on 
some values of step sizes. The step-sizes are 0.01, 0.1, 0.2 and 
0.25 for the figures 12(a) to 12(d) respectively. All the sub-
figures of figure 12 show that the SNRs for proposed LMS is 
better than the traditional LMS and increases with respect to 
sample-time or time. 

The scatter plotting of the SNR presents incremental value 
of the SNR for the proposed LMS-ANC with respect to 
traditional LMS-ANC as shown in figure 13. The 
characteristics show that maximum region gives that higher 
SNR. The percentage area coved in the characteristics for the 
incremental values, no change values and decremented values 
of SNR for the given range of parameters are 99.4449%, 
0.0500%, and 0.5051% respectively. Therefore, proposed 
model gives the higher SNR when the noise factor δ(n) adapted 
and converges to its ideal value. 

Figure 14(a) and 14(b) present the comparative study of the 
SNRs for multiple LMS-ANC algorithms [30] including the 
projected model of ANC at step-sizes 0.01 and 0.05 
respectively. The proposed LMS gives the behaviour of 
increasing SNR with respect to sample time and also have 
maximum SNRs on comparison of other given types of LMS 
algorithms. The figures 15(a) to 15(r) present the SNRs 
characteristics of the above given LMS filters for step-sizes 
0.001 to 0.08. All the sub-figures of figure 15 is showing that 
the SNR of proposed LMS is higher than, the other given LMS 
adaptive filters or algorithms. 

V. CONCLUSION 

This paper investigates and implemented newly developed 
structure of LMS-AF for ANC using the self-adaptation 
technique. This technique is used for the adaptation of used 
noise factor δ(n) with respect to time and input signals. The 
projected model is analyzed and simulated. The input signals 
are d(n) and x(n) for the projected model of LMS-ANC. The 
noise factor δ(n) converges to its ideal value with respect to 
time for the proposed model. Therefore, the SNR found better 
for the proposed model and increases with respect to time also. 
Due to the self-adaptive behaviour of noise factor δ(n) the 
proposed model of LMS-ANC is better than the tradition LMS-
ANC algorithms in comparison of SNRs. The SNR of proposes 
LMS-ANC algorithm having increasing behaviour of SNR with 
respect to sample-time or time because it’s self-adopted noise 
factor converges towards their ideal value in time.  
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