
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1240
IJRITCC | September 2023, Available @ http://www.ijritcc.org

Improve the Onion Routing Performance and Security

with Cryptographic Algorithms

T.Gayathri1, Dr.A.Saraswathi2
1Research Scholar ,PG and Research Department Computer Science, Govt. Arts College(A)(Affiliated to Bharathidasan University, Trichy-24),

Karur,Tamil Nadu, India.

E-mail : gacgayathri@gmail.com
2Associate Professor, PG and Research Department Computer Science, Govt. Arts College(A)(Affiliated to Bharathidasan University, Trichy-

24), Karur,Tamil Nadu, India.

E-mail: sarasdharam78@gmail.com

Abstract:

Onion Routing and Cryptographic Algorithms are two essential components of online privacy and secure data transmission. Onion Routing is a

technique used to protect internet users' anonymity by routing their communication through a network of servers, while Cryptographic

Algorithms are used to encrypt and decrypt data to ensure its confidentiality. As technology advances, there is a need to consider the

development of new cryptographic algorithms for TOR to ensure its continued effectiveness. The combination of Onion Routing and

Cryptographic Algorithms has proven to be an effective way to protect online privacy and security. This paper aims to explore the benefits of

combining Onion Routing and Cryptographic Algorithms and to propose a hybrid symmetric and hashing algorithm technique to transmit data

securely. By the end of this paper, researchers will have a comprehensive understanding of the Onion Routing and Cryptographic Algorithms,

their implementation in TOR, and the limitations and risks associated with using such tools.

Keywords: Onion Routing , Cryptographic Algorithms, encrypt and decrypt data.

1. Introduction:

Botnets are a significant threat in the cybersecurity

landscape, capable of causing large-scale damage and

compromising the security of individuals and organizations

alike. To combat this growing menace, various security

measures have been implemented, one of which is the use of

Onion Routing (TOR) combined with cryptographic

algorithms.

Onion Routing, also known as The Onion Routing Protocol,

is a technique for anonymous communication over a

computer network. The name "Onion Routing" comes from

the addition of layers at each stage, where the protocol adds

layers for each stage, and the layers of encryption are

analogous to layers of an onion [1]. In an onion network,

messages are encapsulated in layers of encryption, and the

sender remains anonymous because each intermediary

knows only the location of the immediately preceding and

following nodes [2]. The encrypted data is transmitted

through a series of network nodes called "onion routers,"

each of which "peels" away a single layer, revealing the

data's next destination. When the final layer is decrypted, the

message arrives at its destination [3]. Onion Routing

provides a high level of security and anonymity, making it

useful for web browsing, secure shell, instant messaging,

and other applications. Onion Routing can be used via Tor, a

distributed overlay network designed to anonymize TCP-

based applications [4]. While Onion Routing is designed to

prevent anyone from tracking the data's origin, methods to

break the anonymity of this technique include timing

analysis. Garlic routing is a variant of onion routing used in

the I2P network. It encrypts multiple messages together,

which increases the speed of data transfer and makes it more

difficult for attackers to perform traffic analysis. The step-

by-step process of Onion Routing is shown in the figure 1.

.

Figure 1. Step-by-Step process of Onion Routing

1. Initialization: The user's device establishes a

connection to the Tor network, selecting an entry

relay as the starting point for the communication.

2. Encryption: The user's message is encrypted

multiple times, each layer encapsulating the

original message with a new layer of encryption.

These layers are akin to the layers of an onion.

3. Routing: The encrypted message is transmitted

through a series of randomly selected relays, with

each relay only aware of the previous and next

Initialization Encryption Routing Decryption Exit Node

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1241
IJRITCC | September 2023, Available @ http://www.ijritcc.org

relay in the circuit.

4. Decryption: As the message passes through each

relay, one layer of encryption is removed, revealing

the next relay in the circuit. This process continues

until the message reaches the final destination.

5. Exit Node: The final relay, known as the exit node,

decrypts the last layer of encryption and transmits

the message to its intended recipient on the regular

internet.

Cryptographic algorithms are widely used in public key

cryptography, which is a set of cryptographic protocols that

use these algorithms to encrypt messages securely. These

algorithms require two separate keys, a public key, and a

private key [5]. When choosing a cryptographic algorithm,

usability is an important consideration. The choice of

cryptographic algorithm involves a balancing act between

security and usability. Cryptographic algorithms can be

either symmetric key or public key. Symmetric key

encryption is less computationally expensive than public key

encryption and is useful in a network. In symmetric key

encryption, the same key is used for both encryption and

decryption. The Advanced Encryption Standard (AES) is a

symmetric key crypto-system commonly used for encryption

[5]. Public key cryptography can be slower but more secure

than symmetric key cryptography. Public key is used to

encrypt plaintext, which anyone can encrypt for a specific

person. Private key is used to decrypt encrypted text, which

only the intended recipient can decrypt [6]. The key for

encryption is agreed upon using Diffie-Hellman.

Cryptographic algorithms include asymmetric key

cryptography, which is used in digital signatures to establish

authenticity and integrity. Digital signatures are more secure

than physical written signatures and are a digital version of a

physical signature. The person with the private key can

produce valid digital signatures. The key pair consists of a

private key and a public key. Cryptographic algorithms

involve the use of key pairs for encryption. A hidden service

uses asymmetric encryption for its key pair. Onion routing is

one such application that uses cryptographic algorithms in

anonymous communication over a computer network. In

Onion routing, messages are encapsulated in layers of

encryption, and the sender remains anonymous because each

intermediary knows only the location of the immediately

preceding and following nodes [7].

Onion routing and cryptographic algorithms have unique

benefits on their own, but when they are combined, they can

provide even stronger security measures. Onion routing uses

encryption and routing data through multiple servers to

provide enhanced security [8]. Combining onion routing

with cryptographic algorithms can add extra layers of

protection against attackers, making it more difficult for

them to breach the system. The combined use of onion

routing and cryptographic algorithms makes traffic analysis

difficult for attackers, preventing them from identifying the

source and destination of communication as well as

analyzing traffic patterns. The decentralized nature of onion

routing also makes it more resistant to attacks. This

combination can enhance the privacy and security of

network communication by increasing resilience to attacks

[9]. By hiding the original message as it is transferred from

one node to the next, the sender can remain anonymous as

no intermediary knows both the origin and final destination

of the data [10]. Overall, combining onion routing and

cryptographic algorithms provides a powerful defense

against cyber threats.

The rest of the paper is organised as follows, section 2

provides a brief overview of existing works, section 3

provides a detailed explanation on the proposed work,

section 4 test the algorithm with a sample message and

finally section 5 concludes the work.

2. Literature Survey

TOR cryptographic algorithms play a crucial role in

ensuring the privacy and security of users. These algorithms

are used to encrypt the data multiple times and route it

through multiple nodes in the network, making it difficult

for anyone to trace the origin of the data [11]. TOR employs

various cryptographic algorithms, including RSA, AES, and

Diffie-Hellman, to ensure that the data is securely

transmitted through the network [12]. Solutions based on

onion routing use public key cryptography and an

application-layer overlay routing to provide sender and

receiver anonymity [13]. The importance of TOR

cryptographic algorithms in ensuring privacy and security

cannot be overstated, as they are essential in protecting

sensitive information from being intercepted and

compromised. The development of TOR cryptographic

algorithms has been the subject of extensive research, with

many studies focused on identifying and addressing

potential vulnerabilities and attacks [14][15]. The

interdisciplinary FASOR project, which aims to develop

faster and stronger onion routing protocols, is an example of

the ongoing efforts to improve the security and privacy of

onion routing [16].

2.1 Symmetric Cryptography Algorithms Used in TOR

Symmetric cryptography is an essential component of the

onion routing (TOR) cryptographic algorithms. Symmetric

cryptography is a technique that uses a single key to encrypt

and decrypt data, making it faster and more efficient than

asymmetric cryptography [17]. In TOR, symmetric

cryptography is used to encrypt the relay header and

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1242
IJRITCC | September 2023, Available @ http://www.ijritcc.org

payload, which are then decrypted at each relay in the

network [15]. This technique ensures that the data remains

secure and confidential throughout its journey through the

TOR network. There are different types of symmetric

cryptography algorithms used in TOR, including the

Advanced Encryption Standard (AES) and the Twofish

algorithm [18]. These algorithms are chosen for their ability

to provide high levels of security and efficiency in data

transmission. The use of symmetric cryptography in TOR

helps to ensure the anonymity of users and protect their

privacy. While symmetric cryptography has many

advantages, it also has some limitations when used in TOR.

One of the main disadvantages is that it can result in slow

performance due to the multiple layers of encryption and

decryption involved in the TOR network. Additionally, the

use of symmetric cryptography may not be sufficient to

protect against potential attacks from quantum computers,

which could potentially break the encryption used in TOR

[19]. Despite these limitations, the use of symmetric

cryptography remains an important aspect of the TOR

network and its ability to provide anonymous

communication over the internet.

2.2 Asymmetric Cryptography Algorithms Used in TOR

Asymmetric cryptography, also known as public-key

cryptography, is a type of cryptographic algorithm used in

onion routing (TOR) to ensure secure communication.

Asymmetric cryptography involves the use of two different

keys, a public key and a private key, for encryption and

decryption [20]. The public key is widely distributed and

used to encrypt messages, while the private key is kept

secret and used to decrypt messages. This technique allows

for secure communication without the need for both parties

to share a secret key. In TOR, various types of asymmetric

cryptography algorithms are used, including RSA, Diffie-

Hellman, and Elliptic Curve Cryptography (ECC) [21]. RSA

is the most commonly used algorithm in onion routing, as it

provides strong security and is widely supported by

cryptographic libraries and software [22]. Diffie-Hellman

and ECC are also used in certain situations, such as when

there are limitations on the size of the keys that can be used

[23]. Each of these algorithms has its own strengths and

weaknesses, and their use in TOR depends on the specific

needs of the communication. The use of asymmetric

cryptography in onion routing provides several advantages,

such as secure communication without the need for a shared

secret key and protection against eavesdropping and traffic

analysis. However, there are also some disadvantages, such

as slow performance due to the multiple layers of encryption

and the need for key management. Overall, the use of

asymmetric cryptography in onion routing is essential for

ensuring secure communication and protecting the privacy

of users.

2.3 Hashing Algorithms Used in TOR

Hashing is a fundamental cryptographic technique used in

onion routing (TOR) to provide anonymity and

confidentiality to users. Hashing is a process of converting

data of arbitrary size into a fixed-size output, known as a

hash value or message digest. This output is unique to the

input data and cannot be reversed to obtain the original

input. In TOR, hashing algorithms are used to provide

integrity, authenticity, and non-repudiation of messages

[24]. There are several types of hashing algorithms used in

TOR, including SHA-1, SHA-2, and SHA-3. SHA-1 is a

widely used hashing algorithm that produces a 160-bit hash

value. However, due to its vulnerability to collision attacks,

SHA-1 is being phased out in favor of more secure

algorithms such as SHA-2 and SHA-3. SHA-2 produces

hash values of various sizes, including 224, 256, 384, and

512 bits, while SHA-3 produces hash values of 224, 256,

384, and 512 bits [1]. The use of hashing algorithms in TOR

provides several advantages, including data integrity,

message authentication, and non-repudiation. However,

there are also some disadvantages associated with hashing in

TOR, such as slow performance due to the multiple layers of

encryption and the computational overhead of hashing [25].

In conclusion, hashing is a crucial component of onion

routing (TOR) and plays a significant role in ensuring the

privacy and security of users' data.

2.4 Key Exchange Algorithms Used in TOR

Key exchange is a critical component of onion routing,

which is a technique used for anonymous communication

over a computer network. Key exchange is the process of

securely sharing cryptographic keys between two parties to

enable encrypted communication. In onion routing, the

required encryption keys are established using a key

exchange algorithm, which helps to ensure the

confidentiality and integrity of the communication [26].

There are several types of key exchange algorithms used in

TOR, including Diffie-Hellman (DH), Elliptic Curve Diffie-

Hellman (ECDH), and RSA. DH is a widely used key

exchange algorithm that allows two parties to establish a

shared secret key over an insecure communication channel

[27]. ECDH is a variant of DH that uses elliptic curve

cryptography to provide better security with smaller key

sizes [28]. RSA is another popular key exchange algorithm

that uses public key cryptography to establish a shared

secret key [29]. Each key exchange algorithm used in TOR

has its own advantages and disadvantages. DH is fast and

efficient, but it is vulnerable to man-in-the-middle attacks.

ECDH provides better security with smaller key sizes, but it

requires more computational resources. RSA is secure and

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1243
IJRITCC | September 2023, Available @ http://www.ijritcc.org

widely used, but it is slower than DH and ECDH [30].

Despite these limitations, onion routing remains an essential

tool for ensuring online privacy and security, and the use of

key exchange algorithms is critical to its success.

3. Methodology:

The algorithm involves relays that route a message from a

source to a destination, while encrypting and decrypting the

message along the way. The proposed algorithm utilizes

AES and Hashing function to provide enhanced security

measures. The algorithm starts by defining a list of relays

through which the message will be routed. It generates an

original message and provides functions to encrypt the

message with a relay's public key and decrypt it with a

relay's private key. The main function,

perform_onion_routing, implements the onion routing

process. It iterates through the relays in reverse order,

encrypting the message using the encrypt_message function

and printing routing messages. It then iterates through the

relays in forward order, simulating decryption using the

decrypt_message function and printing decryption messages.

Finally, it returns the final decrypted message. To

complement the onion routing process, the algorithm

provides functions for AES encryption and decryption.

These functions handle AES encryption using the ECB

mode, ensuring the message is securely encrypted and

decrypted with a shared AES key. The algorithm generates a

random AES key and encrypts the decrypted message using

AES encryption. It also demonstrates the decryption of the

encrypted message using AES decryption and the same AES

key. By simulating the routing of a message through relays

and encrypting/decrypting it using AES encryption, the

algorithm showcases the process of onion routing and the

usage of symmetric encryption for secure communication in

a network environment.

1. Define a list of simulated network relays: `relays =

[Relay1, Relay2, Relay3, Relay4, Relay5]`

• This list represents the relays through which

the message will be routed.

2. Generate a message to be sent: `message = "Hello,

World!"`

• This is the original message that needs to be

sent from the source to the destination.

3. Define a function to encrypt the message with a

relay's public key: `encrypt_message(message,

public_key) = SHA256(public_key + message)`

• This function takes the message and the

public key of a relay as inputs. It concatenates

the public key and the message. It applies the

SHA256 hash function to the concatenated

string, producing the encrypted message. The

encrypted message is returned as the output.

4. Define a function to decrypt the message with a

relay's private key:

`decrypt_message(encrypted_message,

private_key) = encrypted_message`

• This function takes the encrypted message

and the private key of a relay as inputs. It

simply returns the encrypted message as it is,

simulating decryption using the private key.

In this simulation, the decryption operation

does not change the encrypted message.

5. Define a function to perform onion routing:

• This function takes the original message as

input. It starts by setting the destination relay

as the last relay in the list. It initializes the

encrypted message with the original message.

It iterates through the relays in reverse order.

For each relay, it encrypts the message using

the `encrypt_message` function. If the relay is

not the destination relay, it prints a message

indicating the routing. After the loop, it prints

a message indicating that the message has

reached the destination relay. It then iterates

through the relays in forward order. For each

relay, it simulates decryption using the

`decrypt_message` function. If the relay is not

the destination relay, it prints a message

indicating that the relay has decrypted the

message. Finally, it prints the final decrypted

message and returns it.

perform_onion_routing(message):

 destination_relay = relays[-1]

 encrypted_message = message

a. for relay in reversed(relays):

▪ encrypted_message =

encrypt_message(encrypted

_message, relay)

▪ if relay ≠ destination_relay:

print("Routing message

to", relay)

print("Message successfully routed to the

destination relay:", destination_relay)

b. for relay in relays:

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1244
IJRITCC | September 2023, Available @ http://www.ijritcc.org

▪ decrypted_message =

decrypt_message(encrypted

_message, relay)

▪ if relay ≠ destination_relay:

print("Relay", relay,

"decrypted the

message:",

decrypted_message)

print("Final decrypted message:",

decrypted_message)

return decrypted_message

6. Perform onion routing with the message:

`decrypted_message =

perform_onion_routing(message)`

• This step invokes the

`perform_onion_routing` function with the

original message as input. The function

executes the routing and decryption steps, and

the final decrypted message is assigned to the

variable `decrypted_message`.

7. Define functions for AES encryption and

decryption:

• These functions handle AES encryption and

decryption using the ECB (Electronic

Codebook) mode. The `encrypt_aes` function

takes the message and the AES key as inputs.

It creates an AES cipher object with the

provided key and ECB mode. It pads the

message using the `pad` function from the

`Crypto.Util.Padding` module to ensure it has

a valid block size.It encrypts the padded

message using the AES cipher object. The

resulting ciphertext is then encoded in Base64

format to ensure it can be safely represented

as a string. The encoded ciphertext is returned

as the output. The `decrypt_aes` function

takes the ciphertext and the AES key as

inputs. It creates an AES cipher object with

the provided key and ECB mode. It decodes

the Base64-encoded ciphertext back to its

binary representation. It decrypts the

ciphertext using the AES cipher object. The

resulting decrypted data is then unpadded

using the `unpad` function from the

`Crypto.Util.Padding` module. The unpadded

plaintext is returned as the output.

1. encrypt_aes(message, key):

a. cipher = AES.new(key,

AES.MODE_ECB)

b. ciphertext =

cipher.encrypt(pad(message,

AES.block_size))

c. return Base64Encode(ciphertext)

2. decrypt_aes(ciphertext, key):

a. cipher = AES.new(key,

AES.MODE_ECB)

b. decrypted =

cipher.decrypt(Base64Decode(ci

phertext))

c. plaintext = unpad(decrypted,

AES.block_size)

d. return plaintext

8. Generate a random AES key: `aes_key =

"ThisIsASecretKey"`

• This step defines the AES key that will be

used for encryption and decryption.In this

case, the key is set to a fixed value for

simplicity, but in practice, a random key

should be generated.

9. Encrypt the decrypted message using AES

encryption and the AES key:

`encrypted_message_aes =

encrypt_aes(decrypted_message, aes_key)`

• This step invokes the `encrypt_aes` function

with the decrypted message and the AES key

as inputs. The function encrypts the message

using AES encryption with the provided key.

The resulting encrypted message is assigned

to the variable `encrypted_message_aes`.

10. Decrypt the encrypted message using AES

decryption and the AES key:

`decrypted_message_aes =

decrypt_aes(encrypted_message_aes, aes_key)`

• This step invokes the `decrypt_aes` function

with the encrypted message and the AES key

as inputs. The function decrypts the message

using AES decryption with the provided key.

The resulting decrypted message is assigned

to the variable `decrypted_message_aes`.

4. Case Study

This section demonstrates the presented algorithm as a

simulation of onion routing and AES encryption in a

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1245
IJRITCC | September 2023, Available @ http://www.ijritcc.org

network setting. As an example, the botnet-tor is simulated

with five relays namely Relay1, Relay2, Relay3, Relay4 and

Relay5. The AES encryption algorithm is used to encrypt

the message, and the key for the encryption is shared by all

of the relays. The encrypted message is in the form of a

base64 encoded string. The base64 encoding is used to

convert binary data into a text format that can be easily

routed to the destination relay over a network. The routing

of the message is done in a round-robin fashion. The

message is then decrypted by each relay as it passes through

it. The message was routed to the destination relay in the

following order:

• Original message:

1f193be4ab36873b759c0d6549783fe01cf689

5a3f6965eeb424c53c5bb48aab

o Routing message to Relay4

o Routing message to Relay3

o Routing message to Relay2

o Routing message to Relay1

o Message successfully routed to the

destination relay: Relay5

• Relay Relay1 decrypted the message:

1f193be4ab36873b759c0d6549783fe01cf689

5a3f6965eeb424c53c5bb48aab

• Relay Relay2 decrypted the message:

1f193be4ab36873b759c0d6549783fe01cf689

5a3f6965eeb424c53c5bb48aab

• Relay Relay3 decrypted the message:

1f193be4ab36873b759c0d6549783fe01cf689

5a3f6965eeb424c53c5bb48aab

• Relay Relay4 decrypted the message:

1f193be4ab36873b759c0d6549783fe01cf689

5a3f6965eeb424c53c5bb48aab

• Each relay decrypted the message using the

same key, which was shared with all of the

relays. This ensures that only the intended

recipient can decrypt the message.

• Final decrypted message:

1f193be4ab36873b759c0d6549783fe01cf689

5a3f6965eeb424c53c5bb48aab

• The relays decrypted the message as it passed

through them, and the final decrypted

message was

1f193be4ab36873b759c0d6549783fe01cf689

5a3f6965eeb424c53c5bb48aab. This means

that the AES encryption algorithm did not

pad the message with any additional data.

The original message is also the same as the

final decrypted message, which means that

the encryption and decryption process was

successful.

• Encrypted Message (AES):

+BZLytX1dwjCTwqbN0aQkWwWmFmxNu

xtTweOMd/GSysUImlEUZ8M6fbMqyVh7g

uK9LMaDLsgW118UzPpzbbSfvRRYGjkU7

7b/7tz3twFxRc=

• Decrypted Message (AES):

1f193be4ab36873b759c0d6549783fe01cf689

5a3f6965eeb424c53c5bb48aab

The final decrypted message is then received by Relay5. The

original message is 16 bytes long, which is the same length

as the encrypted message. Based on the output , it seems that

the onion routing process was successfully executed, and the

original message was decrypted correctly

5. Conclusion:

After reviewing the available literature on TOR

cryptographic algorithms, it is evident that they are effective

in ensuring online privacy and security.TOR's architecture

and use of encryption techniques make it resistant to traffic

analysis and provide anonymity to its users. As technology

advances, there is a need to consider the development of

new cryptographic algorithms for TOR to ensure its

continued effectiveness. For example, post-quantum

cryptographic primitives to make TOR safe in a quantum

computing environment. Additionally, the FASOR project

aims to develop faster and stronger onion routing protocols

to improve TOR's performance and security. Therefore, it is

essential to continue researching and developing new

cryptographic algorithms to keep up with evolving threats to

online privacy and security. In summary, onion routing and

TOR cryptographic algorithms are essential tools in

ensuring privacy and security in the digital age, and

continued research and development in this area will be

critical in addressing emerging threats and vulnerabilities.

References:

1. Chauhan, M., Singh, A.K. and Komal, 2020. Survey of onion

routing approaches: advantages, limitations and future scopes.

In Proceeding of the International Conference on Computer

Networks, Big Data and IoT (ICCBI-2019) (pp. 686-697).

Springer International Publishing.

2. Chen, C., Asoni, D.E., Barrera, D., Danezis, G. and Perrig, A.,

2015, October. HORNET: High-speed onion routing at the

network layer. In Proceedings of the 22nd ACM SIGSAC

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1246
IJRITCC | September 2023, Available @ http://www.ijritcc.org

Conference on Computer and Communications Security (pp.

1441-1454).

3. Jansen, R., Johnson, A. and Syverson, P., 2013. LIRA:

Lightweight incentivized routing for anonymity. NAVAL

RESEARCH LAB WASHINGTON DC.

4. Salib, E.H. and Hobar, G., 2018, October. Platform for

teaching hands-on end-to-end anonymity algorithms. In 2018

IEEE Frontiers in Education Conference (FIE) (pp. 1-9).

IEEE.

5. Basyoni, L., Fetais, N., Erbad, A., Mohamed, A. and Guizani,

M., 2020, February. Traffic analysis attacks on Tor: A survey.

In 2020 IEEE International Conference on Informatics, IoT,

and Enabling Technologies (ICIoT) (pp. 183-188). IEEE.

6. Nazah, S., Huda, S., Abawajy, J. and Hassan, M.M., 2020.

Evolution of dark web threat analysis and detection: A

systematic approach. Ieee Access, 8, pp.171796-171819.

7. Haraty, R.A. and Zantout, B., 2014, June. The TOR data

communication system: A survey. In 2014 IEEE Symposium

on Computers and Communications (ISCC) (pp. 1-6). IEEE.

8. Sakai, K., Sun, M.T., Ku, W.S., Wu, J. and Alanazi, F.S.,

2017. Performance and security analyses of onion-based

anonymous routing for delay tolerant networks. IEEE

Transactions on Mobile Computing, 16(12), pp.3473-3487.

9. Sakai, K., Sun, M.T., Ku, W.S., Wu, J. and Alanazi, F.S.,

2016, June. An analysis of onion-based anonymous routing

for delay tolerant networks. In 2016 IEEE 36th International

Conference on Distributed Computing Systems (ICDCS) (pp.

609-618). IEEE.

10. Elgzil, A., Chow, C.E., Aljaedi, A. and Alamri, N., 2017,

August. Cyber anonymity based on software-defined

networking and Onion Routing (SOR). In 2017 IEEE

conference on dependable and secure computing (pp. 358-

365). IEEE.

11. Shirali, M., Tefke, T., Staudemeyer, R.C. and Pöhls, H.C.,

2023. A Survey on Anonymous Communication Systems

With a Focus on Dining Cryptographers Networks. IEEE

Access, 11, pp.18631-18659.

12. Chen, X., 2020, August. Implementing AES encryption on

programmable switches via scrambled lookup tables. In

Proceedings of the Workshop on Secure Programmable

Network Infrastructure (pp. 8-14).

13. Catalano, D., Di Raimondo, M., Fiore, D., Gennaro, R. and

Puglisi, O., 2011. Fully non-interactive onion routing with

forward-secrecy. In Applied Cryptography and Network

Security: 9th International Conference, ACNS 2011, Nerja,

Spain, June 7-10, 2011. Proceedings 9 (pp. 255-273). Springer

Berlin Heidelberg.

14. Balasubramanian, K. and Kannan, S., 2019. Onion Routing in

Anonymous Network. Appl. Math, 13(S1), pp.247-253.

15. Chen, X., 2020, August. Implementing AES encryption on

programmable switches via scrambled lookup tables. In

Proceedings of the Workshop on Secure Programmable

Network Infrastructure (pp. 8-14).

16. Tiwari, S., Arora, D. and Singh, V., 2015. Implementation of

Routing Protocol for Network and Data Security using Onion

Routing with Salt Method. International Journal of Scientific

and Research Publications, 5(7), pp.2250-3153.

17. Chen, X., 2020, August. Implementing AES encryption on

programmable switches via scrambled lookup tables. In

Proceedings of the Workshop on Secure Programmable

Network Infrastructure (pp. 8-14).

18. Catalano, D., Di Raimondo, M., Fiore, D., Gennaro, R. and

Puglisi, O., 2013. Fully non-interactive onion routing with

forward secrecy. International journal of information security,

12(1), pp.33-47.

19. Tujner, Z., 2019. Quantum-safe TOR, post-quantum

cryptography (Master's thesis, University of Twente).

20. Tujner, Z., 2019. Quantum-safe TOR, post-quantum

cryptography (Master's thesis, University of Twente).

21. Adat, V. and Gupta, B.B., 2018. Security in Internet of

Things: issues, challenges, taxonomy, and architecture.

Telecommunication Systems, 67, pp.423-441.

22. Catalano, D., Fiore, D. and Gennaro, R., 2017. A

certificateless approach to onion routing. International Journal

of Information Security, 16, pp.327-343.

23. Begam, H.P. and Mohamed, M., 2012. Performance analysis

of elliptic curve cryptography using onion routing to enhance

the privacy and anonymity in grid computing. International

Journal of Future Computer and Communication, 1(2), p.97.

24. Tujner, Z., Rooijakkers, T., van Heesch, M. and Önen, M.,

2020. QSOR: Quantum-Safe Onion Routing. arXiv preprint

arXiv:2001.03418.

25. Omar, Z.M. and Ibrahim, J., 2020. An overview of Darknet,

rise and challenges and its assumptions. Int. J. Comput. Sci.

Inf. Technol, 8, pp.110-116.

26. Moliya, D., Jain, R., Mohanty, V. and Hota, C., 2011.

Probabilistic Anonymous Routing in Mobile Ad-Hoc

Networks.

27. Conrad, B. and Shirazi, F., 2014, July. A Survey on Tor and

I2P. In Ninth International Conference on Internet Monitoring

and Protection (ICIMP2014) (pp. 22-28).

28. Fischer-Hbner, S. and Berthold, S., 2017. Privacy-enhancing

technologies. In Computer and information security

Handbook (pp. 759-778). Morgan Kaufmann.

29. Bao, L., Chen, R. and Sy, D., 2010. On-Demand Anonymous

Routing (ODAR). In Security In Ad Hoc And Sensor

Networks (pp. 137-157).

30. Vidal, G. and Moreno, J.L., 2018. Cryptography and

Communications Privacy: An Introduction.

http://www.ijritcc.org/

