
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1081

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Execution of Serverless Functions Lambda in AWS

Serverless Environment

Shashank Srivastava1*, Bineet Kumar Gupta1,Dheeraj Tandon2, Ankit Kumar Singh2,Mohammad Husain3, Arshad Ali3,

Sami Alshmrany3, Sanjay Gupta4, Sandeep Dubey4
1*,1DCSIS,IOT, Shri Ramswaroop Memorial University, Lucknow- Deva Road Barabanki,Uttar Pradesh,India

2School of Engineering, Department of Computer Science & Engineering, Babu Banarsi Das University, Lucknow (UP), India
2DCSIS,IOT, Shri Ramswaroop Memorial University,Deva Road , Barabanki,Uttar Pradesh,India

3Islamic University of Madinah ,Al Madinah ,Al Munawarah, Saudi Arabia
4Vice President HCL Technologies

4Director - OD SOFTECH Ltd , UK
1*shivam.shashank@gmail.com, 1hod.dcsis@srmu.ac.in, 2dheerajtandon9@gmail.com,

2ankitkumar.ids@srmu.ac.in,3mohd.husain90@gmail.com,3a.ali@iu.edu.sa,3s.alshmrany@iu.edu.sa,4sanjay_gupta@hcl.com,
4Sandeepdubey@icloud.com

Abstract— Serverless computing, epitomized by AWS Lambda, has revolutionized application development and deployment by abstracting away

server management and offering auto-scalability. AWS Lambda's 15-minute maximum timeout for function execution, however, presents a unique

challenge for users aiming to process longer tasks within the serverless framework. In this paper, we dive deep into the execution dynamics of AWS

Lambda within the AWS serverless environment, with a particular focus on extended execution times. As serverless computing gains traction,

understanding the nuances and limitations of AWS Lambda's default settings becomes paramount.

This paper investigates different request handling mechanisms within AWS Lambda and presents empirical data to demystify the underlying

processes. By addressing the challenges posed by long-running serverless functions, we aim to provide practical insights and potential solutions for

developers and architects seeking to optimize their serverless applications. In the quest for efficient triggering mechanisms for extended serverless

functions, this paper offers valuable guidance, empowering users to leverage AWS Lambda effectively while circumventing the default timeout

constraints.

Keywords- Serverless Computing, Serverless Function, AWS, AWS Lambda, Cloud Computing.

I. INTRODUCTION

Serverless computing has emerged as a transformative paradigm

in the world of cloud computing, redefining how applications

are developed, deployed, and managed. At the forefront of this

revolution is Amazon Web Services (AWS) Lambda, a

serverless compute service that has rapidly gained traction

among developers and enterprises alike. AWS Lambda offers

the promise of effortlessly executing code without the need to

provision or manage servers, making it an attractive choice for

building highly scalable and cost-effective applications.

Serverless computing has gained widespread popularity for its

scalability, cost efficiency, and developer-friendly approach.

However, efficient execution and management of serverless

functions heavily depend on effective triggering mechanisms.

AWS Lambda, a prominent serverless platform, enforces a

maximum timeout limit of 15 minutes for function execution,

posing challenges for handling longer requests. When users

need to execute code that exceeds this limit, they encounter

significant obstacles.

To dive deep into the execution dynamics of AWS Lambda

within the AWS serverless environment, with a particular

focus on extended execution times is very important part as

serverless computing gains traction, understanding the nuances

and limitations of AWS Lambda's default settings becomes

paramount.

There are different request handling mechanisms within AWS

Lambda and presents empirical data to demystify the

underlying processes. By addressing the challenges posed by

long-running serverless functions, we aim to provide

practical insights and potential solutions for developers and

architects seeking to optimize their serverless applications.

A. Key Characteristics of Serverless Computing

 Event-Driven Architecture: Serverless applications are built

around triggers or events, and functions are called in response

to things like HTTP requests, database changes, file transfers,

or scheduled tasks. Event-driven design promotes excellent

decoupling and smooth scalability of this system

Automatic Scaling: Automatic scaling on serverless platforms

based on incoming workloads. Adaptive scaling of functions

up or down according to demand ensures the best possible use

http://www.ijritcc.org/
mailto:hod.dcsis@srmu.ac.in
mailto:mohd.husain90@gmail.com
mailto:a.ali@iu.edu.sa

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1082

IJRITCC | September 2023, Available @ http://www.ijritcc.org

of resources and continuous availability. This scalability is

achieved without manual configuration or capacity planning.

Usage-based billing: In serverless computing, users are billed

only for the resources they actually use. The number of

function calls and the length of each call are the most

important factors that determine billing. Users pay only for the

exact time their features are running under this pricing

method, saving money on wasted resources.

Stateless Execution: Serverless functions run stateless,

without maintaining persistent state between calls. This

statelessness enables horizontal scaling and ensures that each

call is autonomous and independent.

Event-driven scaling: Event-driven scaling: serverless

solutions adapt resource allocation to changing workload in

real time. The platform automatically allocates more

computing resources as the number of transactions increases to

meet the increased workload. This event-driven scaling

ensures that resources are used efficiently and that fluctuating

workloads can be handled without manual intervention.

 Better Developer Productivity: Serverless computing

centralizes the complexity of infrastructure management,

allowing developers to focus only on building application

logic. This eliminates operational costs associated with server

administration, management and scaling, which speeds up

development cycles and increases developer productivity.

 Strong fault tolerance and high availability: Serverless

platforms handle fault and high availability perfectly.

Functions are automatically replicated across multiple

Availability Zones, providing flexibility and fault tolerance. In

the event of resource failure or unavailability, the platform

seamlessly redirects transactions to available resources and

maintains uninterrupted operations.

Developer Productivity: Serverless computing abstracts away

the infrastructure management, allowing developers to focus

solely on writing application logic. It reduces the operational

burden by eliminating the need to provision, manage, and scale

servers, enabling faster development cycles and improved

developer productivity.

Fault Tolerance and High Availability: Serverless platforms

handle fault tolerance and high availability transparently. They

automatically replicate functions across multiple availability

zones, ensuring resilience and fault tolerance. In case of a failure

or resource unavailability, the platform seamlessly redirects the

events to available resources.

II. RELATED WORK

In the realm of triggering serverless functions within

serverless environments, various authors have contributed

innovative approaches to address this challenge. One notable

milestone in this field is the work titled "Computing without

Servers" [3], which serves as a foundational piece by

introducing the concept of sequencing serverless functions and

delving into the intricacies of serverless function composition.

Expanding on this foundation, Rabbit made significant strides

in 2017 by introducing serverless state machines under the

banner of Conductor. In conjunction with this development,

they also introduced a DSL called Composer, with the primary

objective of simplifying the creation of state machines. These

advancements aimed to streamline the orchestration of

serverless functions within complex workflows.

Furthermore, Trapeze [16] introduced dynamic IFC

(Information Flow Control) to the realm of serverless

computing. This innovation was coupled with the

implementation of sandboxes for serverless functions, which

greatly enhanced their ability to interact with shared storage

securely and efficiently.

In the pursuit of optimizing serverless computing, several

initiatives [4] have focused on achieving elastic

parallelization. Additionally, cloud orchestration frameworks

[5] have introduced a specialized language tailored for

managing cloud environments. Engage, as proposed by

Fischer et al. in 2012, functions as a deployment manager

specifically designed to support inter-machine dependencies,

contributing to the efficiency of serverless deployments.

Moreover, [6] introduced an embedded DSL (Domain-Specific

Language) aimed at simplifying the development of cloud-

configurable programs. Meanwhile, CPL [7] presents a unified

language that facilitates the creation of distributed cloud

programs and the implementation of their distribution routines,

enhancing the overall scalability of serverless applications.

In contrast to these approaches, Jangda et al. [14] presented

serverless computing semantics that leverage a key-value store

for persistence, employ transactions to handle concurrency,

and utilize unique identifiers to ensure secure reinvocation.

These strategies, grounded in the principles of the Naïve

Bayes theorem, provide a robust foundation for addressing

critical challenges in serverless computing.

As part of our research endeavours, we aim to build upon

these insights and pioneer an improved mechanism for more

effectively addressing the challenges associated with

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1083

IJRITCC | September 2023, Available @ http://www.ijritcc.org

triggering serverless functions within the serverless

environment.

III. PROBLEM DEFINITION:

I Serverless systems, any container can exist in two states. The

container will be in one of two states: idle or active. The idle

state of a container shows that it is not currently performing

anything, whereas the active state indicates that it is actively

executing server less operations.

The first obstacle appears after a few minutes of inactivity; at

this point, all global variable information is misidentified or

lost. This problem arises when serverless services are run in a

container that may keep a short-term state during execution

and then abruptly shut down when the container reaches the

idle state. Because developers are unaware of when a

container shuts down by reaching its idle state, this

information is not available to them.The Progress of serverless

functions in Serverless Environment is as Follows:

A. State of flux & Timeout Limits

In AWS serverless Environment the maximum timeout for a

serverless function execution is 15 Minutes, previously it was

05 minutes [Source AWS Official Website]. Therefore when

any user wants to execute long requests means the request which

will take more than 15 minutes for its execution, it cannot be

execute in one shot because after 15 minutes of execution, it

will be automatically stopped & timeout error message will

pop up.

We have scientifically analyzed this situation & found it correct

that for the request having less than 15 minutes , we get the

desire result & for the request having more than 15 minutes

responded Time out error message.

IV. EXPERIMENTAL FRAMEWORK

To perform the experiment on Server less Environment, we have

chosen the following specifications, which have been shown in

Table1.

S. No. Requirement Specifications

1 Programming

Language

Node.js

2 Serverless

Environment

AWS

3 Serverless Function AWS Lambda

Table 1: Experimental Specification

Steps:

To analyze & identify this situation, we have performed

following Steps:

1. Created an online Account in AWS Server by

performing Account Registration Formalities.

2. Created 3 Lambda Functions; Lambda_A,

Lambda_B,Lambda_C. For creating these

functions, we have chosen Node.js as programming

language.

3. After creating these 3 functions, We have deployed

these functions in AWS Server for analyzing &

identifying their progress.

4. After deploying these 3 functions in AWS, we have

performed Test operation for the results.

5. After getting Results, we have observed their

Execution metrics on different parameters with

time.

V. PROCESS IDENTIFICATION FLOW:

In the Process Identification Flow, we have described

the flow of execution of our experimental setup.

Coding: Node.js

Creation of Lambda_A Function:

During our experimental Setup, the main role of

Lambda A function is to call/Request the functions to

be executed in Serverless Environment.

Creation of Lambda_B Function:

The Lambda B function holds the execution, which is

going to take more than 15 minutes.

Creation of Lambda_C Function:

The Lambda C function holds the execution, which is

going to take less than 15 minutes.

Algorithm of Lambda_A: [Calling Function]

var AWS = require('aws-sdk');

//AWS.config.region = 'eu-west-1';

var lambda = new AWS.Lambda();

exports.handler = function(event, context) {

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1084

IJRITCC | September 2023, Available @ http://www.ijritcc.org

 await new Promise(resolve =>setTimeout(resolve,

20000));

 var params = {

FunctionName: 'Lambda_B', // Change to

Lambda_B will give timeout error

InvocationType: 'RequestResponse',

LogType: 'Tail',

 Payload: '{ "name" : "SRMU" }'

 };

lambda.invoke(params, function(err, data) {

 if (err) {

context.fail(err);

 } else {

context.succeed(params.FunctionName+ ' said '+

data.Payload);

 }

 });

};

Algorithm of Lambda_B:

For Testing of Function of Longer Requests

[More Than 15 Minutes]

exports.handler = async function(event, context) {

 await new Promise(resolve =>setTimeout(resolve,

899900));

console.log('Lambda B Received event:',

JSON.stringify(event, null, 2));

context.succeed('Hello ' + event.name);

};

function sleep(ms) {

 return new Promise((resolve) => {

setTimeout(resolve, ms);

 });

}

Figure 1: AWS Response Message for longer request processing

In the figure 1, we have shown the response generated by the

lambda A function. It omits the Failed status while executing

the longer request i.e the request, which takes more than 15

minutes of processing.

Algorithm of Lambda_C:

 For Testing of Function of Small Requests [Less Than

15 Minutes]

exports.handler = async function(event, context) {

 await new Promise(resolve =>setTimeout(resolve,

7000));

console.log('Lambda C Received event:',

JSON.stringify(event, null, 2));

context.succeed('Hello ' + event.name);

};

function sleep(ms) {

 return new Promise((resolve) => {

setTimeout(resolve, ms);

 });

}

Figure 2: AWS Response Message for Small Size request

processing

In the figure 2, we have shown the response generated by the

lambda A function. It omits the Succeeded status while

executing the request i.e the request, which takes less than 15

minutes of processing.

VI. EXECUTION FLOW DIAGRAM

In the execution flow diagram, we have shown the process of

our experimental setup to analyze the processing of different

size requests in serverless container, which are been processed

by serverless function.

Execution of Lambda B Function by Function Lambda A

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1085

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Execution of Lambda C Function by Function Lambda A

VII. EXECUTION FLOW METRICS:

In the following figure 3, 4 we have shown the Execution

Flow Metrics, In this have included the real time statistics on

different parameters i.e Invocations & Duration & Throttles.

Figure 3: Invocation & Duration Metrics Graph

Figure 4: Throttles Metrics Graph

VIII. CONCLUSION AND FUTURE SCOPE

In this paper we have analyzed the different situations for

handling smaller & longer requests in AWS environment &

identified that for longer requests which take more than 15

minutes of execution time, AWS server was unable to process &

omits an error. Therefore, Effective methodology for Triggering

of serverless function is very important in the serverless

Environment for developers to use the serverless platforms in

executing their program function due the distinct features of the

serverless computing. In proposed paper provides the

environment where triggering of serverless functions can be

more compatible. With these platforms easily and can address

the challenges related to serverless function Execution in

serverless platform because demand and acceptability of Public

Cloud platforms are growing very fast with time. The handling

the longer requests of to process the different type of

documents, it would be very necessary to develop the effective

solutions to handle them. This can be more beneficial for both

the developers and service providers.

Acknowledgment:

The researchers wish to extend their sincere gratitude to the

Deanship of Scientific Research at the Islamic University of

Madinah, Saudi Arabia for the support provided to the Post-

Publishing Program 3.

We would like to express our sincere gratitude to our supervisor,

Dr. Bineet Kumar Gupta, Associate Professor, DCSIS, IOT,

SRMU Lucknow for his valuable guidance and support

throughout the research process. His expertise and insights were

invaluable in shaping our research and helping me to overcome

challenges. We also want to thank our SRMU University,

Lucknow for their helpful feedback and support

References

[1]. Panda, Surya, Mehta, Ashima. (2018). Design of Infrastructure

as a Service (IAAS)Framework with Report Generation

Mechanism, International Journal of Applied Engineering

Research, 0973-4562 V.13, N. 2 (2018) pp. 942-946

[2]. Gurudatt Kulkarni, Prasad Khatawkar, Jayant Gambhir, Cloud

Computing Platform as Service, International Journal of

Engineering and Advanced Technology (IJEAT) ISSN: 2249 –

8958, Volume-1, Issue-2, December 2011

[3]. Espadas, J., Concha, D., and Molina, A., “Application

Development over Software-as-a-Service platforms,”In

Proceedings of Software Engineering Advances(ICSEA 2008),

IEEE,pp.97 - 104, October, 2008.

[4]. Theo Lynn, PierangeloRosati, Arnaud Lejeune, and Vincent C.

Emeakaroha. A preliminaryreview of enterprise serverless

cloud computing (function-as-a-service) platforms. In

IEEEInternational Conference on Cloud Computing

Technology and Science, CloudCom 2017, HongKong,

December 11-14, 2017, pages 162–169, 2017.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1086

IJRITCC | September 2023, Available @ http://www.ijritcc.org

[5]. Choudhary, Brijesh&Pophale, ChinmayGutte, Aditya,

Dani, Ankit, Sonawani, Shilpa.(2020). Case Study:Use of

AWS[5] Lambda for Building a Serverless Chat

Application.10.1007/978-981-15-0790-8_24.

[6]. Moroney, Laurence. (2017). Cloud Functions for Firebase.

10.1007/978-1-4842-2943-9_8.

[7]. D. Chappell. Introducing the Azure services platform. White

paper, Oct. 2008.

[8]. Kuntsevich, Aleksandr&Nasirifard, Pezhman&

Jacobsen, Hans-arno. (2018). A DistributedAnalysis and

Benchmarking Framework for Apache OpenWhisk Serverless

Platform. 3-410.1145/3284014.3284016.

[9]. Sampé, Josep&Vernik, Gil & Sánchez-Artigas, Marc

&López, Pedro. (2018). Serverless DataAnalytics in the

IBM Cloud. 1-8. 10.1145/3284028.3284029.

[10]. Shafiei, Hossein&Khonsari, Ahmad &Mousavi, P.

(2019). Serverless Computing: A Surveyof Opportunities,

Challenges and Applications. 10.13140/RG.2.2.32882.25286.

[11]. Heydari, Atefeh&Tavakoli, Mohammadali&Riazi,

Mohammad. (2014). An Overview ofPublic cloud[11] Security

Issues. International Journal of Management Excellence.

3.10.17722/ijme.v3i2.166.

[12]. Yunxia, Jiang & Bowen, Zhao &Shuqi, Wang

&Dongnan, Sun. (2014). Research ofEnterprise Private

cloud[12] Computing Platform Based on OpenStack.

International Journal ofGrid and Distributed Computing. 7.

171-180. 10.14257/ijgdc.2014.7.5.16.

[13]. Aryotejo, Guruh, Daniel YeriKristiyanto and Mufadhol.

“Hybrid cloud: bridging of private and public cloud

computing.” Journal of Physics: Conference Series 1025

(2018): n. pag.

[14]. Bridging of private and public cloud, computing. Journal of

Physics: Conference Series.1025. 012091. 10.1088/1742-

6596/1025/1/012091.

[15]. Jangda, Abhinav, Pinckney, Donald & Baxter, Samuel

& Devore-McDonald, Breanna;Spitze, Joseph, Brun,

Yuriy, Guha, Arjun. (2019). Formal Foundations of

ServerlessComputing,ACM Journal

[16]. Baldini, I. et al. (2017). Serverless Computing: Current Trends

and Open Problems. In: Chaudhary, S., Somani, G., Buyya, R.

(eds) Research Advances in Cloud Computing. Springer,

Singapore. https://doi.org/10.1007/978-981-10-5026-8_1

[17]. Dutta, Pranay, Dutta, Prashant. (2019). Comparative Study of

Cloud Services Offered byAmazon, Microsoft and Google.

International Journal of Trend in Scientific Research

andDevelopment. Volume-3. 981-985. 10.31142/ijtsrd23170

[18]. Chandran, S., Verma, S.B.: Touchless palmprint verification

using shock filter SIFT I-RANSAC and LPD IOSR. J. Comput.

Eng. 17(3), 2278–8727 (2015)

http://www.ijritcc.org/

