
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1056
IJRITCC | September 2023, Available @ http://www.ijritcc.org

Hybrid Encryption based Access Control Approach

for Securing Cloud Computing

K. Shankar1, M. Subhashini2
1Research Scholar in Department of Computer Science, Srimad Andavan Arts and Science College (Autonomous) (Affiliated to

Bharathidasan University), Tiruchirappalli, Tamil Nadu, India.
2Assistant Professor in Department of Computer Science, Srimad Andavan Arts and Science College (Autonomous) (Affiliated to

Bharathidasan University), Tiruchirappalli, Tamil Nadu, India.

Abstract

 Cloud computing has become an integral part of modern technological infrastructure, facilitating the storage and processing of vast

amounts of data. However, ensuring the security of sensitive information in the cloud remains a persistent challenge. This paper proposes a

novel approach to enhance the security of cloud computing through hybrid encryption, leveraging the Whale Optimization Algorithm (WOA)

and Cuckoo Search Optimization (CSO) algorithms. Hybrid encryption, combining symmetric and asymmetric cryptographic techniques, is

employed to address the limitations of traditional encryption methods in cloud environments. The Whale Optimization Algorithm and Cuckoo

Search Optimization are utilized to optimize key generation and management processes, enhancing the overall efficiency and security of the

encryption scheme. The Whale Optimization Algorithm, inspired by the social behavior of humpback whales, is employed to optimize the

parameters of the encryption algorithm. WOA's exploration and exploitation capabilities are leveraged to find an optimal balance in the

encryption process, improving the overall robustness against potential attacks. Complementing WOA, the Cuckoo Search Optimization

algorithm is applied to optimize the key distribution and update mechanisms. Modeled after the brood parasitism behavior of cuckoo birds,

CSO excels in searching large solution spaces, making it suitable for refining the distribution of encryption keys and ensuring their constant

adaptability to dynamic cloud environments.

Keywords: Cloud Computing, Optimization algorithms, Access Control, Encryption, Decryption, Key Management.

1. INTRODUCTION

 In the era of digital transformation, where

organizations increasingly rely on cloud computing for the

storage, processing, and accessibility of data, the paramount

concern is the security of sensitive information residing in the

cloud. The dynamic and shared nature of cloud environments

introduces unique challenges, making data security a top

priority. Encryption stands as a fundamental pillar in

fortifying the confidentiality and integrity of data, providing

a robust defense against unauthorized access and cyber

threats [1] [2].

 Cloud computing offers unprecedented advantages

such a s scalability, flexibility, and cost efficiency,

revolutionizing the way businesses operate and individuals

access services. However, this paradigm shift also brings

forth security considerations, ranging from data breaches to

insider threats [3] [4]. Encryption techniques serve as a

crucial line of defense, ensuring that even if unauthorized

entities gain access to cloud-stored data, the information

remains indecipherable without the appropriate decryption

keys.

 The essence of encryption lies in the transformation

of plaintext data into a ciphertext format using algorithms and

cryptographic keys. This process renders the data unreadable

to anyone lacking the corresponding decryption keys, thereby

safeguarding it from unauthorized eyes. In the context of

cloud computing, encryption plays a pivotal role in

addressing data security concerns at rest, in transit, and during

processing [5] [6].

 Securing the cloud through encryption involves the

application of various encryption techniques tailored to

different facets of cloud data management. At rest, data

encryption ensures that information stored in databases or

object storage remains protected from unauthorized access

[7] [8]. During transit, encryption protocols safeguard data as

it travels between the user and the cloud server, mitigating the

risks associated with interception and eavesdropping.

Additionally, encryption techniques can be applied to specific

data processing operations within the cloud environment,

enhancing the overall security posture [9] [10] [16] [17] [18].

2. WHALE OPTIMIZATION ALGORITHM

 The Whale Optimization Algorithm (WOA) is a

nature-inspired optimization algorithm based on the social

behavior of humpback whales. Introduced by Seyedali

Mirjalili and Andrew Lewis in 2016, WOA aims to simulate

the hunting behavior of humpback whales in finding prey

[11]. This metaheuristic algorithm falls under the category of

swarm intelligence, drawing inspiration from the natural

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1057
IJRITCC | September 2023, Available @ http://www.ijritcc.org

world to solve optimization problems [15]. Key Components

of the Whale Optimization Algorithm:

Initialization of the Population: A population of potential

solutions, referred to as "whales," is randomly generated to

represent the possible solutions to the optimization problem

[19].

Objective Function: The optimization problem is defined by

an objective function that needs to be minimized or

maximized. This function evaluates the fitness of each whale

in the population.

Encircling Prey Behavior: The primary inspiration for

WOA comes from the encircling behavior of humpback

whales when hunting for prey. Whales collaborate to create a

spiral or circular motion to encircle and catch prey. In the

algorithm, this behavior is simulated to converge the

population toward an optimal solution. The position of a

whale is updated based on its current position, the position of

the best solution encountered so far (global best), and the

position of a randomly chosen whale in the population.

Bubble-net Feeding Behavior: Another behavior inspired

by humpback whales is the bubble-net feeding technique.

Whales create a net of bubbles to trap and concentrate prey.

In WOA, this behavior is emulated to explore the search space

efficiently. Exploration is encouraged by updating the

position of a whale towards a randomly selected whale's

position.

Movement Towards Prey: To balance exploration and

exploitation, a linear decreasing function is employed to

gradually decrease the exploration and exploitation rates. The

position of a whale is updated using the formula:

𝑋𝑛𝑒𝑤 = 𝑋𝑟𝑎𝑛𝑑 − 𝐴. 𝐷 (1)

Where 𝑋𝑟𝑎𝑛𝑑 is a randomly selected whale’s position, A is a

linearly decreasing parameter, and D is the distance between

the current whale and the randomly selected whale.

Updating the Parameters: The parameters A and C are

updated iteratively during the optimization process, allowing

the algorithm to dynamically adjust its exploration and

exploitation strategies.

Step by Step Procedure for WOA

Step 1: Initialization

Step 1.1: Initialization of the parameters: Define

population size N, maximum iterations

MaxIter, and linearly decreasing

parameters a and b.

Step 1.2: Initialize Whale Positions: Randomly

initialize the positions of N whales in

the search space.

Step 2: Fitness Evaluation: Evaluate the fitness of each

whale in the population using the objective function 𝑓(𝑥).

Step 3: Repeat until reaching the maximum iterations or a

convergence control.

Step 4: Encircling Prey Behavior

Step 4.1: Update Whales’ Positions: Encircling

behavior simulates the movement of

whales in encircling prey.

Step 4.2: for each whale i:

 Calculate A and C (linearly decreasing

parameters):

𝐴 = 2. 𝑎. |𝑟1 − 0.5| (2)

𝐶 = 2. 𝑟2, where 𝑟1 and 𝑟2 are random numbers in

[0,1].

 Update position based on the best

whale’s position (𝑃𝑏𝑒𝑠𝑡) and a randomly

selected whale (𝑋𝑟𝑎𝑛𝑑):

𝐷 = |𝑃𝐵𝑒𝑠𝑡 − 𝑋𝑖| (3)

𝑋𝑛𝑒𝑤 = 𝑃𝐵𝑒𝑠𝑡 − 𝐴. 𝐷 (4)

Step 5: Bubble-net Feeding Behavior

 Step 5.1: Explore New Solutions: Explore the search

space by updating whale positions.

 For each whale i:

Update the position towards a

randomly selected whale’s

position (𝑋𝑟𝑎𝑛𝑑)

𝑋𝑛𝑒𝑤 = 𝑋𝑟𝑎𝑛𝑑 − 𝐶. 𝐷 (5)

Step 6: Convergence Control: Gradually decrease the

linearly decreasing parameters

𝑎 = 𝑎.
𝑎

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
. 𝑖𝑡𝑒𝑟 (6)

𝑏 = 0.5 . (1 −
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
) (7)

Where 𝑖𝑡𝑒𝑟 is the current iteration. In these equations, 𝑟1 and

𝑟2 are random numbers in the range [0, 1], 𝑃𝐵𝑒𝑠𝑡 is the best

whale’s position, 𝑋𝑖 is the current whale’s position, 𝑋𝑟𝑎𝑛𝑑 is

a randomly selected whale’s position, and iter is the current

iteration number.

3. CUCKOO SEARCH OPTIMIZATION

 Cuckoo Search Optimization (CSO) is a nature-

inspired optimization algorithm introduced by Xin-She Yang

and Suash Deb in 2009. The algorithm is inspired by the

reproductive strategy of cuckoo birds, which lay their eggs in

the nests of other bird species, leaving the host birds to

incubate and care for their eggs [12]. In the context of

optimization, cuckoos represent candidate solutions, and the

host nests are analogous to the search space [20] [21]. Key

Components of Cuckoo Search Optimization:

Initialization: Generate an initial population of cuckoos

(solutions) randomly in the search space. Evaluate the fitness

of each cuckoo using the objective function.

Levy Flight for Exploitation: Perform Levy flights to

explore the search space efficiently. Levy flights are random

walks that mimic the erratic foraging behavior of birds.

Cuckoo Levy Flights: Update cuckoo positions using Levy

flights to explore new potential solutions. The new position

𝑥𝑖
𝑛𝑒𝑤 is calculated as:

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1058
IJRITCC | September 2023, Available @ http://www.ijritcc.org

𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖 + 𝛼 ⨀ 𝐿𝑒𝑣𝑦 (⋋) (8)

Where 𝑥𝑖 is the current position, 𝛼 is the step size, and

𝐿𝑒𝑣𝑦 (⋋) represents a Levy flight with a power-law

distribution and ⨀ denotes element-wise multiplication.

Cuckoo Fractional Change: Introduce a fractional change

in the position of some cuckoos to diversify the search. A

fraction of cuckoos (𝛽) is randomly selected, and their

positions are replaced by new ones.

𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖 + 𝛽⨀𝑟𝑎𝑛𝑑() (9)

Where 𝑟𝑎𝑛𝑑() is a random number in the range [0,1].

Evaluate and Selection: Evaluate the fitness of the newly

generated cuckoos. Replace old cuckoos with new ones if

they have better fitness values.

Stop Criterion: Check if the termination condition is met

(e.g., a maximum number of iterations or a satisfactory

solution is found).

Step by Step Procedure:

Step 1: Initialization

Step 1.1: Initialize Parameters: Set the

population size N, maximum iteration

MaxIter, Levy flight exponent ⋋, and step

size 𝛼.

Step 1.2: Generate Initial Population:

Randomly initialize the positions of N

cuckoos in the search space. Evaluate the

fitness of each cuckoo using the objective

function.

Step 2: While (stopping criterion not met): Repeat until

reaching the maximum iterations or a convergence criterion.

Step 3: Levy Flight for Exploitation

Step 3.1: Perform Levy Flights: Update cuckoo

positions using Levy flights to explore the search

space efficiently.

𝐿𝑒𝑣𝑦(⋋) = 𝑢. (
1

√𝑢
)

1 ⋋⁄

Where u is the random number from a standard

normal distribution, and ⋋ is the Levy flight

exponent.

Step 3.2: The new position 𝑥𝑖
𝑛𝑒𝑤 is calculated using

the Levy Flight equation using (8)

Step 4: Cuckoo Fractional Change for Exploration

Step 4.1: Introduce Fractional Change: Introduce a

fractional change in the position of some cuckoos to

diversify the search.

Step 4.2: A fraction of cuckoos (𝛽) is randomly

selected, and their positions are replaced by new

ones using the fractional change equation (9).

Step 5: Evaluate and Selection

 Step 5.1: Evaluate Fitness: Evaluate the fitness of

the newly generated cuckoos.

 Step 5.2: Replace Old Cuckoos: Replace old

cuckoos with new ones if they have better fitness

values.

Step 6: Stop Criterion: Check if the termination condition is

met (e.g., a maximum number of iterations or a satisfactory

solution is found).

4. RSA ENCRYPTION ALGORITHM

 RSA (Rivest-Shamir-Adleman) is a widely used

public-key cryptography algorithm that was introduced by

Ron Rivest, Adi Shamir, and Leonard Adleman in 1977. RSA

is named after the initials of its inventors [13]. The algorithm

is known for its security based on the difficulty of factoring

the product of two large prime numbers, a problem that

becomes computationally infeasible for sufficiently large

primes.

Key Generation: RSA uses a pair of public and private keys.

Public Key (e, N): The public key consists of an exponent e

and a modulus N. e is usually a small prime number, often

65537, and N is the product of two large prime numbers (p

and q). Private Key (d, N): The private key consists of an

exponent d and the same modulus N. The private exponent d

is calculated such that (𝑚𝑜𝑑 𝜙 (𝑁)), where (𝑁) is Euler’s

totient function.

Steps in Key Generation

Step 1: Select two large prime numbers p and q.

Step 2: Compute N=pq.

Step 3: Computer 𝜙 (𝑁) = (𝑝 − 1)(𝑞 − 1)

Step 4: Choose e such that 1 < 𝑒 < 𝜙 (𝑁) and e is coprime

with 𝜙 (𝑁).

Step 5: Calculate d as the modular multiplicative inverse

of e modulo 𝜙 (𝑁), i.e., 𝑑 ≡ 𝑒−1(𝑚𝑜𝑑 𝜙 (𝑁))

Step 6: Public key (𝑒, 𝑁)

Step 7: Private key: (𝑑, 𝑁)

Encryption: To encrypt a plaintext message M:

 𝐶 ≡ 𝑀𝑒 (𝑚𝑜𝑑 𝑁)

Where 𝐶 is the cipher text, 𝑒 is the public exponent, N is

the modulus.

Decryption: To decrypt the ciphertext C and obtain the

original plaintext M:

𝑀 ≡ 𝐶𝑑 (𝑚𝑜𝑑 𝑁)

Where M is the decrypted plaintext, d is the private key

and N is the modulus.

5. ADVANCED ENCRYPTION STANDARD

(AES) ALGORITHM

 AES (Advanced Encryption Standard) is a widely

adopted symmetric encryption algorithm designed to provide

secure and efficient encryption for electronic data [14]. It was

established as the successor to the Data Encryption Standard

(DES) by the National Institute of Standards and Technology

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1059
IJRITCC | September 2023, Available @ http://www.ijritcc.org

(NIST) in 2001. AES has become a standard encryption

algorithm used in various applications, including securing

communications, data storage, and cryptographic protocols.

5.1 Key Characteristics of AES

• Symmetric Key Algorithm: AES is a symmetric

key algorithm, meaning the same key is used for

both encryption and decryption.

• Block Cipher: AES operates on fixed-size blocks of

data, with a block size of 128 bits.

• Key Sizes: AES supports key sizes of 128, 192, and

256 bits. The security strength increases with larger

key sizes.

• Rounds: The number of rounds in AES depends on

the key size: 10 rounds for 128-bit keys, 12 rounds

for 192-bit keys, and 14 rounds for 256-bit keys.

• Substitution-Permutation Network (SPN)

Structure: AES employs a Substitution-

Permutation Network structure, which involves

substitution (subBytes), permutation (shiftRows),

mixing (mixColumns), and key addition

(addRoundKey) operations.

5.2 Encryption Process

 The AES encryption process involves several steps:

• Key Expansion: The original key is expanded into

a set of round keys, one for each round of the

encryption process.

• Initial Round Key Addition: The first round key is

added to the initial block of plaintext.

• Rounds: Each round involves four main operations:

SubBytes, ShiftRows, MixColumns, and

AddRoundKey.

o SubBytes: Non-linear substitution step

where each byte of the block is replaced

with another according to a fixed lookup

table.

o ShiftRows: Bytes in each row are shifted

by an offset.

o MixColumns: Transformation mixing the

data in each column.

o AddRoundKey: XOR operation with the

round key.

• Final Round: The final round skips the

MixColumns step.

• Ciphertext: The final result after the specified

number of rounds is the ciphertext.

5.3 Decryption Process

 AES decryption is the reverse process of encryption,

involving the inverse of the operations used in encryption.

The decryption process includes:

• Key Expansion: The original key is expanded into

the set of round keys.

• Initial Round Key Addition: The last round key is

added to the ciphertext.

• Rounds: In each round, the following operations are

applied in reverse order: InvShiftRows,

InvSubBytes, InvMixColumns, and AddRoundKey.

• Final Round: The final round skips the

InvMixColumns step.

• Plaintext: The result after the specified number of

rounds is the decrypted plaintext.

6. PROPOSED ENHANCED ACCESS

CONTROL WITH HYBRID ENCRYPTION

APPROACH

 This hybrid encryption approach involves using

RSA for asymmetric encryption (for access control policies)

and AES for symmetric encryption (for access control

credentials). The keys for both RSA and AES are optimized

using WOA and CSO, respectively. The following are the

step-by-step procedure for the Enhanced Access Control with

Hybrid Encryption approach.

Step 1: Access Control Policy Encryption (RSA): Encrypt

access control policies using RSA.

𝐶 = 𝑃𝑒𝑚𝑜𝑑 𝑁

Where C is the ciphertext, P is the plaintext (access control

policies), e is the public exponent, and N is the modulus.

Step 2: RSA Key generation and Optimization with WOA:

Generate RSA keys (public and private). Apply WOA to

optimize the RSA private key (e.g., adjust private exponent

d).

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 − 𝐴. 𝐷𝑖
𝑡

Where 𝑋𝑖
𝑡 is the current position of the ith whale at iteration

i. A is the coefficient. 𝐷𝑖
𝑡 is the distance vector.

Step 3: Symmetric Key Generation (AES): Generate a

symmetric key for AES encryption.

Step 4: Optimization-Based Symmetric Key Optimization

(CSO): Apply CSO to optimize the symmetric key for AES.

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝛼. 𝐿. 𝐿𝑒𝑣𝑦(⋋)

𝑋𝑖
𝑡 is the current position of the i-th cuckoo at iteration t, 𝛼 is

the step size, L is the scaling factor, and 𝐿𝑒𝑣𝑦(⋋) is the Levy

flight.

Step 5: Access Control Credential Encryption (AES):

Encrypt access control credentials using AES.

𝐶𝐴𝐸𝑆 = 𝐴𝐸𝑆𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑃𝑐𝑟𝑒𝑑𝑒𝑛𝑡𝑖𝑎𝑙𝑠 , 𝐾𝐴𝐸𝑆)

Where 𝐶𝐴𝐸𝑆 is the AES ciphertext, 𝑃𝑐𝑟𝑒𝑑𝑒𝑛𝑡𝑖𝑎𝑙𝑠 is the plaintext

(access control credentials), 𝐾𝐴𝐸𝑆 is the optimized symmetric

key.

Step 6: Secure key storage: Store the optimized RSA private

key and the optimized symmetric key securely on the cloud

server and client devices.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1060
IJRITCC | September 2023, Available @ http://www.ijritcc.org

Step 7: Transmission of Encrypted Policies and Credentials:

Transmit the encrypted access control policies (RSA

ciphertext) and credentials (AES ciphertext) to the cloud

server.

Step 8: Cloud Server Processing: On the cloud server, decrypt

the RSA private key using the optimized RSA private key

(asymmetric decryption). Use the decrypted RSA private key

to decrypt the access control policies (RSA decryption). Use

the optimized symmetric key to decrypt the access control

credentials (AES decryption).

7. RESULT AND DISCUSSION

 The performance of the proposed Hybrid Encryption

Approach is evaluated with other encryption techniques like

RSA and AES with various performance metrics like Key

Generation Time (in seconds), Key Updation time (in

seconds), Encryption time (in seconds), Decryption time (in

seconds), total encryption and decryption time (in seconds)

and Throughput (in mbps) for various size of the dataset (in

MB).

 Table 1 depicts the Key Generation time (in seconds)

by the proposed Hybrid Encryption approach, RSA and AES

for various size of the dataset. From the table 1, The proposed

hybrid encryption approach consistently demonstrates

competitive or improved key generation times compared to

both RSA and AES across all file sizes. As the file size

increases, the key generation time for the proposed hybrid

approach shows a moderate upward trend, indicating

scalability.

 RSA exhibits longer key generation times compared

to the proposed hybrid approach, particularly as the file size

increases. The key generation time for RSA shows a

noticeable increase with larger datasets. AES key generation

times are generally similar to RSA but slightly faster. Like

RSA, the key generation time for AES also increases with

larger file sizes, albeit at a slightly slower rate compared to

RSA.

 The proposed hybrid encryption approach appears to

strike a balance between the key generation times of RSA and

AES. As file sizes grow, the proposed hybrid approach

maintains its efficiency relative to the individual RSA and

AES methods. Depending on specific application

requirements, the proposed hybrid approach may offer a

favorable trade-off between key generation time and security.

Table 1: Key Generation Time (in seconds) by Proposed

Hybrid Encryption approach, RSA and AES for various size

of the dataset

File Size

(in MB)

Key Generation Time (in Seconds)

Proposed Hybrid

Approach

RSA AES

100 378 532 641

200 415 689 692

300 564 745 787

400 632 814 891

500 786 1053 1052

600 814 1121 1128

700 863 1198 1196

800 901 1263 1262

900 924 1314 1322

1000 998 1382 1381

Table 2 depicts the Key Updation time (in seconds)

by the proposed Hybrid Encryption approach, RSA and AES

for various size of the dataset. From the table 2, The proposed

hybrid encryption approach consistently demonstrates

efficient key updation times compared to both RSA and AES

across all file sizes. As the file size increases, the key updation

time for the proposed hybrid approach shows a gradual but

manageable increase, indicating scalability.

RSA exhibits longer key updation times compared

to the proposed hybrid approach. The key updation time for

RSA shows a noticeable increase with larger datasets, and the

gap between RSA and the proposed hybrid approach becomes

more pronounced.

AES key updation times are generally similar to

RSA but slightly faster. Similar to RSA, the key updation time

for AES also increases with larger file sizes, but the proposed

hybrid approach maintains a competitive edge.

The proposed hybrid encryption approach

consistently outperforms both RSA and AES in terms of key

updation time across various file sizes. The efficiency of the

proposed hybrid approach makes it a strong candidate for

applications where frequent key updation is required, striking

a balance between RSA and AES.

Table 2: Key Updation Time (in seconds) by Proposed

Hybrid Encryption approach, RSA and AES for various size

of the dataset

File Size

(in MB)

Key Updation Time (in Seconds)

Proposed Hybrid

Approach

RSA AES

100 239 392 421

200 248 463 498

300 261 518 532

400 275 592 603

500 283 684 685

600 297 735 745

700 310 821 843

800 321 906 918

900 342 998 1015

1000 356 1024 1035

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1061
IJRITCC | September 2023, Available @ http://www.ijritcc.org

 Table 3 depicts the Encryption time (in seconds) by

the proposed Hybrid Encryption approach, RSA and AES for

various size of the dataset. From the table 3,

Table 3: Encryption Time (in seconds) by Proposed Hybrid

Encryption approach, RSA and AES for various size of the

dataset

File Size

(in MB)

Encryption Time (in Seconds)

Proposed Hybrid

Approach

RSA AES

100 28 68 69

200 34 83 88

300 49 96 98

400 63 118 128

500 82 138 145

600 98 167 175

700 109 181 192

800 122 203 214

900 141 234 245

1000 156 263 275

From the table 3, The proposed hybrid encryption

approach consistently demonstrates significantly faster

encryption times compared to both RSA and AES across all

file sizes. As the file size increases, the encryption time for

the proposed hybrid approach shows a moderate increase, but

it remains notably lower than both RSA and AES.

 RSA exhibits longer encryption times compared to

both the proposed hybrid approach and AES. The encryption

time for RSA shows a substantial increase with larger

datasets, making it less efficient for larger file sizes. AES

encryption times are generally lower than RSA but higher

than the proposed hybrid approach. Similar to RSA, the

encryption time for AES also increases with larger file sizes,

although the proposed hybrid approach maintains a

significant speed advantage.

 The proposed hybrid encryption approach

outperforms both RSA and AES in terms of encryption time

across various file sizes, making it a highly efficient choice

for encryption tasks. The efficiency of the proposed hybrid

approach makes it well-suited for applications where fast

encryption is crucial.

Table 4 depicts the Decryption time (in seconds) by

the proposed Hybrid Encryption approach, RSA and AES for

various size of the dataset. From the table 3,

Table 4: Decryption Time (in seconds) by Proposed Hybrid

Encryption approach, RSA and AES for various size of the

dataset

File Size

(in MB)

Decryption Time (in Seconds)

Proposed Hybrid

Approach

RSA AES

100 21 44 53

200 29 53 60

300 42 72 75

400 54 83 90

500 69 95 102

600 82 123 128

700 96 145 150

800 112 165 173

900 128 187 192

1000 132 198 204

From the table 4, The proposed hybrid encryption

approach consistently demonstrates significantly faster

decryption times compared to both RSA and AES across all

file sizes. As the file size increases, the decryption time for

the proposed hybrid approach shows a moderate increase, but

it remains notably lower than both RSA and AES.

RSA exhibits longer decryption times compared to

both the proposed hybrid approach and AES. The decryption

time for RSA shows a substantial increase with larger

datasets, making it less efficient for larger file sizes. AES

decryption times are generally lower than RSA but higher

than the proposed hybrid approach. Similar to RSA, the

decryption time for AES also increases with larger file sizes,

although the proposed hybrid approach maintains a

significant speed advantage.

The proposed hybrid encryption approach

outperforms both RSA and AES in terms of decryption time

across various file sizes, making it a highly efficient choice

for decryption tasks. The efficiency of the proposed hybrid

approach makes it well-suited for applications where fast

decryption is crucial.

Table 5 depicts the Total time taken for encryption

and decryption (in seconds) by the proposed Hybrid

Encryption approach, RSA and AES for various size of the

dataset.

Table 5: Total Encryption/Decryption Time (in seconds) by

Proposed Hybrid Encryption approach, RSA and AES for

various size of the dataset

File Size

(in MB)

Total Encryption/Decryption Time (in seconds)

Proposed Hybrid

Approach

RSA AES

100 49 112 122

200 63 136 148

300 91 168 173

400 117 201 218

500 157 233 247

600 180 290 303

700 205 326 342

800 234 368 387

900 264 421 437

1000 294 461 479

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1062
IJRITCC | September 2023, Available @ http://www.ijritcc.org

From the table 5, The proposed hybrid encryption

approach consistently demonstrates significantly faster total

encryption/decryption times compared to both RSA and AES

across all file sizes. As the file size increases, the total time

for the proposed hybrid approach shows a moderate increase,

but it remains notably lower than both RSA and AES.

RSA exhibits longer total encryption/decryption

times compared to both the proposed hybrid approach and

AES. The total time for RSA shows a substantial increase

with larger datasets, making it less efficient for larger file

sizes. AES total encryption/decryption times are generally

lower than RSA but higher than the proposed hybrid

approach. Similar to RSA, the total time for AES also

increases with larger file sizes, although the proposed hybrid

approach maintains a significant speed advantage.

The proposed hybrid encryption approach

outperforms both RSA and AES in terms of total

encryption/decryption time across various file sizes, making

it a highly efficient choice for overall cryptographic

operations. The efficiency of the proposed hybrid approach

makes it well-suited for applications where both fast

encryption and decryption are crucial.

Table 6 depicts the Throughput (in mbps) by

Proposed Hybrid Encryption approach, RSA and AES for

various size of the dataset.

Table 6: Throughput (in mbps) by Proposed Hybrid

Encryption approach, RSA and AES for various size of the

dataset

File Size

(in MB)

Throughput (in mbps)

Proposed Hybrid

Approach

RSA AES

100 1436 1128 1113

200 1487 1186 1172

300 1521 1245 1230

400 1545 1288 1273

500 1598 1326 1314

600 1628 1378 1368

700 1675 1432 1426

800 1708 1483 1467

900 1734 1535 1518

1000 1789 1590 1575

From the table 6, The proposed hybrid encryption

approach consistently demonstrates higher throughput (in

mbps) compared to both RSA and AES across all file sizes.

As the file size increases, the throughput for the proposed

hybrid approach remains consistently higher, showcasing its

efficiency in data processing.

RSA exhibits lower throughput compared to both the

proposed hybrid approach and AES. The throughput for RSA

shows a moderate increase with larger datasets, but it remains

lower than the proposed hybrid approach.

AES throughput is generally lower than the

proposed hybrid approach but higher than RSA. Similar to

RSA, the throughput for AES also increases with larger file

sizes, but the proposed hybrid approach maintains a

throughput advantage. The proposed hybrid encryption

approach consistently outperforms both RSA and AES in

terms of throughput across various file sizes, indicating its

superior data processing efficiency. The high throughput of

the proposed hybrid approach makes it well-suited for

applications where rapid data transfer is critical.

8. CONCLUSION

 In this research work, the hybrid encryption

approach integrating Whale Optimization Algorithm (WOA)

for RSA and Cuckoo Search Optimization (CSO) for AES

presents a robust and innovative solution for securing access

control in cloud computing environments. This method

leverages the strengths of both optimization algorithms and

combines the security features of asymmetric (RSA) and

symmetric (AES) encryption. The step-by-step procedure

outlined for RSA encryption, key optimization using WOA,

AES encryption, and key optimization using CSO provides a

comprehensive framework for implementing a secure access

control system. The use of RSA ensures secure and efficient

key exchange for access control policies, while AES

efficiently encrypts access control credentials. The

integration of optimization algorithms such as WOA and CSO

enhances the security of the cryptographic keys by optimizing

their parameters. WOA, inspired by the hunting behavior of

whales, and CSO, mimicking the brood parasitic behavior of

cuckoos, contribute to the robustness of the encryption keys.

From the results obtained, it is clear that the proposed Hybrid

Encryption based Access Control approach consumes less

key generation time, updation time, encryption time,

decryption and total time taken for encryption and decryption

than the existing encryption techniques like RSA, and AES.

REFERENCES

[1] Daniel, Aliu, et al. "A computer security system for cloud

computing based on encryption technique." Computer

Engineering and Applications 10.1 (2021): 41-53.

[2] Kumar, Sarvesh, et al. "Chaos based image encryption security

in cloud computing." Journal of Discrete Mathematical

Sciences and Cryptography 25.4 (2022): 1041-1051.

[3] Mehrtak, Mohammad, et al. "Security challenges and

solutions using healthcare cloud computing." Journal of

medicine and life 14.4 (2021): 448.

[4] Chinnasamy, P., et al. "Efficient data security using hybrid

cryptography on cloud computing." Inventive

Communication and Computational Technologies:

Proceedings of ICICCT 2020. Springer Singapore, 2021.

[5] Abroshan, Hossein. "A hybrid encryption solution to improve

cloud computing security using symmetric and asymmetric

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1063
IJRITCC | September 2023, Available @ http://www.ijritcc.org

cryptography algorithms." International Journal of Advanced

Computer Science and Applications 12.6 (2021): 31-37.

[6] Liu, Pengtao. "Public-key encryption secure against related

randomness attacks for improved end-to-end security of

cloud/edge computing." IEEE Access 8 (2020): 16750-16759.

[7] Shabbir, Maryam, et al. "Enhancing security of health

information using modular encryption standard in mobile

cloud computing." IEEE Access 9 (2021): 8820-8834.

[8] Velmurugadass, P., et al. "Enhancing Blockchain security in

cloud computing with IoT environment using ECIES and

cryptography hash algorithm." Materials Today:

Proceedings 37 (2021): 2653-2659.

[9] Thabit, Fursan, et al. "A new lightweight cryptographic

algorithm for enhancing data security in cloud

computing." Global Transitions Proceedings 2.1 (2021): 91-

99.

[10] Subhash, Ligade Sunil, and R. Udayakumar. "Sunflower

whale optimization algorithm for resource allocation strategy

in cloud computing platform." Wireless Personal

Communications 116 (2021): 3061-3080.

[11] Krishnadoss, Pradeep, et al. "CCSA: Hybrid cuckoo crow

search algorithm for task scheduling in cloud

computing." International Journal of Intelligent Engineering

and Systems 14.4 (2021): 241-250.

[12] Kumar, Y. Kiran, and R. Mahammad Shafi. "An efficient and

secure data storage in cloud computing using modified RSA

public key cryptosystem." International Journal of Electrical

and Computer Engineering 10.1 (2020): 530.

[13] Awan, Ijaz Ahmad, et al. "Secure framework enhancing AES

algorithm in cloud computing." Security and communication

networks 2020 (2020): 1-16.

[14] Poornappriya, T.S., Selvi, V., Evolutionary Optimization of

Artificial Neural Network for Diagnosing Autism Spectrum

Disorder, International Journal of Electrical Engineering and

Technology (IJEET), 11(7), 47-61 (2020).

[15] Subhashini, M., & Gopinath, R., Mapreduce Methodology for

Elliptical Curve Discrete Logarithmic Problems –

Securing Telecom Networks, International Journal of

Electrical Engineering and Technology, 11(9), 261-273

(2020).

[16] Upendran, V., & Gopinath, R., Feature Selection based on

Multicriteria Decision Making for Intrusion Detection

System, International Journal of Electrical Engineering and

Technology, 11(5), 217-226 (2020).

[17] Upendran, V., & Gopinath, R., Optimization based

Classification Technique for Intrusion Detection System,

International Journal of Advanced Research in Engineering

and Technology, 11(9), 1255-1262 (2020).

[18] Subhashini, M., & Gopinath, R., Employee Attrition

Prediction in Industry using Machine Learning

Techniques, International Journal of Advanced Research in

Engineering and Technology, 11(12), 3329-3341 (2020).

[19] Priyadharshini, D., Poornappriya, T.S., & Gopinath, R., A

fuzzy MCDM approach for measuring the business impact of

employee selection, International Journal of Management

(IJM), 11(7), 1769-1775 (2020).

[20] Poornappriya, T.S., Gopinath, R., Application of Machine

Learning Techniques for Improving Learning Disabilities,

International Journal of Electrical Engineering and

Technology (IJEET), 11(10), 392-402 (2020).

http://www.ijritcc.org/

