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Abstract 

 Cloud computing has become an integral part of modern technological infrastructure, facilitating the storage and processing of vast 

amounts of data. However, ensuring the security of sensitive information in the cloud remains a persistent challenge. This paper proposes a 

novel approach to enhance the security of cloud computing through hybrid encryption, leveraging the Whale Optimization Algorithm (WOA) 

and Cuckoo Search Optimization (CSO) algorithms. Hybrid encryption, combining symmetric and asymmetric cryptographic techniques, is 

employed to address the limitations of traditional encryption methods in cloud environments. The Whale Optimization Algorithm and Cuckoo 

Search Optimization are utilized to optimize key generation and management processes, enhancing the overall efficiency and security of the 

encryption scheme. The Whale Optimization Algorithm, inspired by the social behavior of humpback whales, is employed to optimize the 

parameters of the encryption algorithm. WOA's exploration and exploitation capabilities are leveraged to find an optimal balance in the 

encryption process, improving the overall robustness against potential attacks. Complementing WOA, the Cuckoo Search Optimization 

algorithm is applied to optimize the key distribution and update mechanisms. Modeled after the brood parasitism behavior of cuckoo birds, 

CSO excels in searching large solution spaces, making it suitable for refining the distribution of encryption keys and ensuring their constant 

adaptability to dynamic cloud environments. 
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1. INTRODUCTION 

 In the era of digital transformation, where 

organizations increasingly rely on cloud computing for the 

storage, processing, and accessibility of data, the paramount 

concern is the security of sensitive information residing in the 

cloud. The dynamic and shared nature of cloud environments 

introduces unique challenges, making data security a top 

priority. Encryption stands as a fundamental pillar in 

fortifying the confidentiality and integrity of data, providing 

a robust defense against unauthorized access and cyber 

threats [1] [2].  

 Cloud computing offers unprecedented advantages 

such a s scalability, flexibility, and cost efficiency, 

revolutionizing the way businesses operate and individuals 

access services. However, this paradigm shift also brings 

forth security considerations, ranging from data breaches to 

insider threats [3] [4]. Encryption techniques serve as a 

crucial line of defense, ensuring that even if unauthorized 

entities gain access to cloud-stored data, the information 

remains indecipherable without the appropriate decryption 

keys. 

 The essence of encryption lies in the transformation 

of plaintext data into a ciphertext format using algorithms and 

cryptographic keys. This process renders the data unreadable 

to anyone lacking the corresponding decryption keys, thereby 

safeguarding it from unauthorized eyes. In the context of 

cloud computing, encryption plays a pivotal role in 

addressing data security concerns at rest, in transit, and during 

processing [5] [6]. 

 Securing the cloud through encryption involves the 

application of various encryption techniques tailored to 

different facets of cloud data management. At rest, data 

encryption ensures that information stored in databases or 

object storage remains protected from unauthorized access 

[7] [8]. During transit, encryption protocols safeguard data as 

it travels between the user and the cloud server, mitigating the 

risks associated with interception and eavesdropping. 

Additionally, encryption techniques can be applied to specific 

data processing operations within the cloud environment, 

enhancing the overall security posture [9] [10] [16] [17] [18]. 

 

2. WHALE OPTIMIZATION ALGORITHM 

  The Whale Optimization Algorithm (WOA) is a 

nature-inspired optimization algorithm based on the social 

behavior of humpback whales. Introduced by Seyedali 

Mirjalili and Andrew Lewis in 2016, WOA aims to simulate 

the hunting behavior of humpback whales in finding prey 

[11]. This metaheuristic algorithm falls under the category of 

swarm intelligence, drawing inspiration from the natural 
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world to solve optimization problems [15]. Key Components 

of the Whale Optimization Algorithm:  

Initialization of the Population: A population of potential 

solutions, referred to as "whales," is randomly generated to 

represent the possible solutions to the optimization problem 

[19]. 

Objective Function: The optimization problem is defined by 

an objective function that needs to be minimized or 

maximized. This function evaluates the fitness of each whale 

in the population. 

Encircling Prey Behavior: The primary inspiration for 

WOA comes from the encircling behavior of humpback 

whales when hunting for prey. Whales collaborate to create a 

spiral or circular motion to encircle and catch prey. In the 

algorithm, this behavior is simulated to converge the 

population toward an optimal solution. The position of a 

whale is updated based on its current position, the position of 

the best solution encountered so far (global best), and the 

position of a randomly chosen whale in the population. 

Bubble-net Feeding Behavior: Another behavior inspired 

by humpback whales is the bubble-net feeding technique. 

Whales create a net of bubbles to trap and concentrate prey. 

In WOA, this behavior is emulated to explore the search space 

efficiently. Exploration is encouraged by updating the 

position of a whale towards a randomly selected whale's 

position. 

Movement Towards Prey: To balance exploration and 

exploitation, a linear decreasing function is employed to 

gradually decrease the exploration and exploitation rates. The 

position of a whale is updated using the formula:  

𝑋𝑛𝑒𝑤 = 𝑋𝑟𝑎𝑛𝑑 − 𝐴. 𝐷  (1) 

Where 𝑋𝑟𝑎𝑛𝑑 is a randomly selected whale’s position, A is a 

linearly decreasing parameter, and D is the distance between 

the current whale and the randomly selected whale. 

Updating the Parameters: The parameters A and C are 

updated iteratively during the optimization process, allowing 

the algorithm to dynamically adjust its exploration and 

exploitation strategies. 

Step by Step Procedure for WOA 

Step 1: Initialization 

Step 1.1: Initialization of the parameters: Define 

population size N, maximum iterations 

MaxIter, and linearly decreasing 

parameters a and b. 

Step 1.2: Initialize Whale Positions: Randomly 

initialize the positions of N whales in 

the search space. 

Step 2: Fitness Evaluation: Evaluate the fitness of each 

whale in the population using the objective function 𝑓(𝑥). 

Step 3: Repeat until reaching the maximum iterations or a 

convergence control. 

Step 4: Encircling Prey Behavior 

Step 4.1: Update Whales’ Positions: Encircling 

behavior simulates the movement of 

whales in encircling prey. 

Step 4.2: for each whale i: 

 Calculate A and C (linearly decreasing 

parameters): 

𝐴 = 2. 𝑎. |𝑟1 − 0.5| (2) 

𝐶 = 2. 𝑟2, where 𝑟1 and 𝑟2 are random numbers in 

[0,1]. 

 Update position based on the best 

whale’s position (𝑃𝑏𝑒𝑠𝑡) and a randomly 

selected whale (𝑋𝑟𝑎𝑛𝑑): 

𝐷 =  |𝑃𝐵𝑒𝑠𝑡 − 𝑋𝑖|  (3) 

𝑋𝑛𝑒𝑤 = 𝑃𝐵𝑒𝑠𝑡 − 𝐴. 𝐷  (4) 

Step 5: Bubble-net Feeding Behavior  

 Step 5.1: Explore New Solutions: Explore the search 

space by updating whale positions. 

  For each whale i: 

Update the position towards a 

randomly selected whale’s 

position (𝑋𝑟𝑎𝑛𝑑) 

𝑋𝑛𝑒𝑤 = 𝑋𝑟𝑎𝑛𝑑 − 𝐶. 𝐷 (5) 

Step 6: Convergence Control:  Gradually decrease the 

linearly decreasing parameters 

𝑎 = 𝑎.
𝑎

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
. 𝑖𝑡𝑒𝑟 (6) 

𝑏 = 0.5 . (1 −
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
) (7) 

Where 𝑖𝑡𝑒𝑟 is the current iteration. In these equations, 𝑟1 and 

𝑟2 are random numbers in the range [0, 1], 𝑃𝐵𝑒𝑠𝑡  is the best 

whale’s position, 𝑋𝑖 is the current whale’s position, 𝑋𝑟𝑎𝑛𝑑 is 

a randomly selected whale’s position, and iter is the current 

iteration number.  

 

3. CUCKOO SEARCH OPTIMIZATION 

 Cuckoo Search Optimization (CSO) is a nature-

inspired optimization algorithm introduced by Xin-She Yang 

and Suash Deb in 2009. The algorithm is inspired by the 

reproductive strategy of cuckoo birds, which lay their eggs in 

the nests of other bird species, leaving the host birds to 

incubate and care for their eggs [12]. In the context of 

optimization, cuckoos represent candidate solutions, and the 

host nests are analogous to the search space [20] [21]. Key 

Components of Cuckoo Search Optimization: 

Initialization: Generate an initial population of cuckoos 

(solutions) randomly in the search space. Evaluate the fitness 

of each cuckoo using the objective function. 

Levy Flight for Exploitation: Perform Levy flights to 

explore the search space efficiently. Levy flights are random 

walks that mimic the erratic foraging behavior of birds. 

Cuckoo Levy Flights: Update cuckoo positions using Levy 

flights to explore new potential solutions. The new position 

𝑥𝑖
𝑛𝑒𝑤 is calculated as: 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023 

___________________________________________________________________________________________________________________ 

 
    1058 
IJRITCC | September 2023, Available @ http://www.ijritcc.org 

𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖 + 𝛼 ⨀ 𝐿𝑒𝑣𝑦 (⋋)  (8) 

Where 𝑥𝑖 is the current position, 𝛼 is the step size, and 

𝐿𝑒𝑣𝑦 (⋋) represents a Levy flight with a power-law 

distribution and ⨀ denotes element-wise multiplication. 

Cuckoo Fractional Change: Introduce a fractional change 

in the position of some cuckoos to diversify the search. A 

fraction of cuckoos (𝛽) is randomly selected, and their 

positions are replaced by new ones.  

𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖 + 𝛽⨀𝑟𝑎𝑛𝑑()   (9) 

Where 𝑟𝑎𝑛𝑑() is a random number in the range [0,1]. 

Evaluate and Selection: Evaluate the fitness of the newly 

generated cuckoos. Replace old cuckoos with new ones if 

they have better fitness values. 

Stop Criterion: Check if the termination condition is met 

(e.g., a maximum number of iterations or a satisfactory 

solution is found). 

Step by Step Procedure: 

Step 1: Initialization 

Step 1.1: Initialize Parameters: Set the 

population size N, maximum iteration 

MaxIter, Levy flight exponent ⋋, and step 

size 𝛼. 

Step 1.2: Generate Initial Population: 

Randomly initialize the positions of N 

cuckoos in the search space. Evaluate the 

fitness of each cuckoo using the objective 

function. 

Step 2: While (stopping criterion not met): Repeat until 

reaching the maximum iterations or a convergence criterion. 

Step 3: Levy Flight for Exploitation 

Step 3.1: Perform Levy Flights: Update cuckoo 

positions using Levy flights to explore the search 

space efficiently. 

𝐿𝑒𝑣𝑦(⋋) = 𝑢. (
1

√𝑢
)

1 ⋋⁄

 

Where u is the random number from a standard 

normal distribution, and ⋋ is the Levy flight 

exponent. 

Step 3.2: The new position 𝑥𝑖
𝑛𝑒𝑤 is calculated using 

the Levy Flight equation using (8) 

Step 4: Cuckoo Fractional Change for Exploration 

Step 4.1: Introduce Fractional Change: Introduce a 

fractional change in the position of some cuckoos to 

diversify the search. 

Step 4.2: A fraction of cuckoos (𝛽) is randomly 

selected, and their positions are replaced by new 

ones using the fractional change equation (9). 

Step 5: Evaluate and Selection 

 Step 5.1: Evaluate Fitness: Evaluate the fitness of 

the newly generated cuckoos. 

 Step 5.2: Replace Old Cuckoos: Replace old 

cuckoos with new ones if they have better fitness 

values. 

Step 6: Stop Criterion: Check if the termination condition is 

met (e.g., a maximum number of iterations or a satisfactory 

solution is found). 

 

4.  RSA ENCRYPTION ALGORITHM 

 RSA (Rivest-Shamir-Adleman) is a widely used 

public-key cryptography algorithm that was introduced by 

Ron Rivest, Adi Shamir, and Leonard Adleman in 1977. RSA 

is named after the initials of its inventors [13]. The algorithm 

is known for its security based on the difficulty of factoring 

the product of two large prime numbers, a problem that 

becomes computationally infeasible for sufficiently large 

primes. 

Key Generation: RSA uses a pair of public and private keys. 

Public Key (e, N): The public key consists of an exponent e 

and a modulus N. e is usually a small prime number, often 

65537, and N is the product of two large prime numbers (p 

and q). Private Key (d, N): The private key consists of an 

exponent d and the same modulus N. The private exponent d 

is calculated such that (𝑚𝑜𝑑 𝜙 (𝑁)), where (𝑁) is Euler’s 

totient function. 

Steps in Key Generation 

Step 1: Select two large prime numbers p and q. 

Step 2: Compute N=pq. 

Step 3: Computer 𝜙 (𝑁) = (𝑝 − 1)(𝑞 − 1) 

Step 4: Choose e such that 1 < 𝑒 < 𝜙 (𝑁) and e is coprime 

with 𝜙 (𝑁). 

Step 5: Calculate d as the modular multiplicative inverse 

of e modulo 𝜙 (𝑁), i.e., 𝑑 ≡ 𝑒−1(𝑚𝑜𝑑 𝜙 (𝑁))  

Step 6: Public key (𝑒, 𝑁) 

Step 7: Private key: (𝑑, 𝑁) 

Encryption: To encrypt a plaintext message M: 

 𝐶 ≡ 𝑀𝑒 (𝑚𝑜𝑑 𝑁) 

Where 𝐶 is the cipher text, 𝑒 is the public exponent, N is 

the modulus. 

Decryption: To decrypt the ciphertext C and obtain the 

original plaintext M: 

𝑀 ≡ 𝐶𝑑 (𝑚𝑜𝑑 𝑁) 

Where M is the decrypted plaintext, d is the private key 

and N is the modulus.  

 

5.  ADVANCED ENCRYPTION STANDARD 

(AES) ALGORITHM 

 AES (Advanced Encryption Standard) is a widely 

adopted symmetric encryption algorithm designed to provide 

secure and efficient encryption for electronic data [14]. It was 

established as the successor to the Data Encryption Standard 

(DES) by the National Institute of Standards and Technology 

http://www.ijritcc.org/
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(NIST) in 2001. AES has become a standard encryption 

algorithm used in various applications, including securing 

communications, data storage, and cryptographic protocols. 

5.1 Key Characteristics of AES 

• Symmetric Key Algorithm: AES is a symmetric 

key algorithm, meaning the same key is used for 

both encryption and decryption. 

• Block Cipher: AES operates on fixed-size blocks of 

data, with a block size of 128 bits. 

• Key Sizes: AES supports key sizes of 128, 192, and 

256 bits. The security strength increases with larger 

key sizes. 

• Rounds: The number of rounds in AES depends on 

the key size: 10 rounds for 128-bit keys, 12 rounds 

for 192-bit keys, and 14 rounds for 256-bit keys. 

• Substitution-Permutation Network (SPN) 

Structure: AES employs a Substitution-

Permutation Network structure, which involves 

substitution (subBytes), permutation (shiftRows), 

mixing (mixColumns), and key addition 

(addRoundKey) operations. 

 

5.2 Encryption Process 

 The AES encryption process involves several steps: 

• Key Expansion: The original key is expanded into 

a set of round keys, one for each round of the 

encryption process. 

• Initial Round Key Addition: The first round key is 

added to the initial block of plaintext. 

• Rounds: Each round involves four main operations: 

SubBytes, ShiftRows, MixColumns, and 

AddRoundKey. 

o SubBytes: Non-linear substitution step 

where each byte of the block is replaced 

with another according to a fixed lookup 

table. 

o ShiftRows: Bytes in each row are shifted 

by an offset. 

o MixColumns: Transformation mixing the 

data in each column. 

o AddRoundKey: XOR operation with the 

round key. 

• Final Round: The final round skips the 

MixColumns step. 

• Ciphertext: The final result after the specified 

number of rounds is the ciphertext. 

5.3 Decryption Process 

 AES decryption is the reverse process of encryption, 

involving the inverse of the operations used in encryption. 

The decryption process includes: 

• Key Expansion: The original key is expanded into 

the set of round keys. 

• Initial Round Key Addition: The last round key is 

added to the ciphertext. 

• Rounds: In each round, the following operations are 

applied in reverse order: InvShiftRows, 

InvSubBytes, InvMixColumns, and AddRoundKey. 

• Final Round: The final round skips the 

InvMixColumns step. 

• Plaintext: The result after the specified number of 

rounds is the decrypted plaintext. 

 

6.  PROPOSED ENHANCED ACCESS 

CONTROL WITH HYBRID ENCRYPTION 

APPROACH 

 This hybrid encryption approach involves using 

RSA for asymmetric encryption (for access control policies) 

and AES for symmetric encryption (for access control 

credentials). The keys for both RSA and AES are optimized 

using WOA and CSO, respectively. The following are the 

step-by-step procedure for the Enhanced Access Control with 

Hybrid Encryption approach. 

Step 1: Access Control Policy Encryption (RSA): Encrypt 

access control policies using RSA. 

𝐶 =  𝑃𝑒𝑚𝑜𝑑 𝑁 

Where C is the ciphertext, P is the plaintext (access control 

policies), e is the public exponent, and N is the modulus.  

Step 2: RSA Key generation and Optimization with WOA: 

Generate RSA keys (public and private). Apply WOA to 

optimize the RSA private key (e.g., adjust private exponent 

d). 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 − 𝐴. 𝐷𝑖
𝑡 

Where 𝑋𝑖
𝑡 is the current position of the ith whale at iteration 

i. A is the coefficient. 𝐷𝑖
𝑡  is the distance vector. 

Step 3: Symmetric Key Generation (AES): Generate a 

symmetric key for AES encryption. 

Step 4: Optimization-Based Symmetric Key Optimization 

(CSO): Apply CSO to optimize the symmetric key for AES.  

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 +  𝛼. 𝐿. 𝐿𝑒𝑣𝑦(⋋) 

𝑋𝑖
𝑡 is the current position of the i-th cuckoo at iteration t, 𝛼 is 

the step size, L is the scaling factor, and 𝐿𝑒𝑣𝑦(⋋) is the Levy 

flight. 

Step 5: Access Control Credential Encryption (AES): 

Encrypt access control credentials using AES.  

𝐶𝐴𝐸𝑆 = 𝐴𝐸𝑆𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑃𝑐𝑟𝑒𝑑𝑒𝑛𝑡𝑖𝑎𝑙𝑠 , 𝐾𝐴𝐸𝑆  ) 

Where 𝐶𝐴𝐸𝑆 is the AES ciphertext, 𝑃𝑐𝑟𝑒𝑑𝑒𝑛𝑡𝑖𝑎𝑙𝑠  is the plaintext 

(access control credentials), 𝐾𝐴𝐸𝑆 is the optimized symmetric 

key. 

Step 6: Secure key storage: Store the optimized RSA private 

key and the optimized symmetric key securely on the cloud 

server and client devices. 
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Step 7: Transmission of Encrypted Policies and Credentials: 

Transmit the encrypted access control policies (RSA 

ciphertext) and credentials (AES ciphertext) to the cloud 

server. 

Step 8: Cloud Server Processing: On the cloud server, decrypt 

the RSA private key using the optimized RSA private key 

(asymmetric decryption). Use the decrypted RSA private key 

to decrypt the access control policies (RSA decryption). Use 

the optimized symmetric key to decrypt the access control 

credentials (AES decryption). 

 

7. RESULT AND DISCUSSION 

 The performance of the proposed Hybrid Encryption 

Approach is evaluated with other encryption techniques like 

RSA and AES with various performance metrics like Key 

Generation Time (in seconds), Key Updation time (in 

seconds), Encryption time (in seconds), Decryption time (in 

seconds), total encryption and decryption time (in seconds) 

and Throughput (in mbps) for various size of the dataset (in 

MB). 

 Table 1 depicts the Key Generation time (in seconds) 

by the proposed Hybrid Encryption approach, RSA and AES 

for various size of the dataset. From the table 1, The proposed 

hybrid encryption approach consistently demonstrates 

competitive or improved key generation times compared to 

both RSA and AES across all file sizes. As the file size 

increases, the key generation time for the proposed hybrid 

approach shows a moderate upward trend, indicating 

scalability.  

 RSA exhibits longer key generation times compared 

to the proposed hybrid approach, particularly as the file size 

increases. The key generation time for RSA shows a 

noticeable increase with larger datasets. AES key generation 

times are generally similar to RSA but slightly faster. Like 

RSA, the key generation time for AES also increases with 

larger file sizes, albeit at a slightly slower rate compared to 

RSA. 

 The proposed hybrid encryption approach appears to 

strike a balance between the key generation times of RSA and 

AES. As file sizes grow, the proposed hybrid approach 

maintains its efficiency relative to the individual RSA and 

AES methods. Depending on specific application 

requirements, the proposed hybrid approach may offer a 

favorable trade-off between key generation time and security. 

 

Table 1: Key Generation Time (in seconds) by Proposed 

Hybrid Encryption approach, RSA and AES for various size 

of the dataset 

File Size 

(in MB) 

Key Generation Time (in Seconds) 

Proposed Hybrid 

Approach 

RSA AES 

100 378 532 641 

200 415 689 692 

300 564 745 787 

400 632 814 891 

500 786 1053 1052 

600 814 1121 1128 

700 863 1198 1196 

800 901 1263 1262 

900 924 1314 1322 

1000 998 1382 1381 

 

Table 2 depicts the Key Updation time (in seconds) 

by the proposed Hybrid Encryption approach, RSA and AES 

for various size of the dataset. From the table 2, The proposed 

hybrid encryption approach consistently demonstrates 

efficient key updation times compared to both RSA and AES 

across all file sizes. As the file size increases, the key updation 

time for the proposed hybrid approach shows a gradual but 

manageable increase, indicating scalability.  

RSA exhibits longer key updation times compared 

to the proposed hybrid approach. The key updation time for 

RSA shows a noticeable increase with larger datasets, and the 

gap between RSA and the proposed hybrid approach becomes 

more pronounced. 

AES key updation times are generally similar to 

RSA but slightly faster. Similar to RSA, the key updation time 

for AES also increases with larger file sizes, but the proposed 

hybrid approach maintains a competitive edge. 

The proposed hybrid encryption approach 

consistently outperforms both RSA and AES in terms of key 

updation time across various file sizes. The efficiency of the 

proposed hybrid approach makes it a strong candidate for 

applications where frequent key updation is required, striking 

a balance between RSA and AES. 

 

Table 2: Key Updation Time (in seconds) by Proposed 

Hybrid Encryption approach, RSA and AES for various size 

of the dataset 

File Size 

(in MB) 

Key Updation Time (in Seconds) 

Proposed Hybrid 

Approach 

RSA AES 

100 239 392 421 

200 248 463 498 

300 261 518 532 

400 275 592 603 

500 283 684 685 

600 297 735 745 

700 310 821 843 

800 321 906 918 

900 342 998 1015 

1000 356 1024 1035 
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 Table 3 depicts the Encryption time (in seconds) by 

the proposed Hybrid Encryption approach, RSA and AES for 

various size of the dataset. From the table 3, 

Table 3: Encryption Time (in seconds) by Proposed Hybrid 

Encryption approach, RSA and AES for various size of the 

dataset 

File Size 

(in MB) 

Encryption Time (in Seconds) 

Proposed Hybrid 

Approach 

RSA AES 

100 28 68 69 

200 34 83 88 

300 49 96 98 

400 63 118 128 

500 82 138 145 

600 98 167 175 

700 109 181 192 

800 122 203 214 

900 141 234 245 

1000 156 263 275 

 

From the table 3, The proposed hybrid encryption 

approach consistently demonstrates significantly faster 

encryption times compared to both RSA and AES across all 

file sizes. As the file size increases, the encryption time for 

the proposed hybrid approach shows a moderate increase, but 

it remains notably lower than both RSA and AES. 

 RSA exhibits longer encryption times compared to 

both the proposed hybrid approach and AES. The encryption 

time for RSA shows a substantial increase with larger 

datasets, making it less efficient for larger file sizes. AES 

encryption times are generally lower than RSA but higher 

than the proposed hybrid approach. Similar to RSA, the 

encryption time for AES also increases with larger file sizes, 

although the proposed hybrid approach maintains a 

significant speed advantage. 

 The proposed hybrid encryption approach 

outperforms both RSA and AES in terms of encryption time 

across various file sizes, making it a highly efficient choice 

for encryption tasks. The efficiency of the proposed hybrid 

approach makes it well-suited for applications where fast 

encryption is crucial. 

Table 4 depicts the Decryption time (in seconds) by 

the proposed Hybrid Encryption approach, RSA and AES for 

various size of the dataset. From the table 3, 

 

Table 4: Decryption Time (in seconds) by Proposed Hybrid 

Encryption approach, RSA and AES for various size of the 

dataset 

File Size 

(in MB) 

Decryption Time (in Seconds) 

Proposed Hybrid 

Approach 

RSA AES 

100 21 44 53 

200 29 53 60 

300 42 72 75 

400 54 83 90 

500 69 95 102 

600 82 123 128 

700 96 145 150 

800 112 165 173 

900 128 187 192 

1000 132 198 204 

 

From the table 4, The proposed hybrid encryption 

approach consistently demonstrates significantly faster 

decryption times compared to both RSA and AES across all 

file sizes. As the file size increases, the decryption time for 

the proposed hybrid approach shows a moderate increase, but 

it remains notably lower than both RSA and AES. 

RSA exhibits longer decryption times compared to 

both the proposed hybrid approach and AES. The decryption 

time for RSA shows a substantial increase with larger 

datasets, making it less efficient for larger file sizes. AES 

decryption times are generally lower than RSA but higher 

than the proposed hybrid approach. Similar to RSA, the 

decryption time for AES also increases with larger file sizes, 

although the proposed hybrid approach maintains a 

significant speed advantage. 

The proposed hybrid encryption approach 

outperforms both RSA and AES in terms of decryption time 

across various file sizes, making it a highly efficient choice 

for decryption tasks. The efficiency of the proposed hybrid 

approach makes it well-suited for applications where fast 

decryption is crucial. 

Table 5 depicts the Total time taken for encryption 

and decryption (in seconds) by the proposed Hybrid 

Encryption approach, RSA and AES for various size of the 

dataset.  

 

Table 5: Total Encryption/Decryption Time (in seconds) by 

Proposed Hybrid Encryption approach, RSA and AES for 

various size of the dataset 

File Size 

(in MB) 

Total Encryption/Decryption Time (in seconds) 

Proposed Hybrid 

Approach 

RSA AES 

100 49 112 122 

200 63 136 148 

300 91 168 173 

400 117 201 218 

500 157 233 247 

600 180 290 303 

700 205 326 342 

800 234 368 387 

900 264 421 437 

1000 294 461 479 
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From the table 5, The proposed hybrid encryption 

approach consistently demonstrates significantly faster total 

encryption/decryption times compared to both RSA and AES 

across all file sizes. As the file size increases, the total time 

for the proposed hybrid approach shows a moderate increase, 

but it remains notably lower than both RSA and AES. 

RSA exhibits longer total encryption/decryption 

times compared to both the proposed hybrid approach and 

AES. The total time for RSA shows a substantial increase 

with larger datasets, making it less efficient for larger file 

sizes. AES total encryption/decryption times are generally 

lower than RSA but higher than the proposed hybrid 

approach. Similar to RSA, the total time for AES also 

increases with larger file sizes, although the proposed hybrid 

approach maintains a significant speed advantage. 

The proposed hybrid encryption approach 

outperforms both RSA and AES in terms of total 

encryption/decryption time across various file sizes, making 

it a highly efficient choice for overall cryptographic 

operations. The efficiency of the proposed hybrid approach 

makes it well-suited for applications where both fast 

encryption and decryption are crucial. 

Table 6 depicts the Throughput (in mbps) by 

Proposed Hybrid Encryption approach, RSA and AES for 

various size of the dataset.  

 

Table 6: Throughput (in mbps) by Proposed Hybrid 

Encryption approach, RSA and AES for various size of the 

dataset 

File Size 

(in MB) 

Throughput (in mbps) 

Proposed Hybrid 

Approach 

RSA AES 

100 1436 1128 1113 

200 1487 1186 1172 

300 1521 1245 1230 

400 1545 1288 1273 

500 1598 1326 1314 

600 1628 1378 1368 

700 1675 1432 1426 

800 1708 1483 1467 

900 1734 1535 1518 

1000 1789 1590 1575 

 

From the table 6, The proposed hybrid encryption 

approach consistently demonstrates higher throughput (in 

mbps) compared to both RSA and AES across all file sizes. 

As the file size increases, the throughput for the proposed 

hybrid approach remains consistently higher, showcasing its 

efficiency in data processing. 

RSA exhibits lower throughput compared to both the 

proposed hybrid approach and AES. The throughput for RSA 

shows a moderate increase with larger datasets, but it remains 

lower than the proposed hybrid approach. 

AES throughput is generally lower than the 

proposed hybrid approach but higher than RSA. Similar to 

RSA, the throughput for AES also increases with larger file 

sizes, but the proposed hybrid approach maintains a 

throughput advantage. The proposed hybrid encryption 

approach consistently outperforms both RSA and AES in 

terms of throughput across various file sizes, indicating its 

superior data processing efficiency. The high throughput of 

the proposed hybrid approach makes it well-suited for 

applications where rapid data transfer is critical. 

 

8. CONCLUSION 

 In this research work, the hybrid encryption 

approach integrating Whale Optimization Algorithm (WOA) 

for RSA and Cuckoo Search Optimization (CSO) for AES 

presents a robust and innovative solution for securing access 

control in cloud computing environments. This method 

leverages the strengths of both optimization algorithms and 

combines the security features of asymmetric (RSA) and 

symmetric (AES) encryption. The step-by-step procedure 

outlined for RSA encryption, key optimization using WOA, 

AES encryption, and key optimization using CSO provides a 

comprehensive framework for implementing a secure access 

control system. The use of RSA ensures secure and efficient 

key exchange for access control policies, while AES 

efficiently encrypts access control credentials. The 

integration of optimization algorithms such as WOA and CSO 

enhances the security of the cryptographic keys by optimizing 

their parameters. WOA, inspired by the hunting behavior of 

whales, and CSO, mimicking the brood parasitic behavior of 

cuckoos, contribute to the robustness of the encryption keys. 

From the results obtained, it is clear that the proposed Hybrid 

Encryption based Access Control approach consumes less 

key generation time, updation time, encryption time, 

decryption and total time taken for encryption and decryption 

than the existing encryption techniques like RSA, and AES.  
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