
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1010

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Reducing CPU Utilization & Improving Failover

Time in Dual Controller SDN (Software Defined

Network) Environment

S. Annie Christila1, R. Sivakumar2
1Research Scholar,

Department of Computer Science, CHRIST (Deemed to be University)

Bengaluru, Karnataka 560029, India.

e-mail: annie.s@res.christuniversity.in
2Department of Computer Science,

CHRIST (Deemed to be University), Bengaluru, Karnataka 560029, India.

e-mail: sivakumar.r@christuniversity.in

Abstract— A salient component of the network is failover. Largely, customers are accessing dual path controller software defined network

(SDN) environment. Subsequently, when one controller fizzles out the network communication can persist as a result of the other controller.

There will be no interruption in the network communication due to the failover setup which will be effective in case of failure of a controller.

In the absence of failover, the network communication will be obstructed. This could be by cause of the system resources, system itself or

routing policies or Distributed Denial of Services. Generally, controller will support many switches. When SDN controller collapses controller

will not be in sync with switches. After few attempts switches will failover to the secondary SDN controller. During this shutdown time the

network communication will be obstructed. Failover algorithm is the key to solve this issue and will facilitate the synchronization of the

information with SDN controllers and enhance failover time. Apparently, communication between both SDN controllers and switches is

enhanced as well as reinforces the time of synchronization due to multiple SDN controllers. CPU utilization is another problem in SDN

environment as the new inflow packets need to be forwarded to control plane to find the action that need to be taken. Processing at both ends

and having one to one mapping between new incoming connection requests and the packet from data plane to control plane increases the CPU

utilization and there by more power consumption.

Keywords – SDN (Software Defined Network), NIC (Network Interface Card), VM (Virtual Machine), VEA (Virtual Ethernet adapter),

LPAR (Logical PARtition), CC (Cloud Computing)

I INTRODUCTION

When it comes to Software Defined Networks (SDN) cloud

computing (CC) and Software Defined Networks (SDN) have

made significant impact at a pivotal moment of SDN both in

the industry and academia wider range of acceptance in

network community. Moreover, this compelling exploration

has attracted many researchers to map out SDN-related

network security solution [1]. The scope of SDN-related

solutions has indeed allured more interest as their adoption in

area networks grows far and wide. The technologies allow

developers to directly manage, program and control network

resources over the SDN controller [2]. In order to attain a

more reliable, programmable, stable and flexible network

services, the SDN would isolate the control plane from date

plane. The new and recent studies show that SDN in

conjunction with edge computing can be implemented in the

Internet of Things (IoT) like ubiquitous and smart city

healthcare [3].

Edge controllers of SDN play a vital function in gathering of

the network data from forwarding gadgets to retain an

extensive view of local network by way of applying logically

centralized management of local data plane. As per the flow

table, it is through switches responsible as forwarding gadgets

that data in data plane are forwarded. OpenFlow protocol was

broadly employed in the control as well as data planes.

On the one hand you have CC that upholds the substantial

ideas of attention differentiated with traditional computing

methods and on the other hand SDN paves way to security

solution [5]. It is for this complementary effect both CC and

SDN have been embellished basically in the industry and

scholarly community due to their indispensable features [6].

Even though the two innovations were making several

novelties that transform both industry and research however

security was the crux of these two technologies. Due to their

primary function of resolving security problems CC and SDN

have drawn so many authors who made an extensive research

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1011

IJRITCC | September 2023, Available @ http://www.ijritcc.org

[7]. Consequently, the research works show that investigation

works uncovered various security threats that are directed

against CC and SDN over several network elements.

Hence, security was viewed as the main hindrance to the

development of CC and SDN. SDN is disposed to

Distributed-Denial-of-Service (DDoS) attacks because of its

centralized control structure [8]. Due to these malicious

packets with spoofing addresses that are sent to switches can

simply cause flow table overflow and buffer fullness as

switches in the data plane contain limited sources. Moreover,

controller saturation occurs due to packet flooding on

controller resulted by security issue whereby witches were

forces transfer several packets in messages to controller for

flow requests [9]. Thus, DDoS assaults result in network

collapse, and flow recognition was indispensable for the

security of SDN networks. Many approaches were

implemented as classifiers for flow detection in SDN [10].

The efficiency of various techniques can affect the efficiency

of DDoS defence in SDN.

In order to ensure a smooth and efficient controlling the dual

controllers are configured with Cloud SDN (Software

Defined Network) so that in case of a failure of one controller

the other can take over [16]. No matter where the problem

arises from be it system resources or any other routing/policy

algorithms users can succeed by configuring dual SDN

Controller in their environment. Through the intermediate

devices to connect to network one switch will control both

SDN controllers. This will allow the switches to reach out to

the SDN controllers to facilitate the necessary action as per

the flow of data received.

For instance, traffic is detected outside host A, initiated by

LPAR this will traffic will be forwarded to the primary SDN

controller by the switch connected to primary SDN. Primary

SDN controller then will determine the necessary action to be

taken according to the type of traffic detected. As a follow

up, switch will update its forwarding table and take action.

As this is dual SDN controller environment the same

information will be updated to the secondary SDN Controller

periodically. This will ensure both SDN controllers maintains

the information about hosts/policies. Control elements are

responsible for more than 1000 data elements. The following

diagram is an example how SDN is configured in the data

centre.

II. PROBLEM STATEMENT

Dual controllers’ system in Cloud SDNs (Software Defined

Network) is monumental as they are configured with dual

controllers. As a safety measure to protect and ensure

guiding/controlling of communication two controllers

reinforce each other to prevent blackout. Be it system

resource or any other routing/policy algorithms- related

problems users can resolve them by configuring dual SDN

Controller in their environment [16]. Through separate

switches, both SDN controllers will be connected to other

intermediate devices to connect to network. After the

configuration of the dual SDN Controller user then needs

prioritize any one of the controllers which then becomes

primary SDN controller while the other one becomes

automatically secondary SDN Controller.

All the LPARs will establish communication to outside by

reaching out the primary SDN Controller. Whenever there is

a detection of traffic both SDN Controllers will be

synchronized in such a way that the dual SDN Controllers,

primary as well as secondary will determine the necessary

action to be take and send the response. This dual SDN

controllers’ system will help maintain the information about

hosts/policies.

At times, one might encounter network connectivity issues

due to SDN controllers vulnerable to DDoS attacks wither

because of network issues, system resource issues or

operating system issues in this case there will over flooding

of incoming packets especially new flow which then causes

network connectivity issues.

Furthermore, how do we receive large packets in a better way

to gain better network performance? Here is another salient

feature of multiple SDN controller due to which

communication between both SDN controllers is efficient and

the time it takes to sync between both controllers is efficient.

This is one of the main studies addressed in this research

paper. A maximum transmission unit (MTU) MTU is an

inherent property of the physical media associated with the

network protocol. For example, a maximum transmission unit

(MTU) for Ethernet is 1500 bytes. In many situations network

applications sends small messages across the network as these

packets are received by the receiver it processes each packet

and sends to network layer. The role of network layer then is

to verify this packet and sends to transport layer which in

return checks the validity of this packet (including checksum

verification) and wakes up the application that is waiting for

the data. In recent days network adapters are used in order to

support large receive functionality in which it receives more

than one packet for the TCP connection and sends all those

packets to upper layer at once. However still the network

layer and transport layer need to process those packets before

giving it the application. This paper will addressee more

efficient way of receiving large packets in effective way.

CPU utilization is another problem in SDN environment as

the new inflow packets need to be forwarded to control plane

to find the action that need to be taken. For every new inflow

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1012

IJRITCC | September 2023, Available @ http://www.ijritcc.org

of TCP/ICMP/UDP packets the packet need to forwarded

from data plane to control plane and once the response is

received the appropriate action need to be taken. This

consumes more network bandwidth at the same time more

processing time in control plane. This method increases the

CPU utilization and there by more power consumption.

III. EXISTING METHOD

Dual controllers’ system in Cloud SDNs (Software Defined

Network) is monumental as they are configured with dual

controllers. As a safety measure to protect and ensure

guiding/controlling of communication two controllers

reinforce each other to prevent blackout. The following

challenges are presented:

1. For every inflow of packets there is an equal packet

generated and then switch send packet to controller.

For example, if 500 new inflow packets comes in, it

generates 500 packets.

2. Consumption of the network bandwidth and

resources for process all the packets.

3. Encryption and decryption of the data of switch and

controller are a costly operation.

4. Vulnerability to DDoS attacks will lead to the

following problems:

▪ Increased resource usage (memory and

CPU)

▪ Causing packet buffer overflow and packet

drops

▪ OFA (Open Flow Agent) dropping the new

packets.

▪ In some cases, increase in connection

establishment time (TCP retransmission

timers are in seconds 1.5, 3, 6…)

Let us now take a look at the existing method. When TCP

connection gets established LPAR will be sending TCP SYN

packet. Once received, the packets will be forwarded to

Primary SDN by the switch. The necessary action will be

determined by SDN controller for witch to take for the

purpose packet inflow. Once the switch gets a response

weather to forward or to reject the packet switch then will

update the forwarding table and send the pocket or reject it if

the command to do so. At times, one might encounter

network connectivity issues due to SDN controllers

vulnerable to DDoS attacks wither because of network issues,

system resource issues or operating system issues in this case

there will over flooding of incoming packets especially new

flow which then causes network connectivity issues. After

few attempts Switch then will finally give up and on

contacting primary SDN it will start accepting the response

from secondary SDN.

Similarly, the communication between both SDN controllers

it sends single packet with length as MTU. In many situations

network applications sends small messages across the

network. When these packets are received by the receiver it

processes each packet and sends to network layer. Network

layer verifies this packet and sends to transport layer.

Transport layer checks the validity of this packet (including

checksum verification) and wakes up the application that is

waiting for the data. When SDN controller has big

data that need to be sent to other controller the time it will

take in TCPIP stack in both sender and receiver is

considerably high. The following diagram explains the

failover SDN configuration.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1013

IJRITCC | September 2023, Available @ http://www.ijritcc.org

IV PROPOSED METHOD

Failover is a procedure by w hich a system automatically

transfers control to a duplicate system when it detects a fault

or failure. In this paper, an algorithm to achieve SDN

controller fast failover is proposed. All the routing/flow

tables, policy entries will be stored/calculated on primary

controller and synched with secondary SDN controller

equally. It is to avoid blackout in case of failure of a

controller. To avoid this, EtherChannel will be created in the

switches and each switch will be connected to each controller

primary as well as secondary. Both the ports will receive new

data flow from switches and consequently so do both SDN

controllers. Secondary SDN controller will however populate

the routing table/policy updates based on the new packet.

Switch will turn to secondary SDN controller after three

attempts of non-response. Through OpenFlow protocol

switch will send communication to secondary controller

through OpenFlow and point out the action to be taken.

Switch will make few attempts to reach secondary SDN

controller and request it to move as primary SDN controller.

As we have already synced all the information including

routing tables, forwarding tables, policy information and

security configuration, the secondary SDN controller will

easily take over.

Algorithm

1) There will be an exchange of heartbeats between

both SDN Controllers (SDN) during bring up phase

will exchange heartbeats.

2) Through separate switches, both SDN controllers

will be connected to other intermediate devices to

connect to network. After the configuration of the

dual SDN Controller user then needs prioritize any

one of the controllers which then becomes primary

SDN controller while the other one becomes

automatically secondary SDN Controller. Decisions

and sending it to data plane will be done by Primary

Controller.

3) EtherChannel will be created in the switches and

each switch will be connected to each controller

primary as well as secondary. Both the ports will

receive new data flow from switches and

consequently so do both SDN controllers.

Secondary SDN controller will however populate

the routing table/policy updates based on the new

packet.

4) There will be a periodical exchange of all the

information routing table / policies and security

parameters between both the SDN controllers as

well as the forwarding table & configuration settings

information (Source MAC, Source IP, Destination

MAC, Destination IP).

5) Maintain the exchange of heartbeat information

between both SDN Controllers

Figure 1. Failover Configuration - Dual SDN Controller setup

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1014

IJRITCC | September 2023, Available @ http://www.ijritcc.org

6) Secondary SDN Controller will take effect and learn

about primary SDN controller’s start building the

routing table/security policy updates.

7) When there is no response from primary controller,

switch will attempt 3 more times before turning to

secondary SDN controller.

8) Switch will make few attempts to reach secondary

SDN controller and request it to move as primary

SDN controller. As we have already synced all the

information including routing tables, forwarding

tables, policy information and security

configuration, the secondary SDN controller will

easily take over.

9) As we have already synced all the information

including routing tables, forwarding tables, policy

information and security configuration, the

secondary SDN controller will easily take over.

Moreover, through this paper a faster communication

between switch and SDN controllers as well improvement in

communication speed which results less consumption of

electric power are equally achieved. This method also proves

less CPU consumption, better network by less energy

consumption. The first one coalesces the packet from switch

and sends as single packet the controller. This helps easy

processing and also saves lot of CPU cycles.

A. Adapter input interrupt path

1. In Open Flow Switch, on receipt of each packet flow

table is checked to take specific action.

2. If there is matching entry present in the flow table

the specific action (forward/deny) is taken.

3. If there is no matching entry, it is new flow. Packet

header information will be added to the specific

common memory. For example If packet is received

on the port 4, packet header information will be

written in the block allocated for port 4.

4. Set the bit in meta data field. (If memory allocated

for port 4 is updated, then 4th bit in the meta data

field will be set to 1)

5. If packet processing timer is not running start the

packet processing timer (10ms).

B. Packet Processing Timer Routine

7. Check the meta data (first 4 bytes of the packet). If

it is 0 no new inflow detected in this interval. Go to

step 10. If meta data is not 0 then some new flow

arrived in this interval.

8. Form the packet using the specific common memory

and send it to controller. (Adapter interrupt path has

filled packet header information for every new flow

in this memory)

9. Initialize the specific common memory to 0.

10. Start the packet processing timer (10ms) again.

Repeat steps 7,8 & 9 upon the timer expiry.

C. Processing on Controller

1. On controller side, based on the meta data it will

process the blocks. If bits 1 and 3 are set in meta

data only those fields

2. corresponding to port 0 and port 2 are processed.

Reply will be sent back to data plane

With this proposed algorithm,

▪ 32 Requests packet can be sent together. This will reduce

the traffic on the control channel.

▪ Controller can process these requests in parallel and can

send cumulative response.

▪ The same algorithm can even be modified to

accommodate 80 requests together there by reducing

further traffic on control channel.

 Most importantly, the requests can be processed in

parallel and on receiving the cumulative response we can

free up upto 80 buffers used for storing the packets.

The second approach utilizes the large receive

functionality and there by processing the incoming

requests much quicker. A network device can have

configurable socket option to enable large receive from

the network adapters.

Meta Data Packet Header
info from port

0

Packet Header
info from port 1

.. Packet Header info
from port 6

Packet Header

info from port 7
.. Packet Header info

from port 14
Packet Header

info from port 15
.. Packet Header info

from port 22
Packet Header

info from port 23
.. Packet Header info

from port 31
Figure 2. Coalesced Packet format

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1015

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Applications create network socket to have communication

across application on different node. Socket option parameters

are determined for the network socket associated with the

application. In case of large receive adapters receive many

packets, aggregate them and send it to upper layers. It is found

that, based on said aggregating the plurality of packets, whether

at least one aggregation limit associated with the socket

aggregation parameters is reached. An aggregate packet is

provided to a network/transport layers to perform basic

verification and send it to application.

In many situations network applications sends small messages

across the network as these packets are received by the receiver

it processes each packet and sends to network layer. The role

of network layer then is to verify this packet and sends to

transport layer which in return checks the validity of this packet

(including checksum verification) and wakes up the application

that is waiting for the data. In recent days network adapters are

used in order to support large receive functionality in which it

receives more than one packet for the TCP connection and sends

all those packets to upper layer at once. However still the

network layer and transport layer need to process those packets

before giving it the application. This paper will addressee more

efficient way of receiving large packets in effective way.

Application Flow

Data flow from network adapter

For example, large receive provides significant performance

benefits in systems with Gigabit Ethernet NICs. It has ability to

receive huge data and coalescing before sending it to network

adapter. When this is enabled and if network layer and transport

layer process each and every packet before passing to

application it consumes more CPU utilization at network layer

and transport layer. Even application gets one packet by one. As

a result we are not able gain the performance we got from large

receive functionality of NIC.

The above flow chart explain the data flow from network

interface card to application. As large receive functionality of

the adapter coalesce the packets, if we enable the feature we

propose through this paper, checksum of all the packets are

verified and packets to every tcp connection is merged. Once

the time is over the packet is sent to network adapter. Network

adapter checks the IP details and pass it to transport layer.

Transport layer just verifies the port and wakes the application

that waits for the data. Using this approach CPU time in network

layer and transport layer is saved. Thus getting better network

throughput and energy saving.

Begin

Determine Application wants to establish network

connection with remote node

Create network socket to initiate network connection

for the application

Define the network socket based on the socket

aggregated parameters

Wait for the data.

Large receive is

enabled on the

adapter.

Coalesce the incoming packets. Validate the

checksum, merge the packets

Update the packet, checksum verified status,

modify the total packet length and send it to

Network player

Verify the packet at network layer for the IP

address, send it to Transport layer. Verify

the port and wake up the application waiting

for data

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1016

IJRITCC | September 2023, Available @ http://www.ijritcc.org

V RESULTS

During this section, the experimental outcome of the improved

failover time & Reducing CPU utilization in Dual SDN

environment approach is tested by simulating high volume of

new connection requests and ping requests. It is SDN detailed

database produced by employing mininet emulator. The

existing starts with creating 10 topologies in mininet but

switches are related to single Ryu controller. The network

simulation runs intended for benign ICMP and TCP traffic and

malicious traffic that has been collected in TCP Syn attack and

ICMP attack. The database holds 10000 instances with 2 classes

as depicted in Table 1. We have also generated different data

set with samples 50000, 100000 and 200000 and tested.

TABLE I Details on Dataset

We have tested using Mininet and generated new connection

flow. The following figure shows the new inflow packets from

SDN data plane to controller plane for the incoming new TCP

connections. It is evident that for every new connection there

is one new inflow packet gets generated and sent to controller.

Once response received from controller the appropriate action

is taken in the data plane.

Figure 3. Inflow packets from SDN data plane

The following figure shows the inflow packet that gets

generated to control plane reduced by 90%

Now we look at how this helps us in improving the

performance. We will be measuring the delay in establishing

connections. For the exercise we have generated thousands of

new connections and measured how long it takes on average to

establish the connection.

CPU utilization is measured using the existing method and new

algorithm. Test is performed with various different data sets.

First 10000 new connection is simulated and the CPU

utilization is measured. In the next test 20000 new connection

is simulated and the CPU utilization is measured. The same test

is performed with 50000, 100000 and 200000 new connections.

When less number of connections exists CPU utilization is very

low in the existing algorithm. However when number of

connection increases the CPU utilization is also increasing. In

case of new algorithm initially CPU utilization is high that is

due to additional overhead in waiting/processing multiple

packets together. However when more number of connection

exists the new algorithm need not process so many header

information. The following diagram explains how CPU

utilization is reducing when more number of new networking

connection established.

Figure 5. CPU Utilization

Class No. of Samples

TCP Connection 9000

ICMP Requests 1000

Number of Samples 10000

Figure 4. Inflow packets from SDN data plane using new

algorithm

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1017

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Time taken to establish the connection is measured using the

existing method and new algorithm. Test is performed with

various different data sets. First 10000 new connection is

simulated and the time taken to establish the connection is

measured. In the next test 20000 new connection is simulated

and the time taken to establish the connection is measured. The

same test is performed with 50000, 100000 and 200000 new

connections. When less number of connections exists time

taken to establish the connection is very low in the existing

algorithm. However when number of connection increases the

time taken to establish the connection is also increasing. In case

of new algorithm initially time taken to establish the connection

is high that is due to wait time at data plane before sending the

connection requests to control plane and also on additional

overhead in waiting/processing multiple packets together.

However when more number of connection exists the new

algorithm need not process so many header information. The

following diagram explains how time taken to establish the

connection is reducing when more number of new networking

connection established.

VI CONCLUSION

The main purpose of this proposed method is to enhance the

failover time between primary SDN controller and the

secondary SDN controller. an algorithm to achieve SDN

controller fast failover is proposed. All the routing/flow tables,

policy entries will be stored/calculated on primary controller

and synched with secondary SDN controller equally. It is to

avoid blackout in case of failure of a controller. To avoid this,

EtherChannel will be created in the switches and each switch

will be connected to each controller primary as well as

secondary. Both the ports will receive new data flow from

switches and consequently so do both SDN controllers.

Secondary SDN controller will however populate the routing

table/policy updates based on the new packet. Switch will turn

to secondary SDN controller after three attempts of non-

response. Through OpenFlow protocol switch will send

communication to secondary controller through OpenFlow and

point out the action to be taken. Switch will make few attempts

to reach secondary SDN controller and request it to move as

primary SDN controller. As we have already synced all the

information including routing tables, forwarding tables, policy

information and security configuration, the secondary SDN

controller will easily take over.

In the other two improvement ideas, implementing configurable

socket aggregation option to enable large receive in a network

device are described herein. It is determined, at the network

device, to create a network socket for an application of the

network device to initiate a network connection for the

application. Socket aggregation parameters are determined for

the network socket associated with the application. The network

socket is defined based, at least in part, on the socket

aggregation parameters. A plurality of packets received from

the network adapter for the TCP connections are aggregated. It

is determined, based on said aggregating the plurality of packets

received from the network adapters, whether at least one

aggregation limit associated with the socket aggregation

parameters is reached. An aggregate packet is provided to a

network layer where it verifies the IP address and checksum

which intern provides to transport layer. After port and

checksum verification the packet is sent to application. As

almost 40 packets are getting coalesced into single packet, lot

of CPU time is saved both in network and transport layer. This

results in better network throughput and less CPU consumption.

Moreover, through this paper a faster communication between

switch and SDN controllers as well improvement in

communication speed which results less consumption of

electric power are equally achieved. This method also proves

less CPU consumption, better network by less energy

consumption. The first one coalesces the packet from switch

and sends as single packet the controller. This helps easy

processing and also saves lot of CPU cycles.

REFERENCES

[1]. S. Kautish, R. A and A. Vidyarthi, "SDMTA: Attack

Detection and Mitigation Mechanism for DDoS

Vulnerabilities in Hybrid Cloud Environment," in IEEE

Transactions on Industrial Informatics, vol. 18, no. 9, pp.

6455-6463, Sept. 2022, doi: 10.1109/TII.2022.3146290.

[2]. K. Srinivasan, A. Mubarakali, A. S. Alqahtani, and A.

Dinesh Kumar, “A survey on the impact of ddos attacks in

cloud computing: Prevention, Detection and mitigation

techniques,” Intelligent Communication Technologies and

Virtual Mobile Networks, pp. 252–270, 2019.

[3]. M. Revathi, V. V. Ramalingam, and B. Amutha, “A machine

learning based detection and mitigation of the DDOS attack

by using SDN Controller Framework,” Wireless Personal

Communications, 2021, pp.1-25.

Figure 6. Delay in establishing connection.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1018

IJRITCC | September 2023, Available @ http://www.ijritcc.org

[4]. K. Bhushan and B. B. Gupta, “Distributed denial of service

(ddos) attack mitigation in Software Defined Network (sdn)-

based cloud computing environment,” Journal of Ambient

Intelligence and Humanized Computing, vol. 10, no. 5, pp.

1985–1997, 2018.

[5]. A. Maheshwari, B. Mehraj, M. S. Khan, and M. S. Idrisi, “An

optimized weighted voting based ensemble model for DDoS

attack detection and mitigation in SDN

environment,” Microprocessors and Microsystems, Vol. 89,

p.104412, 2022.

[6]. I. A. Valdovinos, J. A. Pérez-Díaz, K.-K. R. Choo, and J. F.

Botero, “Emerging ddos attack detection and mitigation

strategies in software-defined networks: Taxonomy,

challenges and Future Directions,” Journal of Network and

Computer Applications, vol. 187, p. 103093, 2021.

[7]. K. Bhushan and B. B. Gupta, "Detecting DDoS Attack using

Software Defined Network (SDN) in Cloud Computing

Environment," 2018 5th International Conference on Signal

Processing and Integrated Networks (SPIN), 2018, pp. 872-

877, doi: 10.1109/SPIN.2018.8474062.

[8]. D. Yin, L. Zhang and K. Yang, "A DDoS Attack Detection

and Mitigation With Software-Defined Internet of Things

Framework," in IEEE Access, vol. 6, pp. 24694-24705,

2018, doi: 10.1109/ACCESS.2018.2831284.

[9]. O. E. Tayfour, and M. N. Marsono, “Collaborative detection

and mitigation of distributed denial-of-service attacks on

software-defined network,” Mobile Networks and

Applications, vol. 25, no. 4, pp.1338-1347, 2020.

[10]. S. Batool, F. Zeeshan Khan, S. Qaiser Ali Shah, M. Ahmed,

R. Alroobaea, A. M. Baqasah, I. Ali, and M. Ahsan Raza,

“Lightweight statistical approach towards TCP syn flood

ddos attack detection and mitigation in SDN environment,”

Security and Communication Networks, vol. 2022, pp. 1–14,

2022.

[11]. Richard Stevens; “TCP/IP Illustrated Volume 1” 2nd

Edition, Prentice Hall,1999

[12]. William Stallings, Cryptography and network security:

Principles and practice, Prentice Hall, Upper Saddle River,

New Jersey, 2003

[13]. Network adapters and the features supported – By

Cavium/QLogic

[14]. Network Performance and Security by Chris Chapman

[15]. RFC 903 RARP Protocol - https://tools.ietf.org/html/rfc903

[16]. S. Annie Christila, Improving Failover time in Dual VIOS

Network Virtualized Environment

[17]. Hai Lin, Lucio Correia, Mel Cordero, Rodrigo Xavier, Scott

Vetter, and Vamshikrishna Thatikonda - IBM PowerVM

Virtualization

[18]. Gary R. Wright (Author), W. Richard Stevens - TCP/IP

Illustrated, Vol. 2: The Implementation

[19]. Kumar Reddy, “Network Virtualization”.P

[20]. Network Adapter Specification LSO feature – Intel

http://www.ijritcc.org/

