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Abstract:This description outlines a Geographic Information System (GIS)-based rainfall-runoff model that simulates the flow of water 

in a river basin. The model operates on a daily time step and consists of four non-linear storage components: interception, soil moisture, 

channel, and groundwater. It employs (SCS) Unit Hydrograph model to determine unit hydrograph ordinates. The model replicates the 

movement and storage of water in various parts of the basin, including vegetation, the soil surface, the soil profile, and groundwater 

layers. To address uncertainty, a Monte Carlo simulation feature is integrated into the model. This feature generates required number of 

sample sets with random parameter values. The model is run for all these realizations during a calibration period, and performance 

metrics like NSE are calculated for each calibration yearTo assess prediction uncertainty, model parameter weights are computed by 

normalizing the corresponding likelihood values. These weights sum up to one and represent the probabilistic distribution of predicted 

variables, illustrating the impact of structural and parameter errors on model predictions. A sensitivity analysis reveals that the 

Muskingum constants K and X have the greatest influence on model performance, while parameters θGW, θSW, θfc, and θpc have a 

minimal effect on the model's performance. 
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I. INTRODUCTION 

 

In recent decades, there has been a notable increase in the 

application of hydrological models, coupling them with 

Geographic Information Systems (GIS) and advanced 

simulation techniques[1][2][3][4].V. Sheikh et al. 

[5]emphasized the crucial role of soil moisture content in 

the root zone as a primary driver in governing hydrological 

processes near the land surface. Their research reveals into 

how precipitation is distributed into infiltration, runoff, 

storage in the root zone, and percolation into deeper 

groundwater storage. A comprehensive evaluation of how 

multiple variables such as rainfall, land use, and climate 

impact the response of a catchment area. They employed a 

distributed-parameter, physical-process watershed model to 

simulate flood peaks, volume, soil water equations, 

sediments, and groundwater recharge. Their study 

introduced the Soil Moisture Accounting concept with a 

static infiltration component to conceptualize the activation 

of soil moisture, which involves satisfying soil moisture 

deficits before runoff activation[6]. James Charalambous et 

al. [7]applied the URBS hydrological model in combination 

with Monte Carlo simulation to examine rainfall-runoff 

processes within a catchment. Their significant finding  

 

demonstrated that Monte Carlo simulation techniques are 

effectively applicable to large catchment areas, highlighting 

the practicality of this approach in real-world applications. 

Adeyemi Emman Aladejare et al. [8]presented a 

probabilistic approach that involves utilizing Monte Carlo 

Simulation (MCS) for purposes related to design optimization 

and sensitivity analysis. This method optimizes specific 

design parameters or objectives while accounting for 

probabilistic variables and uncertainties. Following single-

objective optimizations, they performed sensitivity analysis 

using stochastic activity networks (SANs) within the field of 

operations research. Peter L. Bonate[9]introduced a 

simulation approach that integrates mathematical modeling 

with the incorporation of stochastic or random variability. 

This class of simulation methodology aims to provide a more 

comprehensive understanding of complex systems subject to 

uncertainty. 

 

II SOIL MOISTURE ACCOUNTING MODEL 

A                                    Input Data 

Ideally, the process begins by defining a watershed through 

the utilization of Geographic Information System (GIS) 

software, which takes as input a high-resolution digital 

elevation model (DEM) with a spatial resolution of 30 meters 

by 30 meters, obtained from the Shuttle Radar Topography 

Mission (SRTM) accessible through the USGS Earth 

Explorer.[10][11][12] Topographical datasets are then 

derived using this DEM. Over a span of seventeen years, data 

spanning from 2001 to 2017 was meticulously collected for 

the Wainganga River Basin. Precipitation datasets, in 

particular, were extracted from the Indian Meteorological 

Department (IMD) in Pune, with a spatial resolution of 0.25 
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meters by 0.25 meters. Furthermore, data on potential 

evaporation was sourced from the Copernicus Climate 

Change Data Store. To complete the information set, 

observed stream flow data for a specific outlet within the 

watershed was procured from the India Water Resources 

and Information System (WRIS). Additionally, the 

observed dataset was converted into units of millimeters 

per day. 

 

B                         Model description  

i.  storage capacity model 

In the current scenario, the pivotal factors influencing the 

quantity of water that vegetation can intercept include the 

rainfall on the same day and the prevailing rate of 

evaporation. Within this context, we designate the upper 

limit of storage capacity for interception as "CEPmax." 

Section I 

If,  

PETn>CEPmax ;  

Then, EVPmax= CEPmax 

And if PETn< CEPmax; 

 Then, EVPmax=PETn                                                 (1) 

The preceding segment endeavors to estimate potential 

evaporation by considering the interception storage, 

assuming it's at maximum capacity, and then transfers the 

outcomes to Section II of the model. 

 

Section II 

If, 0 ≤intstoren-1 ≤ CEPmax and, 

Case (1)   

If, rainfalln≤ (CEPmax- intstoren-1)     

Then,  intceptn =rainfall 

evpn=min((intstoren-1+rainfalln),EVPmax)                  (2)                                                   

Case(2)   

If, rainfalln≥ ( CEPmax -intstoren-1 )   

Then,  

interceptn = ( CEPmax-interstoren-1 )  

evpn = EVPmax 

Taking into consideration the current day's rainfall, the 

maximum capacity of the interception store for that day, as 

well as the previous day's interception storage, this section 

thoroughly calculates the actual evaporation value. 

 

Section III 

intstoren=intstoren-1+intceptn-evpn                               (3) 

In Section III, the simulation focuses on the evolution of 

the interception store over time, taking into account factors 

such as precipitation, evaporation, and the state of the 

interception store. 

ii.  Net Rainfall 

Net rainfall is the term used to describe the actual 

precipitation that reaches the ground, factoring in the losses 

incurred due to interception. 

rainnetn=(rainfalln-intcepn)*canopy+rainfall*(1-canopy)   (4) 

Where, rainnetn =Net rainfall (mm), on nth day;  
canopy = Basin Covered vegetation(%) 

iii.  SCS Unit Hydrograph Model 

The model under consideration incorporates a parametric-

based Unit Hydrograph (UH) Model. The UH model from the 

Soil Conservation Service (SCS) employs a dimensionless 

unit hydrograph to forecast the runoff reaction of a watershed 

in response to a rainfall event[13][14]. It describes the 

discharge, denoted as Ut, at any given moment as a 

proportion to the peak discharge, denoted as Up, for that 

specific moment, which is a fraction of Tp, the time it takes to 

reach the UH peak. The equation is expressed as follows: 

  UHDepth=C 
A

Tp
                                                                    (5)                                                                                     

C = Conversion Constant ( 2.08 in SI), 

A = area of catchment 

 
In a unit hydrograph, the time at which the peak, or the time 
of the rising flow, occurs is intricately connected to the 
duration of the excess precipitation unit. More precisely, it 
corresponds to the duration required for the excess 
precipitation to traverse the watershed and attain its 
maximum runoff response. This linkage plays a pivotal role 
in hydrological modeling and is frequently represented as a 
fraction of the excess precipitation duration. 
 

  Tp=
 tr

2
+ tlag                                                                          (6) 

     tlag=0.6*tc                                                                        (7) 

  
 Where,    
  Tp=Time of Peak, 

   tr= Duration of Excess precipitation, 
   tlag = Lag time, 

  Tc=Time of Concentration 

By utilizing equations (5) and (6), one can employ a 
dimensionless version of the unit hydrograph to compute the 
complete unit hydrograph for a particular rainfall event. This 
implies that the hydrograph takes on a triangular 
configuration. It's worth noting that 37.5% of the total runoff 
volume transpires prior to reaching the time when the peak 
discharge (Tp) occurs, while the remaining 62.5% of the 
volume transpires after Tp. 
 

Tb   = 
1

0.375
 Tp =2.67 Tp                                                        (8) 

 
Tb = Entire 100% Volume of runoff 
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iv  Infiltration Model 

Once the canopy interception storage is saturated with 
precipitation, any surplus water is then accessible for 
seepage into the soil. The model calculates the potential 
volume of evaporation and infiltration through the 
following process. 
 

infil=Infilmax*(1-
szwc

θfc
 )                                                     (9)      

 
Where, 
Infil = potential evaporation infiltration volume 
MaxSoil Infil= maximum infiltration rate 
szwc= volume in the soil storage at the beginning of the 
time step 
θfc= maximum volume of the soil storage 
 

The actual infiltration volume during a specific time 

interval, denoted as ActInfil, is determined by taking the 

minimum of two factors: Pinfil and the available water 

volume for infiltration, which is represented by rainnet. 

v. Actual Evapotranspiration 

 
Part [1] 
EVP from interception model by Equ 1                           (10) 
 
 Part [2] 

Case(1) 

if, θSW ≤θSWn< θfc 

 
EVP from equation (2) 

uzetn=(pet
n
-evp

n
)*[

(θSWn  -SW)

θfc
] 

(1-
(θSWn-θSW)

θfc
)

    

 
lzetn=(petn-evpn-uzetn  e–(L+1)                                             (11) 

Case (2)  

if, θfc ≤θSWn  

EVP (from equation (2)) 

 
uzetn=(petn-evpn)                                                              (12) 
lzetn = (petn-evpn-uzetn)* e-LZC 

 

Part [3] 

aetn=evpn+uzetn+lzetn                                                      (13) 
 
Where,  
Aet=Actual evapotranspiration (mm),      
uzetn= Upper soil zone evapotranspiration (mm), 
lzetn= Ground water store evapotranspiration  
LZC=Constant governing evapotranspiration from lower 
zone (parameter). 

 
vi.   Soil Moisture storage 
 

Applying a mass balance equation at every time step is 
a fundamental and widely used method. The equation used 
to adjust soil moisture content is as follows 

 

θSWn=θSWn-1+rainetn(1-UHDepth)-uzetn-1-pflown–1-drainn-1-
szron-1                                                                               (14) 
 
θSW1n=θSWn-1–uzetn-1-pflown-1-drainn-1-szron-1                 (15) 
 
Where,  
θSWn = soil zone water content (mm),  
θSW1n = Previous day soil zone water content after losses 
(mm),  
θSWn-1=Previous day soil zone water content (mm), 
uzetn-1 is the previous day evapotranspiration from upper soil 
zone in mm,  
pflown-1 = Macropore flow in mm,  
drainn-1 = Drainage in mm, 
szron-1 = Interflow in mm.2.5.7 Interflow 

Interflow pertains to the lateral flow of water beneath the soil 

surface, above the groundwater table but below the ground 

level. This phenomenon typically occurs when the soil 

reaches a state of saturation, preventing further water 

infiltration. In the model, interflow is permissible as long as 

the soil moisture content remains above the field capacity 

threshold. 

szro=MaxSoil Infil (
szwc

θpc
) (1-

gzwc

GZWCmax
)                            (16) 

vi Base Flow 

Excess water that permeates the soil beyond its field capacity 

serves as a recharge source for the groundwater reservoir or 

aquifer. When the soil's moisture content reaches the field 

capacity, any surplus water that infiltrates into the soil 

contributes to the recharge of the groundwater. 

Mathematically, the determination of base flow is as follows: 

θGW=Maxsoilper* (
θGW

θGW max
) * (1-

θGWn

θGWmax
)                      (17) 

The groundwater storage receives input from the drainage 
of the upper soil layer and releases output primarily in the 
form of base flow and lower zone evapotranspiration. To 
update the groundwater store on a daily basis, the following 
equation is applied: 

 
θGWn=θGWn–1+drainn-lzetn–1-gwron–1-infilz                    (18) 
 
Where gwron is the ground water runoff in mm, θGWn is the 
ground water store in mm  

vii  Muskingum Model 

SMA model is linked with the Muskingum model calculates 

the discharge at the outlet of the basin, the. The Muskingum 

model, in a comprehensive manner, utilizes finite difference 

approximation to establish a solution for the continuity 

equation governing the flow routing. 

 

(
It-1+It

2
) - (

Ot-1+Ot

2
) = (

St-St-1

∆t
)                                                 (19) 

In the modeling of catchment areas, particularly during flood 

events, storage volumes in river reaches are described using 

the concepts of prism storage and wedge storage. These 

concepts help estimate the total storage capacity and its 
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variation under different flow conditions. Consequently, the 

Muskingum model defines storage as follows: 

St=KOt+KX(It-Ot)                                                            

(20) 

=KOt + KXIt -KXOt 

=K[ XIt + (1-X ) Ot ] 

St = Storage, K = Travel Time, X = diamensionless weight   

(0 ≤ X ≤ 0.5) 

From above weighted discharge is represented by [XIt+(1 - 

X )Ot]. Substituting equation 26 into equation 27 and the 

result values at time t is: 

 

Ot= (
∆t-2KX

2K(1-X)+∆t
) *It+ (

∆t+2KX

2K(1-X)+∆t
) *It-1+ (

2K(1-K)-∆t

2K(1-X)+∆t
) Ot-1 (21) 

 
The equation mentioned above is utilized in the model to 

compute the discharge values of a hydrograph, taking into 

account time-stepped rainfall, the initial condition (where 

Ot = 0), and the Muskingum parameters K and X. 

 

III. METHODOLOGY 

 

A                        Monte Carlo Simulation 

Monte Carlo simulation is a computational technique that 

was developed in the 1940s.[15][16] It depends on 

statistical sampling methods to derive probabilistic 

estimates for mathematical equations or models. These 

simulations generate probabilistic approximations for how 

a system behaves and are carried out using 

computers[17][18][19]. To gauge a system or model's 

behavior under uncertain conditions, a substantial amount 

of iterations or trials are executed. Monte Carlo simulation 

relies on statistical sampling techniques, often involving the 

generation of random numbers, to embody uncertainty in 

input parameters or variables. These randomly sampled 

values serve as inputs for the model or equation. They 

produce distributions that depict potential outcomes, 

enabling an evaluation of the spectrum of possible results 

along with their respective probabilities.[20][21]  

 

B                           Hydrological Modelling 

 An updated modeling framework has been incorporated 

into a basic rainfall-runoff model, combining the loss 

method and Muskingum routing for hydrological modeling 

alongside Monte Carlo simulation. In this setup, the rainfall 

output is determined by simulating model input and 

parameters. During each model run, a unique set of input 

and model parameter values is chosen. [22]These values 

are selected randomly from their associated distributions, 

signifying that they are not fixed but are drawn from 

probability distributions. This introduces an element of 

randomness into the model runs. 

i. Performance indicator 
NSE (Nash-Sutcliffe Efficiency) stands as a widely 

acknowledged and frequently employed metric for evaluating 
hydrological models. Its purpose is to evaluate the quality of 
fit by measuring the agreement between simulated values (S) 
and observed values (O) of a hydrological variable, typically 
stream flow. 

NSE=1-
ΣQi,s-Qi,o)²

Σ(Qi,o-Qo)2
                                                                [22] 

NSE = Nash Sutcliff efficiency 

Qi,s =is the ith simulated discharge 

Qi,o =is the ith observed discharge 

 

Sum of Squared Errors (SSE) 

 SSE (Sum of Squared Errors) is determined by adding 

together the squares of the discrepancies between model 

predictions and observed values. 

SSE= ∑ (Q
i,s

-Q
i,o

)
2n

i=1                                                          [23] 

Sum of Squared Log Errors (SLE) 

 SSLE (Sum of Squared Logarithmic Errors) represents a 

modified version of SSE in which both observed and 

predicted values undergo a natural logarithm transformation 

before the squared differences are computed.  

SLE= ∑ {log(Q
i,s

)-log(Q
i,o

)}
2n

i=1                                         [24] 

Sum of Absolute Errors (SAE): 
SAE (Sum of Absolute Errors) is determined by adding 

together the absolute values of the disparities between model 
predictions and observed values. 

 
SAE = ∑ |(Qi,s − Qi,o)n

i=1 |                                          [25] 

ii. Model Calibration 

Model calibration involves the process of adjusting the 

parameters or configurations of a mathematical or 

computational model to align its predictions or simulations as 

closely as possible with observed data.[23][24] In the context 

of predicting the propagation of flow through a river reach, 

while considering the time it takes for water to travel 

downstream, the Muskingum-Cunge routing, also known as 

the Muskingum method, is employed. The model calibration 

phase spans from 2001 to 2010, followed by a validation 

phase from 2011 to 2017. 

 

The steps in model calibration are as follows: 

1. Commence by establishing an objective function or fitness 

function, which quantifies the degree of fit between model 

predictions and observed data. 

2. Specify the input parameters for the model (θGW, θSW, K, 

Table no 1                  Optimized Parameter Set 

Sr. No Parameter Description Optimum Value             Lower                          Upper 

1 θGW Ground zone water content 455 445 465 

2 θSW Soil zone water content 88 78 98 

3 θfc Field capacity 232 222 242 

4 θpc Pore capacity 361 351 371 

5 k Muskingum constant 3.12 1 5 

6 x Muskingum constant 0.13 0.1 0.5 
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X, θfc, θqc). 

3. Define the range and probability distribution for each 

input parameter, as indicated in Table 1 

4. Input each set of parameter values into the model and 

execute simulations. Generate a set of ten thousand sample 

parameter sets with random values. 

5. Calculate performance indices (NSE, SSE, SLE, SAE) 

after running the model for each calibrated year, noting the 

parameter set with the maximum efficiency. 

6. Obtain the optimal parameter set by computing the 

average value that represents the highest efficiency over the 

calibration period. 

7. Ultimately, as illustrated in Table 2, model efficiencies 

are computed for both the calibration and validation 

periods. 

C                         Quantifying the Uncertainty 

Monte Carlo Variability characterizes the inherent 

fluctuations and disparities in data or results that naturally 

unfold over time. Uncertainty materializes when there is a 

dearth of information or understanding about forthcoming 

events or their outcomes [25][26]It's crucial to recognize 

that both variability and uncertainty are integral aspects of any 

hydrological process. Even when armed with a substantial 

reservoir of historical performance data and advanced 

forecasting techniques, the future remains fundamentally 

unpredictable. In the realm of uncertainty analysis, the 

common practice of employing Monte Carlo Simulation 

(MCS) produces outcomes presented as Cumulative Density 

Functions (CDFs), histograms, and confidence intervals. 

CDFs serve as visual representations of the probability 

distribution of a variable. CDFs represent the individual 

model runs with various parameter values randomly selected 

for each run. They depict the cumulative probability of the 

variable assuming values less than or equal to a specific 

threshold. CDFs serve as valuable tools for comprehending 

the overall distribution shape and evaluating the likelihood of 

specific outcomes. On the other hand, confidence intervals 

offer a range of values within which a particular statistic or 

parameter is projected to be located with a specified level of 

confidence. In the context of uncertainty analysis, you can 

determine confidence intervals (e.g., 95% and 5% intervals) 

surrounding the target outcome by utilizing the results derived 

from the MCS. These intervals serve as an indicator of the 

Table 2              Calibration and Validation period efficiency 

YEAR PARAMETER 

 

CALIBRATION PERIOD  EFFICIENCY 

 

  
θGW θSW θfc θpc k x 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

2001 461 98 235 364 3.08 0.126 0.96 0.94 0.95 0.96 0.94 0.96 0.94 0.95 0.96 0.97 

2002 465 99 239 364 2.7 0.13 0.95 0.94 0.95 0.94 0.94 0.95 0.94 0.94 0.96 0.98 

2003 458 91 233 368 2.8 0.13 0.96 0.94 0.95 0.95 0.94 0.95 0.94 0.95 0.96 0.98 

2004 457 98 226 355 3.86 0.137 0.95 0.92 0.93 0.97 0.92 0.95 0.96 0.96 0.94 0.97 

2005 450 88 239 364 2.9 0.127 0.96 0.94 0.95 0.95 0.94 0.95 0.94 0.95 0.96 0.98 

2006 459 88 236 355 3.24 0.13 0.96 0.93 0.95 0.96 0.94 0.96 0.94 0.96 0.96 0.98 

2007 467 100 222 367 2.87 1.3 0.96 0.94 0.95 0.95 0.94 0.95 0.94 0.95 0.96 0.98 

2008 460 84 232 361 3.76 0.14 0.95 0.92 0.93 0.97 0.92 0.95 0.92 0.97 0.94 0.97 

2009 460 95 229 361 2.86 0.125 0.96 0.94 0.95 0.95 0.94 0.95 0.94 0.94 0.96 0.97 

2010 455 88 233 353 3.09 0.135 0.96 0.94 0.95 0.96 0.94 0.96 0.94 0.96 0.96 0.98 

Avg 459 93 232 361 3.12 0.13 0.96 0.94 0.95 0.96 0.94 0.95 0.94 0.95 0.96 0.98 

YEAR PARAMETER 

 

 

 

 

VALIDATION PERIOD  EFFICIENCY 

 

1)  θGW θSW θfc θpc k x 2011 2012 2013 2014 2015 2016 2017 

2001 461 98 235 364 3.08 0.126 0.96 0.96 0.94 0.91 0.92 0.97 0.96 

2002 465 99 239 364 2.7 0.13 0.96 0.95 0.94 0.91 0.93 0.98 0.95 

2003 458 91 233 368 2.8 0.13 0.96 0.96 0.95 0.92 0.93 0.98 0.95 

2004 457 98 226 355 3.86 0.137 0.97 0.99 0.96 0.91 0.92 0.97 0.96 

2005 450 88 239 364 2.9 0.127 0.96 0.96 0.94 0.91 0.93 0.98 0.96 

2006 459 88 236 355 3.24 0.13 0.96 0.97 0.95 0.91 0.93 0.98 0.97 

2007 467 100 222 367 2.87 1.3 0.96 0.96 0.95 0.92 0.93 0.98 0.96 

2008 460 84 232 361 3.76 0.14 0.97 0.99 0.97 0.91 0.92 0.97 0.96 

2009 460 95 229 361 2.86 0.125 0.95 0.95 0.94 0.91 0.92 0.97 0.96 

2010 455 88 233 353 3.09 0.135 0.97 0.98 0.96 0.92 0.93 0.98 0.96 

Avg 459 93 232 361 3.12 0.13 0.96 0.97 0.95 0.91 0.93 0.98 0.96 
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precision and reliability of the estimate. 

D                                     Sensitivity  

Sensitivity analysis plays a crucial role in pinpointing the 

input variables that wield the most substantial influence on 

project outcomes [27]The objective of sensitivity analysis 

is to gain insights into how changes in individual 

parameters affect the predictions or results generated by the 

model. Through a methodical process of adjusting each 

parameter while holding the others constant, you can 

determine which parameters exert the greatest impact on 

the model's output and which ones have a comparatively 

minor effect[28]. This knowledge is invaluable for 

comprehending the model's behaviour, identifying pivotal 

parameters, and concentrating efforts on minimizing 

uncertainty in those critical variables[29][30]. 

 

III  RESULTS AND DISCUSSIONS 

Dotty plots, often referred to as scatter plots, are visual 

representations in which individual data points are depicted 

as dots on a two-dimensional grid. In the provided Graph 1, 

the horizontal x-axis signifies the parameter values, while the 

vertical y-axis represents a certain metric assessing the 

performance or results of the objective function. In the 

context of each dot on the plot, it corresponds to a single 

realization from the Monte Carlo simulation, and its position 

on the chart is determined by the parameter values and the 

corresponding value of the objective function for that 

particular realization. Parameters that exert a substantial 

influence on the likelihood measures or variables are assigned 

higher rankings, whereas those with a lesser impact receive 

lower rankings, as depicted in Graph 2. On the contrary, 

when the cumulative distributions of parameter values are 

closely grouped in the plot, it signifies that the likelihood 

measure or variable is not significantly affected by that 

specific parameter. Changes in the parameter yield minimal 

impact on the outcomes, and the parameter may not be a 

critical driver of variability within the model. Graphs 3 and 4 

illustrate the simulated discharge histogram and the 

cumulative distribution, which provides information about 

sample quartiles. 
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Graph 1 Monte Carlo simulation Dotty plots 
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Graph 2 Sensitivity plots 

 

 

Graph 3  Qsimulates vs Density 

 

 

 

Graph 4 Qsimulates vs cumulative density
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IV CONCLUSION 

The Soil Moisture Accounting model, when combined with 

GIS techniques, demonstrates a strong alignment with observed 

and simulated stream flow. When integrated with the Monte 

Carlo algorithm, it reveals that the model employed in this 

study adheres to the principles of equifinality and non-

uniqueness. In essence, this implies that when fitting the model 

to real-world data, there are numerous sets of model parameters 

that can be used, and each of these parameter sets can yield a 

satisfactory match with the observed data. This practical insight 

suggests that the system being modeled is intricate, and there 

exists inherent uncertainty in determining the "correct" model 

parameters, as multiple sets of parameters can yield comparable 

results. The optimum parameter values, which lead to favorable 

model performance, closely resemble previously identified 

optima. A sensitivity analysis underscores that the Muskingum 

constants K and X exert a significant influence on the model's 

performance, while the parameters θGW, θSW, K, X, θfc, and 

θqc have a relatively minor impact on the model's functionality. 

In the realm of uncertainty analysis, one can determine 

confidence intervals (e.g., 95% and 5% intervals) surrounding 

the outcome of interest by utilizing the results from the Monte 

Carlo Simulation. These intervals serve as a measure of the 

precision and reliability of the estimate. The model has shown 

promise in its initial application, indicating its effectiveness in 

some aspect, potentially in its ability to model or analyze a 

specific system or process. 
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