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Abstract—Due to the overuse and abuse of antibiotics, antimicrobial resistance (AMR) poses a serious risk to socioeconomic development 

and public health. A paradigm shift is required to address this dilemma, and artificial intelligence (AI) appears as a possible remedy. AI, 

including machine learning (ML) and deep learning (DL), has demonstrated significant promise in several medical research fields, especially 

in the fight against AMR. Applications of AI in AMR use cutting-edge computational methods to analyze gene expression and whole-genome 

sequencing data, assisting in discovering infectious disease etiology and disease subtypes. These AI-driven systems have several advantages 

over more conventional ones, including less need for human involvement, more accuracy, and lower costs. However, they also encounter 

difficulties, such as inconsistent performance across datasets, with data volume critically influencing model efficacy. The accessibility and 

expense of high-throughput sequencing data, particularly next-generation sequencing data, also pose challenges to the wider application of AI 

models for AMR investigation. Despite these difficulties, AI has significant promise in the fight against AMR, and its advantages and 

disadvantages must be carefully considered in order to build successful tactics for dealing with this urgent worldwide problem. We assess 

research papers on AMR analysis using AI on various datasets and contrast the effectiveness of various AI models. We thoroughly reviewed 

the DL models used up to this point in the field of AMR, and we additionally discussed the challenges that come with deploying these 

approaches. This paper offers a thorough overview of AI's applications in AMR analysis, highlighting both its benefits and drawbacks. 

Keywords- Antimicrobial resistance (AMR); Artificial intelligence (AI); Machine learning (ML); Deep learning (DL); Whole-genome 

sequencing (WGS); Next-generation sequencing (NGS). 

 

I.  INTRODUCTION  

An urgent threat to treating bacterial diseases is the 
emergence of antimicrobial resistance (AMR) in bacteria, 
affecting people and animals used for food production, 
agriculture, and the environment. Fighting against antibiotic-
resistant infections requires accurately identifying strains that 
are susceptible to or resistant to particular antibiotics. The 
Centers for Disease Control and Prevention (CDC) estimates 
that AMR caused 35,900 fatalities in the United States in 2018, 
and that number will likely rise as the population ages [1], [2]. 
According to statistics, an astounding 700,000 people die each 
year around the entire globe [3], [4]. In every region of the world, 
antibiotic resistance is increasing to dangerously high levels. The 
emergence and global dissemination of new resistance 
mechanisms threaten our ability to cure widespread infectious 
diseases. As antibiotics lose their effectiveness, many illnesses, 
including UTI, pneumonia, TB, blood poisoning, gonorrhea, and 
foodborne diseases, are becoming difficult and occasionally 
impossible to cure [5]. AMR has become a major issue for public 
health worldwide. Most major pathogenic human and animal 
pathogens today, including E. coli, Salmonella, Staphylococcus, 
Pseudomonas, etc., exhibit multi-drug resistance (MDR). Many 
terms are associated with the AMR analysis; a few key terms 
commonly used during the discussion of AMR are shown in 
Figure 1. 

 

 

Figure 1.  Widely used keywords for AMR study 

AMR is one of the top 10 dangers to world health, according 
to the World Health Organization (WHO). The environment, the 
security and safety of food and nutrition, economic growth, and 
racial fairness are all threatened by AMR [6]. The mortality rate 
due to AMR is also a major global threat. The current mortality 
rate in AMR is 1.27 million (2019), and according to WHO, the 
deaths due to AMR in 2050 will be 10 million. The deaths from 
AMR, cancer, and other diseases, including road accidents, are 
shown in Figure 2 [3], [7].  

Similarly, antimicrobial susceptibility (part of AMR) is often 
assessed using disc diffusion or minimum inhibitory 
concentration (MIC) assays. Since numerous distinct genes can 
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frequently impart resistance to a particular antimicrobial drug, 
identifying resistance-specific markers by PCR or microarray 
mapping is helpful for epidemiological purposes in addition to 
correlating phenotypic results [8]. Although the introduction of 
a new era of antibiotics has given patients and medical 

professionals optimism, progress must still be made in the area 
of medication research due to bacterial evolution. Furthermore, 
there is a pressing need for generalizable AMR prevention 
strategies due to the high cost of new medicines and the lack of 
accessibility in environments with low resources. 

 

 

Figure 2.  Deaths due to AMR compared to other common deaths in 2019. 

New methods for identifying strains that are susceptible to or 
resistant to specific antibiotics are crucial in the fight against 
antibiotic-resistant infections since AMR (AMR) is already 
becoming a major issue in nations worldwide. The expanded 
form of artificial intelligence (AI) has fundamentally altered 
research methods across many disciplines in the twenty-first 
century, including biomedical research. AI's machine learning 
(ML) and deep learning (DL) subfields have come to light as 
promising approaches to dealing with this complex 
phenomenon. In contrast to DL, which operates similarly to ML 
without any human involvement, ML primarily focuses on 
designing algorithms that can create predictive models 
employing training data sets [9]. 

Over the past ten years, there has been an increase in interest 
in using ML and DL to improve health care. This can be 
attributed to the increasing availability of biological and medical 
data, enormous computing power advances, and significant 
algorithm development advances.  

Identifying and tracing the genes connected to AMR is 
challenging because it is such a complicated process. The 
development of an antibiotic-resistant gene involves both 
biological and environmental factors. AMR analysis has become 
a focus of research in recent years, and computational 
intelligence approaches offer sufficient technological 
breakthroughs to overcome the limitations of the conventional 
AMR analysis method. Modern computational methods, 
specifically ML and DL, have demonstrated their potential in 
several medical fields, including AMR analysis.  

 
This work's main objective includes applying AI in various 

stages of AMR analysis. The availability of data and traditional 
tools is limited now-a-days. Thus, the emerging techniques of AI 
(ML and DL) are explored more in this work in order to find the 
key solution for AMR analysis. In this work, we took a few 
selective research articles in our literature that implemented ML 
or DL as the model to analyze the AMR in infectious diseases 
with the time span from 2018-2023. The research articles are 
selected based on ML and DL models used for the analysis of 
AMR, especially Antimicrobial Susceptibility Testing (AST), 
Identification of Antibiotic resistance genes (ARGs), SNP and 

small-indel calling, genetic components of the bacterial strain, 
the genetic relatedness of various strains.  

The structure of the paper and key contribution are: 
(i) How AMR is becoming the most powerful health hazard 

and the role of AMR in infectious disease. 
(ii) AI for AMR analysis, what are the possible ways for AI to 

find the best analysis results for AMR (all the associated 
analyses of AMR)? 

(iii) ML for AMR, the achievements, and limitations. 
(iv) DL in AMR analysis and the promising factor associated 

with DL for AMR analysis. 
(v) Critical findings and existing challenges in the application 

of AI in AMR research. 

II. ANTIMICROBIAL RESISTANCE (AMR) 

When bacteria, viruses, fungi, parasites, and other 
microorganisms continue to develop in a way that renders the 
drugs used to treat the infections, they enhance inefficient ratio, 
known as AMR [5]. AMR has been more prevalent in bacteria 
since the 1940s when antibiotics were initially administered. 
Horizontal gene transfer, most frequently through conjugation, 
is how AMR originates. It also spreads naturally and through 
transformation and transduction. Antimicrobials are discovered, 
isolated, and developed over years of clinical testing before 
being deemed safe for general use. Infectious diseases continue 
to severely threaten the public's health despite recent 
improvements in sanitation, vaccination, and antimicrobial 
therapy.  

According to the World Health Organization (WHO), 
infectious illnesses remain an issue for all countries, resulting in 
many fatalities and sizable economic consequences. Infectious 
illnesses cause most juvenile mortality in lower-income and 
lower-middle-income nations. Dangerous microorganisms, 
including viruses, bacteria, protozoa, and fungi, cause infectious 
diseases. In response to interactions between the host and the 
pathogen, either a disease develops or the host's immune system 
wipes out the organism. Antibiotic-resistant pathogenic 
microorganisms are posing a severe threat to public health 
worldwide. On the other hand, genes for antibiotic resistance 
have been found in various bacterial populations across the 
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ecosystem, not just in hospitals. In order to circumvent the 
body's defenses and propagate disease, pathogens modify vital 
biological processes in host cells. Determining the host genes 
regulated by the pathogen is crucial for better comprehending 
the mechanisms behind the emergence of infectious illnesses. 
The most crucial aspect of the analysis of AMR in this context 
is the discovery of antibiotic resistance genes (ARGs). Figure 2 
shows the detailed phenomenon through which the AMR occurs. 

Initially, there are various bacteria present in the human body, 
out of which few get the resistance to specific antibiotics which 
are generally used to kill them. The resistance of the bacteria 
against the antibiotics helps them to grow, and they may be able 
to transfer the same characteristics to other bacteria, as shown in 
Figure 3.  

 
  

 

 

Figure 3.  The process of how AMR occurs. 

In addition to identifying ARGs, the primary phase of AMR 
analysis includes antimicrobial susceptibility testing (AST), 
which helps the diagnosis process become more effective with 
medical experts' proper medicine prescription. 

III. EXISTING CHALLENGES IN AMR ANALYSIS 

Analyzing AMR or Antimicrobial susceptibility testing 
(AST) is a complex and expensive task. The major challenges in 
AMR analysis are listed below: 

A. Data Availability 

The entire analysis process depends on the data available for 
model feeding. In the case of AMR analysis, there is a limitation 
in the availability of gene expression and sequential data [10]. In 
addition to this, the data available openly in various repositories 
are noisy and require more effort for data cleaning and labeling. 

B. Limited Tools 

Another issue associated with AMR analysis is the biological 
tools availability. The number of tools available is very few, 
whereas the cost of the tool is very high. Some open-source tools 
are available, but the outcome of the analysis is less significant. 
Most importantly, the tools available for AST are very slow and 
depend on pure culture data [11]. The statement “There is no 
single major, or broadly accepted, a technological breakthrough 
that leads the field of rapid AST platform development” by 
PIAMR AMR- RDT Working Group on AMR and Rapid 
Diagnostic Testing is still valid [12] – [14]. 

C. Trained Manpower 

Another challenge linked with the traditional AMR analysis 
is that it requires trained manpower to conduct the analysis 
process [15]. 

D. Cost 

The cost associated with the traditional analysis is very large. 
It includes the data preparation, manpower, and tool costs [16]. 

E. Significant Result 

The analysis result from any traditional biological tool and 
technique takes a very long time, and the accuracy is less 
biologically significant [17]. 

The above challenges in AMR analysis imply that 
researchers might have overestimated antibiotic resistance's 
excess costs and attributable mortality due to methodological 
limitations [12], [16], [18]. 

IV. HOW AI MEETS THE CHALLENGES 

AI has recently shown promise as a solution for controlling 
antibiotic resistance. For instance, to support clinicians in 
developing new drugs, boosting antibiotic therapy, and 
preventing the spread of resistant infections [19]. 

The AI approach has already accelerated the discovery of 
novel antimicrobial drugs. Generative models, a subset of next-
generation AI, generate hypotheses for the final molecule 
required for a given new drug. These AI models are capable 
enough to understand the characteristics of the underlying data 
and can suggest novel molecules that have not yet been 
synthesized. They do not merely look for known molecules with 
relevant attributes, like the capacity to bind to and neutralize a 
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virus or a bacterium. Because there are more potentially 
appropriate molecules than there are atoms in the cosmos, 
making search activities impractical, this design, as opposed to 
searching capabilities, is particularly transformational [20]. 

V. APPLICATION OF MACHINE LEARNING (ML) IN AMR 

To ensure effective treatment due to the rising prevalence of 
AMR, regular antibiotic susceptibility testing (AST) is 
necessary. The gold standard for AST is phenotypic testing. 
However, bacterial isolation, culture, and subsequent drug 
exposure often take two days for non-fastidious bacterial 
infections and up to a few weeks for slow-growing bacteria like 
Mycobacterium tuberculosis. Despite the well-documented rise 
of resistance in some infections, such as Neisseria gonorrhoeae, 
it is not typically carried out. The microbial genotype, rather than 

the phenotype, is used to evaluate AMR in a different approach 
that is gaining popularity due to dropping sequencing costs and 
advancements in analytical techniques [21] – [24]. By avoiding 
laboratory culture, genotypic methods promise to not only be 
quicker than phenotypic methods. Still, they may also shed light 
on the mechanisms underlying AMR, allow for the early 
detection of transmission events, and provide crucial ancillary 
information like bacterial strain and virulence factors [25-28]. 

Several ML models are proposed in the literature to analyze 
the AMR [14], [16], [18], [19], [21], [23], [26], [27], [28], [29]. 
These works generally deployed the supervised and 
unsupervised ML models for the AMR analysis. The main 
purpose of this work involves the antibiotic resistance gene 
(ARG), identification, susceptibility gene classification, and 
infected sample classification. The overall architecture for AMR 
analysis using ML is shown in Figure 4. 

 

 

Figure 4.  A general blueprint of various ML models for AMR analysis 

A. Machine Learning (ML) techniques used with 

different AMR datasets 

ML methods used on AMR datasets can potentially optimize 
antibiotic prescribing practices, spot new resistance trends, and 
deepen the understanding of the mechanisms underlying AMR. 
Numerous ML methods have been used in the analysis of AMR. 

To identify the genes in various bacteria that are differentially 
expressed in AMR analysis, ML approaches, including Random 
Forest (RF), Decision tree (DT), Support vector machine 
(SVM), and Linear Regression (LR), are among the top few 
models used in recent years and are shown in Table 1 [16], [23], 
[26], [27], [29] – [31]. 

 

TABLE I.  ML TECHNIQUES USED FOR AMR ANALYSIS 

Year Author Disease/Species Dataset  Techniques 

Used 

Analysis Type 

2018 Danesh 

et al. [33] 

Not specified WGS RF, 

Gradient-

boosted 
decision 

trees, Deep 

neural 
networks, 

Rule-based 

baseline. 

➢ Without making any assumptions about the underlying genetic pathways, this 

study tested the capacity of four different machine-learning methods to 

determine antibiotic resistance from pan-genome data in E. coli. 
➢ These experiments showed that although population structure data alone can 

also be accurately forecasted, supplemental genomic data is generally 

required. 
➢ This is especially useful when a novel strain's genetic relatedness is 

recognized. Still, the inherited genetic resistance mechanism is obscure or 

unknown, as is frequently the case with recently introduced antibiotics. 

2019 Nguyen 

et al. 

[29] 
 

Salmonella WGS XGBoost ➢ The model uses XGBoost, an ML-based MIC prediction technique for non-

typhoid Salmonella genomes with overall accuracy ranges between 95% and 

96% within a 1 to 2-fold dilution factor. 
➢ It offers a sample method for MIC prediction using genome sequence data 

that can be used for additional human or veterinary infections. 

2020 Liu  et 

al. [10] 
 

Actinobacillus 

pleuropneumoniae 

WGS SVM, Set 

Covering 
Machine 

(SCM) 

➢ The findings of the correlation between phenotype and the simulated results 

of the five drugs showed that both SVM and SCM models could significantly 
distinguish the resistant isolates of the bacteria from the sensitive isolates (p 

0.01). They could be used as potential tools in veterinary medicine for clinical 

diagnosis and AMR monitoring. 

2020 Kim  et 

al. [34] 

E. cloacae, E. coli, 

K. pneumoniae 

and P. aeruginosa 

Sequencing Gradient 

boosting 

tree 

➢ Can characterize the AMR-related variants at the protein level. 

➢ Open reading frames (ORFs) were located and translated into amino acid 

sequences, and then protein BLAST utilizing the AMR mentioned above 
protein database was carried out on the sequences. 

➢ Using a novel gene ortholog-based variant classification method, this study 

made a major advance compared to other prediction models like PATRIC, 
which depended on the adaptive boosting (AdaBoost) algorithm. 
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2021 Sunuwar 

and Azad 

[11] 

K. pneumoniae 

AR_0107 strain 

Sequencing mNB, LDA, 

SVM, DT, 

RF, KNN, 
LR,  gNB, 

ABC, GBC, 

ET 

➢ Discovering the genetic components in bacterial strains that cause antibiotic 

resistance, especially when those strains do not have known resistance 

determinants. 
➢ One of the main reasons for creating such a pipeline was that the ETC 

algorithm accurately predicted the resistance trait of over 85% of bacterial 

isolates that lacked genes known to be responsible for resistance to particular 
antibiotics. 

2022 Han‑Yi 

et al. [14] 

Infectious disease 

(Covid-19) 

Clinical data DT, LR, 

LASSO, 
DNN 

➢ The precise prediction criteria provided in the DT structures serve as helpful 

guides for creating efficient clinical strategies because the DT models can 
perform at par with the most advanced DNN models. 

➢ The model findings demonstrated that, in terms of forecasting Influenza-like 

illness severity, the DT-based prediction models performed at par with the 
DNN models. Clinicians' decision-making process may be aided by the 

explicit prediction logic displayed in the DT structures. 

2023 Hu  et al. 
[35] 

A. baumannii  Metagenomics 
NGS (mNGS) 

WGS (CARD 

and NCBI data 
base) 

Random 
forest and 

LASSO 

regression 
model  

➢ With the aid of reading simulated sequences from clinical isolates, the mNGS-
Antibiotic Susceptibility Testing (AST) prediction model was subsequently 

developed, verified, and upgraded. 

➢ For 230 retrospective samples, four mNGS-AST models had positive 
predictive values (PPVs) more than 0.97 and negative predictive values 

(NPVs) of 100% for imipenem, 86.67% for ceftazidime, 86.67% for 

cefepime, and 90.91% for ciprofloxacin. LASSO-DT method correctly 
identified the antibacterial phenotypes of imipenem, ceftazidime, cefepime, 

and ciprofloxacin with an accuracy of 97.65%, 96.57%, 97.64%, and 98.36%, 

respectively. 
➢ When 50 prospective samples were tested, the mNGS-AST prediction results 

matched the phenotypic AST results exactly. The mNGS-based model may 

be utilized as a quick genotypic AST method to identify A. baumannii, predict 
resistance to and susceptibility to antibacterials, and apply to other organisms 

to promote wise antimicrobial use. 

ML techniques have been progressively applied to various 
AMR datasets to address this important global health issue. 
These methods are essential for foretelling, comprehending, and 
thwarting AMR across many data types: 

1) Genomic Data: ML is widely utilized to analyze 

genomic data and find genes and mutations linked to antibiotic 

resistance. Based on genetic data, classification techniques like 

Support Vector Machines (SVMs) and Random Forests (RF) 

forecast antibiotic susceptibility. 

2) Metagenomic Data: Metagenomic datasets 

representing microbial communities are analyzed using 

dimensionality reduction methods like Principal Component 

Analysis (PCA) or clustering algorithms like k-means to find 

AMR patterns in complex microbiomes. 

3) Clinical Data: Clinical data and patient records are 

used to comprehend the use of antibiotics and patient outcomes. 

Clinical narratives are analyzed using Natural Language 

Processing (NLP) models to extract insights, and patient history 

is used in logistic regression and decision trees to forecast the 

risk of AMR. 

4) Integration of Multi-Omics Data: DL techniques, such 

as Multi-Omics Neural Networks, allow for integrating 

genomes, proteomics, and metabolomics data to provide a 

comprehensive knowledge of AMR mechanisms. 
Additionally, ML approaches make feature selection, model 

optimization, and result interpretation easier [67] - [69]. These 
ML techniques make it possible to recognize AMR patterns, 
predict drug susceptibility, and create tailored interventions in 
the battle against AMR [32]. 

B. Issues with Traditional ML Techniques: 

In most of the literature, we observed that the performance 
of various ML models depends on the dataset's quality. Due to 
the non-linearity in genomics data, the linear ML model 
performance decreased significantly. The curse of 
dimensionality is a major issue with various ML models while 

dealing with the huge unlabeled dataset. It is also observed that 
data cleaning plays a crucial role in each ML model. However, 
ML data preprocessing and model training require trained 
manpower and high computational time, increasing the analysis 
pipeline's cost [36], [37]. 

It is also observed from the literature that the dataset 
(expression and sequencing) available for AMR analysis has 
very high dimensions. It includes a very small number of 
samples concerning the huge number of features. Thus, feature 
extraction is crucial to bring the data to an appropriate standard 
for various ML analysis models [38]. Manual feature extraction 
needs trained manpower as well as high computational time.  

The major limitations of the ML models for AMR analysis 
insist the researchers look into various DL models to bridge the 
gap. The limitations of ML models associated with AMR 
analysis are [39], [40], 
➢ Data quality is a major issue affecting various ML models' 

outcomes.  
➢ Few ML models like DT are not sensitive to outlier data. 
➢ The learning rate of SVM is very slow compared to other 

models. 
➢ The classification accuracy of the linear ML model is very 

low due to the nonlinearity of AMR data. 
➢ In most cases, the genes selected by the ML model have less 

percentage of a chance of being an ARG. 
➢ Manual feature extraction burdens the whole analysis 

process in terms of computational time.  
In addition to the problems mentioned above, there are other 

crucial aspects to consider while implementing ML models for 
AMR analysis [15, 16, 18, 40, 41],  

1) Feature Engineering: Pre-processing, or feature 

engineering, is the process used in ML to turn raw data into 

features that may be used to build predictive models. Inaccurate 

feature extraction may affect the ML model performance. Thus, 

it requires input from domain experts for its operation in order 

to extract important and valid features [70], [71].  
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2) Performance: High-dimension data processing 

challenges various ML models. It requires more computational 

time. 

3) Scalability: ML models that perform very well for a 

specific data set hardly guarantee that accuracy will rise as data 

set size increases (addition of new data to the existing data set). 

VI. APPLICATION OF DEEP LEARNING (DL) IN AMR 

Recent breakthroughs in AI (AI) have significantly increased 
performance in data-driven applications across various fields, 
particularly in the areas of deep neural networks and DL. In 
recent years, DL technologies have been extensively used in 
clinical and public health studies. At the same time, it might take 
medical professionals months or even years to collect adequate 
expertise to establish a decision-making process; DL algorithms 

successfully analyze relationships among various complicated 
variables in clinical datasets and make correct predictions [18],  
[42] – [44]. However, other DL algorithms have many unique 
properties and design objectives. In the past few years, the rising 
success of DL has motivated many biomedical researchers to 
implement various DL models in the research field of AMR.  

DL models can analyze genomics and metagenomics data to 
identify resistant genes and predict their potential impact on 
antimicrobial treatment. Additionally, they can help in the 
discovery of novel antimicrobial compounds. DL models play a 
crucial role in analyzing AMR (AMR) by leveraging their 
capabilities in handling complex biological data. They can help 
predict and identify AMR mechanisms, enabling faster and more 
accurate antibiotic susceptibility testing. The basic pipeline for 
DL models in AMR analysis and identifying resistance genes is 
shown in Figure 5. 

 

 

Figure 5.  Pipeline of DL models in AMR analysis 

The DL models proposed for AMR analysis can be of 
different stages, but the above DL pipeline has mainly the 
following phases; 

1) Quality Control and Sequence Alignment: Quality 

control is first applied to NGS data to remove low-quality reads 

and sequences. In order to accurately complete the downstream 

analysis, sequence alignment is then carried out to map the 

reads to a reference genome or database. 

2) Train-Test Split: A training set and a testing set are 

created from the dataset. DL models are trained using the 

training set, and model performance is evaluated using the 

testing set. 

3) DL Models: The chosen characteristics are used to 

train DL models like deep neural networks (DNN), 

convolutional neural networks (CNNs), and recurrent neural 

networks (RNNs). These models discover intricate patterns and 

relationships that point to antibiotic resistance in the data. 

4) Classification and Prediction: The classification and 

prediction of antibiotic resistance genes found in the NGS data 

are then performed using the trained DL models. Based on 

learned patterns, they can recognize specific gene variants or 

forecast the likelihood of resistance. 

5) Model Evaluation: Data splitting, accuracy, 

sensitivity, specificity, the Receiver Operating Characteristic 

(ROC) Curve, cross-validation, domain-specific 

considerations, the importance of features, external validation, 

and interpretability are all factors that must be taken into 

account when evaluating DL models for antibiotic resistance 

gene identification. 

6) Biological Annotation: The final findings shed light on 

whether antibiotic-resistance genes are present or absent in the 

NGS data. The biological validation boosts the adaptability of 

the DL model [45], [46]. These forecasts can help medical 

professionals track AMR trends and make educated decisions 

about the use of antibiotics. 
Several research publications are available for AMR 

analysis, particularly for employing DL to find resistant and 
susceptible genes. In this section, we chose a few articles based 
on DL models for the AMR analysis. The decision was based on 
the DL models, the identification of the resistance genes, the 
identification of the susceptible genes, the prediction of the 
peptides, and the ARG annotation. The research in the last five 
years (2018-2022) carried out in the domain of AMR in 
infectious diseases where the DL techniques are implemented 
with the top most model accuracy and significant results are 
listed in Table 2. 

 

TABLE II.  DL TECHNIQUES USED FOR AMR ANALYSIS 

Year Author Disease/Species Dataset  Techniques 

Used 

Analysis Type 

2018 Poplin et 

al. [47] 

Not specified WGS DeepVariant ➢ SNP and small-indel calling. 

➢ By discovering statistical correlations between images of read pileups 

surrounding suspected variants and accurate genotype calls, it has been 
proposed that a deep convolutional neural network may detect genetic variation 

in aligned NGS read data. 
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2018 Chen et 

al. [48] 

 

 Tuberculosis 

Sequencing 

Data 

DNN ➢ This study's main objective was to use genomic data to build an extremely 

accurate model of drug resistance. 

➢ This work uses data from whole genome sequencing and proposes a new DL 
architecture to detect MTB isolate resistance to 10 anti-tuberculosis medicines. 

➢ On a sizable, aggregated TB dataset, the wide and deep neural network 

performed at the cutting edge, proving the effectiveness of DL as a diagnostic 
tool for MTB treatment resistance. 

2020 Yan et 

al. [49] 

Candida 

glabrata 

Sequencing Deep-

AmPEP30 

➢ Short Antimicrobial Peptides Prediction 

➢ Using a deep convolutional neural network (CNN) with a restricted AAC, Deep-
AmPEP30 predicts short-length AMP based on the reduced dataset (RAAC). 

➢ To improve prediction accuracy for short functional AMPs, it combines the 

strength of CNN with various RAAC feature types. 

2020 Thrift et 

al. [50] 

 

P. aeruginosa 
and E. coli 

Sequencing SVM, DNN, 
CNN 

➢ Rapid Antimicrobial Susceptibility Testing 
➢ In SERS data, 10 min after antibiotic exposure, deep neural network models can 

distinguish with greater than 99% accuracy between treated and untreated cells 
in Escherichia coli and Pseudomonas aeruginosa's antibiotic responses. 

2020 Brown et 

al. [51] 

 

Staphylococcus 

aureus 

WGS LR, ANN ➢ Antimicrobial Susceptibility Testing 

➢ The proposed system shows it can perform AST much more quickly than the 

industry-standard incubation procedure for 18–24 hr., accompanied by visual 

inspection. 

2021 Jang et 

al. [52] 

Not Specified Environmental 

data 

LSTM, 

LSTM- 
CNN hybrid 

model, and 

input 
attention 

(IA)-LSTM 

➢ Identification of ARGs 

➢ A traditional long short-term memory (LSTM), an LSTM-convolutional neural 
network (CNN) hybrid model, and input attention (IA)-LSTM are used to 

forecast the recurrence of ARGs. 

➢ In contrast, the accuracy of the LSTM-CNN was 2–6 times better than that of 
the traditional L STM and IA–L STM. 

➢ The IA-LSTM model outperformed LSTM-CNN regarding overall 

performance when predicting the simultaneous occurrence of all ARGs. 

2021 Li et al. 

[53] 

Pseudomonas 

aeruginosa, E. 

coli 

Raw sequence 

encoding 

Hierarchical 

Multi-task 

DL 

➢ ARG annotation. 

➢ First of its type DL model for ARGs annotation with model accuracy of 99%. 

2022 Kuang et 

al. [54] 

Mycobacterium 

tuberculosis 

(MTB)  

 

10,575 MTB 
isolates' WGS 

(WGS) data 

was taken 
from the 

Sequence 

Read Archive 

(SRA) 

database. 

Logistic 
Regression, 

RF, 1D-

CNN 

➢ Using three alternative ML algorithms and 24 binary classifiers across the eight 
(first- and second-line) medicines, the model was fine-tuned using tenfold 

cross-validation: RF, LR, and specialized 1D CNN. 

➢ Compared to the cutting-edge rule-based method prediction, the proposed best 
ML classifiers significantly increased the F1-score for all four first-line 

medications and one second-line drug, according to our tenfold cross-

validation. Mykrobe forecasting. 

➢ Despite needing more intensive computing resources during training, the 

proposed 1D CNN architecture only slightly outperformed the conventional ML 

methods LR and RF; hence, feature selection was carried out in this study to 
lower computing resource requirements before training 1D CNN models. 

➢ Proposed ML models may classify MTB resistance to the eight anti-TB 

medications with pretty high accuracy using only the computational power of a 
typical laptop, given the accessibility of WGS data and lineage information for 

MTB. 

2023 Lu et al. 

[55] 

methicillin-

resistant 

Staphylococcus 

aureus (MRSA) 

and 

vancomycin-

resistant 

enterococci 
(VRE) 

This study 
examined 130 

Gram-positive 

cocci that were 
gathered from 

2011 to 2021 

in a clinical 
microbiology 

lab.  

Long Short-
Term 

Memory, 

DT., SVM, 
KNN, LR  

➢ The authors constructed a binary LSTM classifier to distinguish between 
resistant bacteria and nonresistant organisms based on the susceptibility profiles 

towards commonly used antibiotics in order to develop a quick culture-free 

antibiotic susceptibility test utilizing Raman spectroscopy. 
➢ The LSTM model outperformed the four ML algorithms in bacterial 

discrimination studies regarding accuracy in identifying E. faecalis and S. 

capitis (98.8% and 92.4%, respectively). 
➢ According to the proposed LSTM model, the power of the LSTM-based Raman 

system was not great at the species level, as seen by the 12.7% of E. faecium's 

Raman spectra that were incorrectly classified as E. faecalis. 

2023 Pei et al. 

[56] 

ARG 

identification 

CARD (v 

3.1.2), 
AMRFinder, 

ResFinder, 

Megares, 
deepARG, and 

HMD-ARG. 

ARGNet ➢ The proposed ARGNet is a deep neural network that combines an autoencoder 

model for unsupervised learning to identify ARGs and a multiclass 
classification convolutional neural network that does not rely on sequence 

alignment to classify ARGs. 

➢ ARGNet is a deep neural network with two stages. An autoencoder model was 
created initially to identify ARGs from the input genomic sequence(s). A multi-

class CNN was proposed in the second step to predict the categories of ARGs 

using genomic sequences classified as ARGs in the autoencoder model. 
➢ ARGNet may be used for target and metagenomic sequencing because it takes 

amino acid and nucleotide sequences of various lengths, ranging from short 

(30–50 aa; 100–150 nt) sequences to full-length proteins or genes. In most 
application scenarios, ARGNet performed better than other DL models, such as 

DeepARG and HMD-ARG, particularly in measuring prediction consistency 

with phylogenetic trees and quasi-negative tests. 

DL has been used mostly for learning challenges with big 
datasets. Various DL models based on the DNN, LSTM, RNN, 

and CNN are implemented successfully to analyze the AMR. 
The DL concept is inherited from the human neuron learning 
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system. Simulating the neurons in the human nervous system 
gave rise to the concepts of DL and neural networks. These 
artificial neural networks (ANNs) process inputs quickly and 
output results using a complicated network of neurons (hidden 
layers). The input nodes take in inputs and look for nonlinear 
input-output relationships to determine the best possible solution 
to the problem at hand [43]. The literature shows that the DL 
models based on CNN are performing well on WGS data [42[,  
[44]. Convolutional neural networks (CNNs) and recurrent 
neural networks (RNNs) are two more categories of ANNs based 
on their design. The CNNs and RNNs are a subclass of ANN, 
with each node extracting specific information from the input 
vector, down-sampling the parameters, and integrating these 
features into a fully connected layer in the succeeding layers 
[42]. In this section, we describe a few DL models applied for 
various stages of AMR analysis. 

A DL method was proposed by Veltri D. et al. (2018), which 
uses the concepts of deep neural network (DNN) for better 
antimicrobial peptides (AMPs) prediction [29]. The DNN model 
presented in this paper uses Conv and long short-term memory 
(LSTM) layers to record position-in-variant patterns along an 
amino acid sequence. In this work, the sequence dataset is used, 
which is in FASTA format. Due to the lack of a significant public 
archive of peptides that have been experimentally demonstrated 
to have AMR action, there is an issue with the availability of the 
required dataset for analysis. However, the authors use a strategy 
similar to prior work [30], [38], constructing a negative database 
of non-AMP sequences. The DL model's main advantage is that 
it also detects indirect AMP signatures more closely related to 
their structural characteristics than directly assessing their 
antibacterial activity. 

Jang J. et al. (2021) proposed a DL model for identifying 
antibiotic resistance genes (ARGs). The model is hybrid in 
nature and uses conventional long short-term memory (LSTM), 
LSTM convolutional neural network (CNN) hybrid model, and 
input attention (IA)-LSTM. Ten categories of environmental 
variables were collected at 30-minute intervals, and intensity 
parameters for four primary ARG types were used to create the 
models. The purpose of this study is to forecast the occurrence 
of ARGs, which are primarily found around the coastline 
following rainfall. When LSTM and CNN sequentially 
converged, their performance in predicting single ARGs 
outperformed that of traditional LSTM. However, in terms of 
predicting single ARGs, LSTM-CNN outperformed IA-LSTM. 

Rapid antimicrobial susceptibility testing (AST) is a crucial 
technique for reducing the overuse of potent, broad-spectrum 
antibiotics, which fuels the spread of multidrug-resistant bacteria 
[42]. When utilizing sensor surfaces with carefully controlled 
nanogap spacing and chemistry, authors (William J. T. et al., 
2020) have shown that the reaction of P. aeruginosa and E. coli 
bacterial communities to antibiotics is quickly identified in 
SERS spectrum data. Various models like DNN, CNN, and MLP 
are evaluated on the SERS data, and it is observed that the 
performance of CNN and DNN models is impressive in terms of 
prediction accuracy. Due to under-fitting, as there are only two 
features, MLP without transfer learning does not produce 
effective predictions from the variational auto-encoder (VAE, a 
supervised ML model encoding HD data into LD data) space.  

Yu Li et al., 2021, proposed a complete hierarchical multi-
task DL system for ARG annotation (HMD-ARG).  In this study, 
HMD-ARG, which is based on DL, is used to annotate ARGs in 
detail from three key perspectives: the class of resistant 
antibiotics, the mechanism of resistance, and gene mobility. 

When given raw sequence encoding as input, HMD-ARG can 
determine multiple ARG properties simultaneously without 
querying through existing sequence databases, such as whether 
the input protein sequence is an ARG and, if so, what antibiotic 
family it is resistant to, what resistant mechanism the ARG uses, 
and whether the ARG is intrinsic or acquired. HMD-ARG 
predicts the subclass of beta-lactamase to which the ARG is 
resistant if the expected antibiotic family is beta-lactamase [61]. 

The above are some of the DL models that are applied to 
various parts of AMR analysis, and almost all the models have 
proven their potential for prediction, classification, and 
annotation phases of the analysis module. It is observed that the 
DL models outperformed the traditional ML models in multiple 
cases, including model accuracy, computational time, and cost.  
The key achievements of DL are discussed in section 7. 

VII. ACHIEVEMENTS OF DL 

A. Maximize classification accuracy 

Maximizing classification accuracy is crucial for long-term, 
in-depth studies of genotypic alterations in connection to 
phenotype. When stable mutations are taken into account, this 
method is very valuable. It would make it possible to identify a 
genotypic fingerprint of a certain kind of AMR—a distinctive 
genetic string indicating a phenotype. This knowledge could be 
applied to creating a biological test (a device that provides rapid 
diagnosis in the field) [24], [62] – [64]. 

B. Selection of cumulative features 

`The selection of features offers vital insight into the 
biological mechanisms that bestow AMR. It's still unclear how 
to cluster traits most effectively, a challenge that could provide 
biologists with crucial information. High levels of redundancy 
exist in the variables that make up the DL model of the issue, 
and grouping these redundant data into meaningful clusters or 
blocks yields a clear indication of the location of the mutation 
that causes AMR. 

C. Maximize Model accuracy 

Antibiotics are known to impact common genes and gene 
activities in bacteria, but little is known about how the AMR 
genes are spread among various bacteria. It is crucial to train the 
model with the data availability (unstructured data) to classify 
the AMR genes more accurately. However, from the literature, 
it is found that most of the DL models, especially the CNNs, 
outperform the traditional ML models regarding model accuracy 
[66]. 

VIII. CRITICAL OBSERVATIONS/ CHALLENGES FOR AI 

The critical observations from the literature can be listed as: 
➢ AI plays a crucial role in the battle against AMR by 

identifying the genes with antibiotic resistance, making 
drug therapy more convenient.  

➢ Patients and society should want antibiotic resistance to be 
prevented, or else it may be the number one health hazard 
within a few decades 

➢ As antibiotics used to treat them lose their efficacy, an 
increasing number of infections, including UTI, 
salmonellosis, gonorrhea, pneumonia, and tuberculosis, are 
becoming more challenging to treat. 

➢ In the future (by the year 2050), it is estimated that 10 
million people may die due to AMR [15]. 
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➢ Methodological difficulties and problems with (i) 
estimating the overall number of infections, (ii) 
identification of ARGs, (iii) survival rate prediction, and 
(iv) antimicrobial susceptibility testing need to be fixed.  

➢ Although we have seen in the literature how the Ml and DL 
models offered functioned accurately for a certain dataset 
and efficiently solved the problem, obtaining the 
adaptability of a model will remain a difficult challenge 
because of the wide range of data that is available today 
[66]. 

Most of the research is moving towards AI-centric; it plays 
an important role in almost all research areas. The following few 
key points need to be addressed with proper solutions, 
➢ Researchers are exposed to several AI techniques in various 

biomedical research fields, including AMR analysis. In the 
current scenario, AI faces challenges regarding huge 
computational power, time, and cost requirements.  

➢ These parameters related to AI model implementations 
must be taken care of to meet a more portable, robust, and 
sustainable research outcome.  

➢ Most importantly, a well-operated quality control pipeline, 
as well as a robust AI model, need to be developed to deal 
with NGS data, which is noisy and complex in nature. 

IX. CONCLUSION 

AMR will be resolved by creating new antibiotics or other 
alternative therapies. Much research is currently being done to 
create an innovative antibiotic replacement to combat resistance. 
Anyone of any age in any nation can become susceptible to 
antibiotic resistance. Worldwide, the death rate from infections 
from resistant organisms has sharply increased among 
immunocompromised patients and newborns. Because 
prevention is always preferable to therapy, it is everyone's 
responsibility to take preventive and literate action while taking 
any antibiotics. AI has many applications for analyzing 
biomedical data and has proven its potential as a role model for 
disease prediction and drug design. It is found that ML and DL 
models have produced innovative analysis tools, and these 
technologies have significantly decreased the time and expense 
needed for the analysis of AMR. These models have now made 
way for more complex DL models, such as CNN, because of 
increased data accessibility and computing capacity. Many 
different DL models, including CNNs and other architectures, 
have been developed in the field of genomics and have 
implications for AMR analysis. With the rise of AI, the 
biomedical engineering community may be exploring even 
deeper into AMR analysis and lead the way for individualized, 
precise healthcare that is available to everyone on earth. 
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