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Abstract: 
The recent fast expansion of mobile communication services has 
resulted in a scarcity of spectrum resources. The challenge of 
multidimensional resource allocation in cognitive radio systems is 
addressed in this work. Complicated and dynamic Spectrum Sharing 
SS systems might be vulnerable to a variety of possible security and 
privacy vulnerabilities, necessitating protection techniques that are 
adaptable, dependable, and scalable. Methods based on machine 
learning (ML) have repeatedly been proposed to overcome these 
challenges. We present a complete assessment of the current 

progress of ML-based SS approaches, the most crucial security challenges, and the accompanying 
protection mechanisms in this paper. We develop cutting-edge methodologies for improving the 
performance of SS communication systems in a variety of critical areas, such as ML-based cognitive radio 
networks (CRNs), ML-based database assisted SS networks, ML-based LTE-U networks, ML-based 
ambient backscatter networks, and other ML-based SS solutions. The results of the simulation trials show 
that the suggested strategy may successfully boost the user's incentive while reducing collisions. In terms 
of reward, the suggested strategy beats opportunistic multichannel ALOHA by around 10% and 30%, 
respectively, for the single SU and multi-SU scenarios. 

 

Keywords: Spectrum sharing, machine learning, security, CRN, LTE-U, SSDF, PUE, jamming, eavesdropping, and 
privacy are all things to consider. 

 

Introduction 
Both the cognitive radio (CR) and the multiple 
access, non-orthogonal (NOMA) scheme have 
been highlighted as potential alternatives, 
particularly given the rising demand for efficient 
satellite resource utilization. Enhancement of 
spectrum efficiency (Chiti et al., 2005; 
Kourogiorgas et al., 2017). The SS network can 
assist alleviate the scarcity of spectrum 
resources. Unlike typical exclusive spectrum 
allocations, SS incorporates numerous 
companies and uses the available spectrum in a 

shared manner to maximize the efficiency of the 
limited spectrum resources. According to 
Kourogiorgas et al. (2017), Guo et al. (2018) and 
Ruan et al. (2018) there are two types of SS: 
horizontal sharing and vertical sharing. Lateral 
sharing implies that all networks and users have 
equal access to the resources spectrum. Such 
solutions enable users to coexist harmoniously 
and effectively. Vertical sharing, on the other 
hand, permits many types of users to access 
spectrum assets with varying levels of access. As 
a result, secondary users (SUs) can use the 
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spectrum without interfering with the 
performance of the main users (PUs). By 
allowing SUs to access the spectrum controlled 
by PUs, the restricted spectrum resource may be 
used to support additional devices (Ruan et al., 
2018; An et al., 2015; Haykin, 2005). A 
substantial amount of research has been 
conducted on dynamic spectrum access 
technology in cognitive radio (CR) systems, with 
some studies employing game theory to examine 
spectrum sharing among communication system 
users Haykin, (2005). The communication 
system's users are modeled as players, and their 
access methods are examined. For example, in 
(Zhou, Zhu, & Ling, 2010), a game-theoretic 
methodology and utility function for spectrum 
sharing in CR systems were provided, whereas 
reference Cai et al. (2016) offered a solution 
based on game theory and the decision tree. 

Another study (Ahmad et al., 2014) proposed a 
pricing mechanism based on the Stackelberg 
game to enhance spectrum sharing, and 
researchers created an algorithm to optimize the 
cost of bandwidth allocation for main users (PU) 
and secondary users (SU) (Pandit,. & Singh, 
2013). Furthermore, the Carnot model was 
developed. 

The goal of this research is to use DRL to 
address the issue of spectrum sharing and power 
control in cognitive radio systems. The proposed 
technique employs Convolution Neural 
Networks CNN-based training with multiple 
agents for spectrum access strategy, modeling 
multiple resource allocation in communication 
systems as reinforcement learning, and 
constructing a reward function for users as 
shown in figure (1). 

 

 
Figure 1. Principle of CNN Spectrum Sharing Techniques 

 

The training also includes freezing target 
networks and experience replay, and the 
algorithm's complexity is assessed. The 
simulation findings show that secondary users 
(SU) may learn how to access the spectrum 
successfully through training using the proposed 
technique in both single SU and many SU 
scenarios. 

The following is the paper's structure. Section 2 
discusses the system model, Section 3 outlines 
the suggested CNN-based spectrum sharing 
approach and training algorithm, Section 4 
displays the simulation results, and Section 5 
summarizes our findings results. 
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Problems Formulation (System Modelling) 

This model takes into account an SS. The system 
is made up of M primary users who belong to a 
certain cluster, S secondary satellites that provide 
information, R secondary terrestrial relays, and 
SU1 and SU2 secondary terrestrial users. There 
is only one antenna on each node.1 We predict 
that S is unable to transfer messages directly to 
SUi (i =1,2) due to excessive shadow fading. R 
helps S communicate with SUi. 

In addition, the decode-and-forward (DF) 
protocol is used on R, which operates in half-
duplex mode. Because of the large distance 
between the PT and R or SUi, the primary 
transmitter (PT) is not expected to interact with 
them. In the recommended model, two time 
slots are required to complete the transmission 
(Zhang et al., 2020; Han, Zhu, & Lin, 2021). In 
the first time slot, S sends messages to R utilizing 
the superposition coding method (SCT) of the 
NOMA scheme, which can integrate two signals. 
The signal to R (Zhai, & Du, 2017) is supplied 
by: 

 

𝒔𝒔=��𝜷𝜷𝟏𝟏𝑷𝑷𝑺𝑺𝒔𝒔𝟏𝟏 + �𝜷𝜷𝟐𝟐𝑷𝑷𝑺𝑺𝒔𝒔𝟐𝟐�  (1) 

 

PS denotes S's transmission power, si (i = 1, 2) 
denotes the message to SUi, and i denotes the 
power allocation factor (1+2=1)." Without 
sacrificing generality, we suppose that R to SU1 
has a poorer channel condition than R to SU2, 
thus 1 > 2. As a result, the signal received at R 
may be represented as (Yan et al., 2018; Zhang 
et al., 2020): 

 

𝑦𝑦𝑅𝑅 = ℎ𝑆𝑆𝑆𝑆��𝜷𝜷𝟏𝟏𝑷𝑷𝑺𝑺𝒔𝒔𝟏𝟏 + �𝜷𝜷𝟐𝟐𝑷𝑷𝑹𝑹𝒔𝒔𝟐𝟐� + 𝑛𝑛𝑅𝑅 
     (2) 

 

where hSR is the channel coefficient between S 
and R, nR is the additive white Gaussian noise 

(AWGN) at R: with n_RCN (0,2_R). The DF 
protocol and SCT are used at R in the second 
time slot to send the received signal to SUi. Then 

 

𝑦𝑦𝑖𝑖 = ℎ𝑆𝑆𝑆𝑆𝑖𝑖��𝜷𝜷𝟏𝟏𝑷𝑷𝑹𝑹𝒔𝒔𝟏𝟏 + �𝜷𝜷𝟐𝟐𝑷𝑷𝑹𝑹𝒔𝒔𝟐𝟐� + 𝑛𝑛𝑖𝑖 
     (3) 

 

where PR represents R's transmission power and 
h_(SU_i) represents the Rayleigh fading-affected 
channel coefficient. We can compute the signal 
to interference plus noise ratio (SINR) of si at R 
using (1): 

 

𝛾𝛾𝑠𝑠1 = 𝐼𝐼𝛾𝛾𝛾𝛾𝛾𝛾𝛽𝛽1
𝐼𝐼𝛾𝛾𝛾𝛾𝛾𝛾 𝛽𝛽2+𝛾𝛾𝛾𝛾𝛾𝛾𝜎𝜎2𝑅𝑅

   (4) 

 

𝛾𝛾𝑠𝑠2 = 𝐼𝐼𝛾𝛾𝛾𝛾𝛾𝛾𝛽𝛽2
𝛾𝛾𝛾𝛾𝛾𝛾𝜎𝜎2𝑅𝑅

    (5) 

 

Results and Discussion 
A-Simulation Setup 

The (CNN) is one of the most widely used 
approaches to optimization in recent years. 
CNN may have included several unrealistic 
alternatives in an effort to address a different 
problem, which has a detrimental impact on how 
the computation is portrayed. Figure (2) depicts 
the schematic diagram for the problem 
statement. 

During CNN flowchart is shown in figure (3) 
training, rather than scrambling the order, the 
sequential information is kept when updating the 
neural network weights. For computation, the 
neural network processes continuous sequences 
of input. When updating parameters, it is 
difficult to execute gradient descent on data 
from a single time slot due to RNN features. 
Instead, the gradient of each network weight 
must be calculated using the backpropagation 
over time approach. 
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Figure 2. General CNN Structure 

 

 
Figure 4. CNN Flowchart 

 

B-Simulation Results 

This section evaluates the performance of the 
NOMA uplink scenario using the suggested 
power-control technology and evolutionary 
algorithm. The suggested solution's result is 
determined using the MATLAB tool during the 
simulation stage, which is also used to examine 

the proposed scheme's SE-EE tradeoff. The 
simulation parameters were provided in Table 1. 

 

Table 1. Simulation Setup Parameters 
No.  Description Value 
1 Distances of users 

from base station 
(BS) 

d1=1000m,d2=500m 

2 Path loss exponent α=4 
3 Number of PU 15 
4 Power allocation 

factor 
0<β<1 

5 Number of SU 1 
6 Active Rate 1 
7 Selectable 

Transmission Power 
20 mW 

8 Learning Rate 0.02 
 

Create a semantic segmentation neural network 
using the deeplabv3plusLayers (Computer 
Vision Toolbox) function to implement transfer 
learning. Select the input picture size (the 
number of pixels used to depict the time and 
frequency axis) and the number of classes. 
Resnet50 should be chosen as the basis network 
(by specifying the value of base Network). The 
function offers a link to the necessary support 
package in the Add-On Explorer if the Deep 
Learning Toolbox TM Model for ResNet-50 
Network support package is not installed. Click 
the link, then select Install to start the support 
package installation. Enter resnet50 at the 
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command line to verify that the installation was 
successful. The function returns a DAG 
Network object in the event that the necessary 
support package is installed. 

Plotting the pixel counts by class label using the 
count EachLabel (Computer Vision Toolbox) 
function will show you the distribution of class 
labels in the training dataset. 

Ideally, there should be an equal amount of 
observations in each class. However, it is typical 
for the training set's courses to be unbalanced 
when using wireless signals. 5G NR 
transmissions are noisy in the background and 
may have a wider bandwidth than LTE signals. 
An imbalance in the number of observations per 
class might be harmful to the learning process 
since the learning is skewed in favor of the 
dominating classes. Class weighting is employed 
in the section Balance Classes Using Class 
Weighting to reduce bias resulting from an 
imbalance in the number of observations per 
class. 

 

 
Figure 5. Histogram of Spectrum Sharing 

 

Ideally, there should be an equal amount of 
observations in each class. However, it is typical 
for the training set's courses to be unbalanced 
when using wireless signals. 5G NR 
transmissions are noisy in the background and 
may have a wider bandwidth than LTE signals. 
An imbalance in the number of observations per 
class might be harmful to the learning process 
since the learning is skewed in favor of the 

dominating classes. Class weighting is employed 
in the section Balance Classes Using Class 
Weighting to reduce bias resulting from an 
imbalance in the number of observations per 
class. 

Create a basic network for semantic 
segmentation. You may skip this step and go 
directly to apply a Pretrained Network for 
Transfer Learning if you would want to apply 
transfer learning on a pretrained network 
instead. Down sampling an image between 
convolutional and ReLU layers, followed by 
upsampling the output to match the input size, 
is a typical trend in semantic segmentation 
networks. Non-linear filters that are tailored for 
the particular classes you need to segment are 
used by a network to carry out the activities 
throughout this procedure. The simulation 
results for separation unknown signal shown in 
figure (6). 

 

 
Figure 6. Confusion Matrix for Simulation 

Results 

 

Where when we considered the unknown signals 
as part of classification process the results is 
shown in figure (7). 

The network mixes NR signals with noise or 
unknown signals, as the confusion matrix 
demonstrates. Upon closer inspection, it can be 
seen that the signals with the noise have 
extremely low signal-to-noise ratio (SNR) and 
are difficult for the network to appropriately 
detect. 
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Figure 7. Confusion Matrix 

 

Conclusion 
In this work, we investigated the efficacy of a 
spectrum sharing based CNN with different 
PUs. Specifically, closed-form formulas for the 
OP and EC were generated for the proposed 
arrangement. At high SNRs, asymptotic OP 
expression might potentially be produced. It is 
clear that when PUs were decreased, system 
performance rose. Furthermore, power 
distribution factors and rate thresholds had a big 
influence on the system's performance. 
Furthermore, we found that for low SNRs, EC 
decreased as β1 increased and that, depending on 
the system characteristics, there were numerous 
optimum values for β1 to reduce OP. 
Furthermore, when rate thresholds climbed, OP 
would grow. 
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