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Abstract: 
An attempt is made in this study to investigate the problem of 
micropolar fluid flow in a porous medium theoretically. Employing 
the Berman’s similarity solution, the model equations governing the 
flow is transformed into a set of nonlinear ordinary differential 
equation and solved using Temimi-Ansari method. Expressions for 
the velocity and micro-rotation profiles are obtained under the 
impressions of diverse parameters affecting the flow problem. Using 
symbolic computation software Mathematica, the nondimensional 
equations are solved numerically using the Keller Box scheme. 
Comparison between the analytical solution obtained by TAM and 

the numerical result are compared with results in literature to observe rapid convergence. Findings from 
the study showed in the presence of 𝑁𝑁1,𝑁𝑁3 and 𝑅𝑅𝑅𝑅, the rotation profile plummet, while increase in the 
parameter,  𝑁𝑁2  cause an acceleration in the velocity profile. Similarly, increasing the values of 𝑁𝑁1 and 𝑅𝑅𝑅𝑅 
cause a deceleration in the velocity profile, whereas it increased in the presence of 𝑁𝑁2 parameter. 
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Introduction 
The term micropolar fluid refers to a non-
Newtonian fluid with additional microstructural 
effects, such as rotational motion and couplings 
between rotation and deformation. This is 
characterized by the presence of microstructure 
elements, such as particles, molecules, and other 
small-scale components, which affect the fluid's 
behavior (Eringen, 1966). From a physical 
perspective, micropolar fluids can be thought of 
as fluids made up of inflexible, spherically, or 
randomly oriented particles suspended in a 
viscous medium without regard to fluid particle 

deformation. The conservation equations for 
mass, linear momentum, angular momentum, 
and energy define the fluid's motion in 
micropolar fluid theory. The paired stress tensor 
and the microrotation vector, two examples of 
microstructural components, are incorporated 
into these equations. The textbook by Eringen, 
(1971) provides an extensive overview of 
micropolar fluid theory and some of its 
applications (Siddiqui, & Mustafa, 2018). As a 
mathematical extension of classical fluid 
mechanics, the theory of micropolar fluids, 
which was developed by Eringen, provides a 
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mathematical model for fluids with 
microstructure. Unlike Newtonian fluids, which 
only consider linear stress-strain relationships, 
micropolar fluids include additional 
considerations related to the microstructural 
effects (Sidik, Nazar, & Pop, 2019). 

Micropolar fluids are known to exist in nature 
and have been employed in several disciplines, 
including biology, geophysics, engineering, and 
medicine. Flow in porous media, lubricating 
machine parts, blood flow in biological systems, 
and microfluidics are a few application areas. 
Ferrofluid, which is comprised of a stable 
colloidal suspension of Brownian magnetic 
particles in a nonmagnetic liquid host, has 
frequently been modelled as a micropolar fluid 
Singh et al. (2016). Lubricating fluids in bearings 
can be studied using the micropolar theory in 
lubrication theory (Lukaszewicz, 1999; Singh, 
Kumar Pandey, & Manoj, 2020). Granular flow 
is also satisfactorily described by a micropolar 
fluid model (Pandey, & Sharma, 2015; Cimpean, 
& Iesan, 2005; Ariman, & Turk, 1974). Adomian 
decomposition approach has been employed for 
micropolar flow in a porous channel driven by 
transverse magnetic field by Shakeri Aski et al. 
(2014). This study discovered that the velocity 
and micro rotation profiles are influenced by the 
control conditions in different ways. 

Using a novel modification of parameters, 
Osman and Arslanturk (2020) looked at the 
problem of micropolar flow in a porous channel. 
This method is used to solve second order 
constant differential equations using the 
Wronskian method. Convergent algorithms for 
the flow distributions were obtained during the 
study. Furthermore, the BVP4c subroutine in 
MATLAB was used to solve the problem 
numerically. Excellent agreement was found 
when the generated solutions were compared 
with the body of existing literature, confirming 
the dependability and accuracy of the suggested 
technique. Prakash Meena (2019) has solved the 
micropolar flow problem in a porous channel 
using an innovative spectral quasilinearization 
method that is based on the Newton-Raphson 
method in numerical analysis. The governing 
flow equations were simplified to first order 
ordinary differential equations and solved in 

terms of the flow distributions using the 
Berman’s similarity approach. The flow variable 
expressions were plotted and graphically 
presented to illustrate the properties relevant to 
the investigation. A finite element solution to 
mixed convection micropolar flow driven by a 
porous stretched sheet has been provided by 
Bhargava et al. (2003). An investigation is 
conducted into the effects of surface conditions 
on the temperature function, microrotation, and 
velocity. The results of this investigation show 
that micropolar fluids play a major role in the 
decrease of drag forces in cooling agents and 
airplanes. 

Mirgolbabaee et al. (2017) have examined 
analytically and numerically the semi-analytical 
investigation of micropolar fluid and heat 
transfer of micropolar fluid in a permeable 
channel. Runge-Kutta-Fehlberg method of 
order four was used to derive numerical 
expressions for the velocity and microrotation, 
while the Abkari-Ganji method provided 
analytical expressions.  After tabulating the 
numerical results, calculating the associated 
errors, and using Abkari-Ganji, the study was 
concluded. Steady Magnetohydrodynamic 
utilizing the semi-analytical homotopy 
perturbation method, Agrawal et al. (2021) 
investigated micropolar fluid flow as well as heat 
and mass transfer in a permeable channel with 
thermal radiation. The research indicates that the 
parameters that were entered into the problem 
had a significant impact on the flow patterns. 
Tables with Nusselt and Sherwood numbers of 
coefficients of heat and mass transfer were 
shown, and they were examined quantitatively. 
More recently, new methods have been 
developed to address this problem because of 
the development of powerful computers. 
Sheikholeslami et al. (2014), for example, have 
used the innovative Lattice Boltzmann approach 
to solve the free convection flow of nanofluid. 
The same author expanded on this study to 
examine the combination of heat transfer and 
micropolar fluid flow in a permeable channel by 
implementing an analytical method and MHD 
natural convection and heat transfer employing 
nanofluid along the micropolar problem. Zheng 
and Cao (2015) studied the flow of micropolar 
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fluid through an expanding wall using a lie group 
analysis. The governing model equations were 
reduced to ordinary differential equations with 
the use of self-similar solutions that were derived 
through the application of invariance 
transformations. The various flow distributions 
were obtained by solving these equations, which 
were then displayed graphically. Kelson and 
Farrell (2001) explored the effects of suction and 
injection on the micropolar flow through a 
porous stretched sheet. Similarly, heat transfer 
via a permeable wall and a micropolar fluid 
problem have been studied using the differential 
transform method in conjunction with Laplace 
transform. The study's findings were determined 
to be consistent with the body of current 
literature. 

Singh (2018) examined the MHD micropolar 
fluid layer's thermal convection, which is heated 
from below. Expressions for the onset of both 
stationary and oscillatory convection were found 
by the application of linear stability analysis. The 
results were verified and found to be consistent 
with previous research. Singh (2017) has 
explored the effects of magnetohydrodynamics 
and the Hall effect on the flow of a visco-elastic 
micropolar fluid layer heated from below in a 
porous material. The problem of low and heat 
transfer of a micro-polar fluid in a porous 
channel with expanding or contracting walls has 
been tackled by Zheng et al. (2013). This 
investigation is predicated on the application of 
a transverse magnetic field. A parametric study 
was carried out and the flow fields were 
substantially affected by the pertinent parameter. 
The consequences of mass injection on 
micropolar flow in a porous channel for analytic 
solution was investigated by Hassan and Rashidi 
(2014) using the homotopy analysis approach.  
Similarly, Abdulaziz et al. (2009) used the 
homotopy analysis method to study a fully 
developed micropolar fluid flow between 
vertical plates under the influence of a magnetic 
field. A homotopy analysis approach solution 
has been applied by Ziabakhsh and Domairry 
(2008) to micropolar fluid flow in a porous 
channel with mass transfer in a permeable 
channel separated by parallel plates. A 
comparative study of the acquired results and 

those found in the literature revealed very good 
agreement. 

Nowadays, a wide range of analytical and semi-
analytic iterative techniques have been 
developed to tackle a wide range of problems in 
diverse fields of applied sciences such as linear 
and nonlinear ODEs and PDEs, nonlinear 
ordinary differential equations, the Korteweg-de 
Vries Equations, Duffing equations, nonlinear 
thin film flow problems, and certain chemistry 
problems, Temimi and Ansari proposed an 
innovative semi-analytical iterative method 
known as (TAM). A major advantage of the 
TAM is that it does not require restrictive 
assumptions for nonlinear terms, unlike the 
ADM, which required the so-called Adomian 
polynomials, reduce the large computational 
work or the use of other parameters or 
restrictions associated with other iterative 
approaches such as VIM and HPM. 
Furthermore, the TAM procedure has been 
effectively implemented for solving non-linear 
PDEs and ODEs. Extensive and successful 
applications of TAM to several problems can be 
found in Ebiwareme, (2021); Ebiwareme, 
(2022); Ehsani et al., (2013); Temimi, H., & 
Ansari, A. R. (2011); Ebiwareme, L. (2021); 
Ebiwareme, L., & Bunonyo, K.W. (2023); 
Ebiwareme, L. & Odok, E.O. (2022); AL-
Jawary, M. A., Raham, R. K. (2016); AL-Jawary, 
M. A. (2017).  

None of the previously mentioned studies have 
examined the Temimi-Ansari semi-analytical 
method for the investigation of the micropolar 
fluid flow problem. Thus, the objective of this 
study is to solve the problem with this new 
approach and compare it to previous solutions 
from other approaches to see if there is any 
convergence. The study is categorized as 
follows: The model problem formulation and its 
reduction to nonlinear ordinary differential 
equations using the Berman similarity solution 
are outlined in the next two parts. The solution 
method's foundation and how it applies to the 
problem are covered in Sections 4 and 5. Section 
6 contains tables and a graphic representation of 
the numerical results of the flow fields under 
various parameter variations. Section 7 
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concludes with a summary of the study's key 
findings that are emphasized. 

 

Mathematical formulations of the 
Problem 
Let us examine a continuous, incompressible, 
laminar flow of a micropolar fluid which is 
uniformly injected or removed at a velocity of 
𝑣𝑣0, as depicted in Figure 1, through a two-
dimensional channel with porous walls. Using 
Cartesian coordinates, the channel walls are 
taken parallel to the 𝑥𝑥-axis and are located at a 
width of 2ℎ. Given these conditions, the 

governing equations pertinent to the system are 
as follows. 

 
Figure 1. Physical model and coordinate 

system 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0            (1) 

 

𝜌𝜌 �𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = −𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ (𝜇𝜇 + 𝑘𝑘) �𝜕𝜕
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𝜕𝜕𝜕𝜕2

� + 𝑘𝑘 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

      (2) 

 

𝜌𝜌 �𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = −𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ (𝜇𝜇 + 𝑘𝑘) �𝜕𝜕

2𝜕𝜕
𝜕𝜕𝜕𝜕2

+ 𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

� − 𝑘𝑘 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

      (3) 

 

𝜌𝜌 �𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = −𝑘𝑘

𝑗𝑗
+ �2𝑁𝑁 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� + �𝜇𝜇𝑠𝑠
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� �𝜕𝜕
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𝜕𝜕𝜕𝜕2

+ 𝜕𝜕2𝜕𝜕
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subject to the appropriate boundary conditions. 

𝑣𝑣 = 𝑢𝑢 = 0,𝑁𝑁 = −𝑠𝑠 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

  at 𝑦𝑦 = −ℎ 

 

𝑣𝑣 = 0,𝑢𝑢 = 𝜈𝜈0𝜕𝜕
ℎ

,𝑁𝑁 = 𝜈𝜈0𝜕𝜕
ℎ2

  at 𝑦𝑦 = +ℎ         (5) 

 

Nondimensionalization of Model Equations 
Utilizing the following non-dimensional variables together with the stream function formulation. 

 

𝜂𝜂 = 𝜕𝜕
ℎ

,𝜓𝜓 = −𝜈𝜈0𝑓𝑓(𝜂𝜂),𝑁𝑁 = 𝜈𝜈0𝜕𝜕
ℎ2
𝑔𝑔(𝜂𝜂),𝑢𝑢 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
, 𝑣𝑣 = −𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
      (6) 

 

Using Eq. (6), the governing equations in Eqs. (1-4) reduced to the form. 
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(1 + 𝑁𝑁1)𝑓𝑓𝑖𝑖𝜕𝜕(𝜂𝜂) − 𝑁𝑁1𝑔𝑔(𝜂𝜂) − 𝑅𝑅𝑅𝑅�𝑓𝑓(𝜂𝜂)𝑓𝑓′′(𝜂𝜂) − 𝑓𝑓′(𝜂𝜂)𝑓𝑓′′(𝜂𝜂)� = 0     (7) 

 

𝑁𝑁2𝑔𝑔′′(𝜂𝜂) + 𝑁𝑁1�𝑓𝑓′′(𝜂𝜂) − 2𝑔𝑔(𝜂𝜂)� − 𝑁𝑁3𝑅𝑅𝑅𝑅�𝑓𝑓(𝜂𝜂)𝑔𝑔′(𝜂𝜂) − 𝑓𝑓′(𝜂𝜂)𝑔𝑔(𝜂𝜂)� = 0    (8) 

 

The appropriate boundary conditions are given as 

 

𝑓𝑓(−1) = 𝑓𝑓′(−1) = 𝑔𝑔(−1) = 0  

𝑓𝑓(1) = 0,𝑓𝑓′(1) = −1,𝑔𝑔(1) = 1         (9) 

 

where (𝑢𝑢, 𝑣𝑣) are velocities along the 𝑥𝑥,𝑦𝑦 axes 
respectibely, 𝜌𝜌 denote the fluid density, 𝜇𝜇 is the 
dynamic viscosity, 𝑁𝑁 is the angular or micro 
rotation velocity, 𝑃𝑃 is the pressure of the fluid, 𝑗𝑗 
represent the micro-inertia density, 𝑘𝑘 denote the 
material parameter and 𝜈𝜈𝑠𝑠 = �𝜇𝜇 + 𝑘𝑘

2
� 𝑗𝑗 

represent the micro rotation viscosity. 

 

Fundamentals of Temimi-Ansari 
method (TAM) 
In accordance with Al-Jawary (2016; 2017) and 
Ebiwareme (2021; 2022), we consider an 
operator form representation of a general 
differential equation as follows: 

 

𝐿𝐿�𝑢𝑢(𝑥𝑥)� + 𝑁𝑁�𝑢𝑢(𝑥𝑥)� + 𝑓𝑓(𝑥𝑥) = 0,   𝑥𝑥𝑥𝑥𝑥𝑥        (10) 

 

𝐵𝐵 �𝑢𝑢, 𝑑𝑑𝜕𝜕
𝑑𝑑𝜕𝜕
� = 0, 𝑥𝑥𝑥𝑥𝜇𝜇           (11) 

 

where 𝑥𝑥 is the independent variable, 𝑢𝑢(𝑥𝑥) is an 
unknown function, 𝑓𝑓(𝑥𝑥) is a given known 
function, 𝐿𝐿 is a linear operator, 𝑁𝑁 is a nonlinear 
operator and 𝐵𝐵 is a boundary operator. 

To implement the standard TAM procedure, we 
seek an initial guess, 𝑢𝑢0(𝑥𝑥) which satisfy Eq. (10) 
subject to the prescribed condition. 

 

𝐿𝐿�𝑢𝑢0(𝑥𝑥)� + 𝑓𝑓(𝑥𝑥) = 0,   𝐵𝐵 �𝑢𝑢0, 𝑑𝑑𝜕𝜕0
𝑑𝑑𝜕𝜕
� = 0        (12) 

 

The second iterative problem is given as follows. 

 

𝐿𝐿�𝑢𝑢1(𝑥𝑥)� + 𝑁𝑁�𝑢𝑢0(𝑥𝑥)� + 𝑓𝑓(𝑥𝑥) = 0, 𝐵𝐵 �𝑢𝑢1, 𝑑𝑑𝜕𝜕1
𝑑𝑑𝜕𝜕
� = 0      (13) 

 

We consider the next iteration as follows. 
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𝐿𝐿�𝑢𝑢2(𝑥𝑥)� + 𝑁𝑁�𝑢𝑢1(𝑥𝑥)� + 𝑓𝑓(𝑥𝑥) = 0, 𝐵𝐵 �𝑢𝑢2, 𝑑𝑑𝜕𝜕2
𝑑𝑑𝜕𝜕
� = 0      (14) 

 

Continuing the same way, we obtain 𝑛𝑛𝑛𝑛ℎ 
iterative procedure to give the subsequent 
iterates as  

 

𝐿𝐿�𝑢𝑢𝑘𝑘+1(𝑥𝑥)� + 𝑁𝑁�𝑢𝑢𝑘𝑘(𝑥𝑥)� + 𝑓𝑓(𝑥𝑥) = 0, 𝐵𝐵 �𝑢𝑢𝑘𝑘+1, 𝑑𝑑𝜕𝜕𝑘𝑘+1
𝑑𝑑𝜕𝜕

� = 0,𝑘𝑘 ≥ 0    (15) 

 

In view of Eq. (15), each 𝑢𝑢𝑘𝑘(𝑥𝑥) is considered 
alone as a solution of Eq. (10). This method is 
easy to implement, straightforward and direct. 
The method gives a better approximate solution 
which converges to the exact solution with only 
few members. 

Computational Procedure using TAM 
In this section, we solve the governing 
dimensionless nonlinear ordinary differential 

equations (7) and (8) with boundary condition 
(9), employing the standard Temimi-Ansari 
technique. We establish an approximate 
analytical solution for the velocity and micro-
rotation profiles in terms of Reynold number, 
coupling parameter, and spin-gradient viscosity 
parameter using Mathematica, a symbolic 
computer program. 

In view of the TAM procedure, we firstly express 
the given equations in operator form as 

 

𝑓𝑓𝑖𝑖𝜕𝜕(𝜂𝜂) = 1
(1+𝜕𝜕1) �𝑁𝑁1𝑔𝑔(𝜂𝜂) + 𝑅𝑅𝑅𝑅�𝑓𝑓(𝜂𝜂)𝑓𝑓′′(𝜂𝜂) − 𝑓𝑓′(𝜂𝜂)𝑓𝑓′′(𝜂𝜂)��     (16) 

 

𝑔𝑔′′(𝜂𝜂) = 1
𝜕𝜕2
�𝑁𝑁3𝑅𝑅𝑅𝑅�𝑓𝑓(𝜂𝜂)𝑔𝑔′(𝜂𝜂) − 𝑓𝑓′(𝜂𝜂)𝑔𝑔(𝜂𝜂)� − 𝑁𝑁1�𝑓𝑓′′(𝜂𝜂) − 2𝑔𝑔(𝜂𝜂)��    (17) 

 

where 𝐿𝐿�𝑓𝑓(𝜂𝜂)� = 𝑓𝑓𝑖𝑖𝜕𝜕(𝜂𝜂),𝑁𝑁�𝑓𝑓(𝜂𝜂)� = 1
(1+𝜕𝜕1) �𝑁𝑁1𝑔𝑔(𝜂𝜂) + 𝑅𝑅𝑅𝑅�𝑓𝑓(𝜂𝜂)𝑓𝑓′′(𝜂𝜂) − 𝑓𝑓′(𝜂𝜂)𝑓𝑓′′(𝜂𝜂)��,  

 

𝑓𝑓(𝜂𝜂) = 0,  𝐿𝐿�𝑓𝑓0(𝜂𝜂)� = 0,𝑓𝑓0(−1) = 0,  𝑓𝑓0′(−1) = 0,𝑓𝑓0′(1) = −1,𝑓𝑓0(1) = 0   (18) 

 

Similarly, 𝐿𝐿�𝑔𝑔(𝜂𝜂)� = 𝑔𝑔′′(𝜂𝜂),𝑁𝑁�𝑔𝑔(𝜂𝜂)� = 1
𝜕𝜕2
�𝑁𝑁3𝑅𝑅𝑅𝑅�𝑓𝑓(𝜂𝜂)𝑔𝑔′(𝜂𝜂) − 𝑓𝑓′(𝜂𝜂)𝑔𝑔(𝜂𝜂)� − 𝑁𝑁1�𝑓𝑓′′(𝜂𝜂) −

2𝑔𝑔(𝜂𝜂)�� 𝑔𝑔(𝜂𝜂) = 0,  𝐿𝐿�𝑔𝑔0(𝜂𝜂)� = 0,𝑔𝑔0(1) = 1,  𝑔𝑔0(−1) = 0     (19) 

 

The first problems to be solved are given as follows. 

 

 𝐿𝐿�𝑓𝑓0(𝜂𝜂)� = 0, 𝐿𝐿�𝑔𝑔0(𝜂𝜂)� = 0         (20) 

 

Solving Eq. (20) gives the first iterative solution given as 
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𝑓𝑓0(𝜂𝜂) = 𝛿𝛿1 + 𝛿𝛿2𝜂𝜂 + 𝛿𝛿3
𝜂𝜂2

2
+ 𝛿𝛿4

𝜂𝜂3

6
  

 

𝑔𝑔0(𝜂𝜂) = 𝛼𝛼1 + 𝛼𝛼1𝜂𝜂           (21) 

 

The second problem to be solved is given by. 

 

𝑓𝑓1𝑖𝑖𝜕𝜕(𝜂𝜂) = 𝑁𝑁�𝑓𝑓0(𝜂𝜂)�,𝑓𝑓1(−1) = 0,  𝑓𝑓1′(−1) = 0,𝑓𝑓1′(1) = −1,𝑓𝑓1(1) = 0  

 

𝑔𝑔1′′(𝜂𝜂) = 𝑁𝑁�𝑔𝑔0(𝜂𝜂)�,𝑔𝑔1(1) = 1,  𝑔𝑔1(−1) = 0         (22) 

Integrating both sides of Eq. (22) from 0 to 𝜂𝜂 four times for 𝑓𝑓1(𝜂𝜂) and 𝑔𝑔1(𝜂𝜂), we have the expressions. 

𝑓𝑓1(𝜂𝜂) = 1
1+𝜕𝜕1

∫ ∫ ∫ ∫ �𝑁𝑁1𝑔𝑔0(𝜂𝜂) + 𝑅𝑅𝑅𝑅�𝑓𝑓0(𝜂𝜂)𝑓𝑓0′′(𝜂𝜂) − 𝑓𝑓0′(𝜂𝜂)𝑓𝑓0′′(𝜂𝜂)��𝜂𝜂
0 𝑑𝑑𝜂𝜂𝑑𝑑𝜂𝜂𝑑𝑑𝜂𝜂𝑑𝑑𝜂𝜂𝜂𝜂

0
𝜂𝜂
0

𝜂𝜂
0   (23) 

 

𝑔𝑔1(𝜂𝜂) = 1
𝜕𝜕2
∫ ∫ �𝑁𝑁3𝑅𝑅𝑅𝑅�𝑓𝑓0(𝜂𝜂)𝑔𝑔0′ (𝜂𝜂) − 𝑓𝑓0′(𝜂𝜂)𝑔𝑔0(𝜂𝜂)� − 𝑁𝑁1�𝑓𝑓0′′(𝜂𝜂) − 2𝑔𝑔0(𝜂𝜂)��𝑑𝑑𝜂𝜂𝑑𝑑𝜂𝜂𝜂𝜂

0
𝜂𝜂
0   (24) 

 

Following the same procedure, the third problem to be solved is given as 

 

𝑓𝑓2𝑖𝑖𝜕𝜕(𝜂𝜂) = 𝑁𝑁�𝑓𝑓1(𝜂𝜂)�,𝑓𝑓2(−1) = 0,  𝑓𝑓2′(−1) = 0,𝑓𝑓2′(1) = −1,𝑓𝑓2(1) = 0 

 

𝑔𝑔2′′(𝜂𝜂) = 𝑁𝑁�𝑔𝑔1(𝜂𝜂)�,𝑔𝑔2(1) = 1,  𝑔𝑔2(−1) = 0        (25) 

 

Integrating both sides of Eq. (25) from 0 to 𝜂𝜂 four times for 𝑓𝑓1(𝜂𝜂) and 𝑔𝑔1(𝜂𝜂), we have the expressions. 

 

𝑓𝑓2(𝜂𝜂) = 1
1+𝜕𝜕1

∫ ∫ ∫ ∫ �𝑁𝑁1𝑔𝑔1(𝜂𝜂) + 𝑅𝑅𝑅𝑅�𝑓𝑓1(𝜂𝜂)𝑓𝑓1′′(𝜂𝜂) − 𝑓𝑓1′(𝜂𝜂)𝑓𝑓1′′(𝜂𝜂)��𝜂𝜂
0 𝑑𝑑𝜂𝜂𝑑𝑑𝜂𝜂𝑑𝑑𝜂𝜂𝑑𝑑𝜂𝜂𝜂𝜂

0
𝜂𝜂
0

𝜂𝜂
0   (26) 

𝑔𝑔2(𝜂𝜂) = 1
𝜕𝜕2
∫ ∫ �𝑁𝑁3𝑅𝑅𝑅𝑅�𝑓𝑓1(𝜂𝜂)𝑔𝑔1′ (𝜂𝜂) − 𝑓𝑓1′(𝜂𝜂)𝑔𝑔1(𝜂𝜂)� − 𝑁𝑁1�𝑓𝑓1′′(𝜂𝜂) − 2𝑔𝑔1(𝜂𝜂)��𝑑𝑑𝜂𝜂𝑑𝑑𝜂𝜂𝜂𝜂

0
𝜂𝜂
0   (27) 

 

The approximation solution for the velocity and micro-rotation profiles are given by the expressions. 

 

𝑓𝑓(𝜂𝜂) = ∑ 𝑓𝑓𝑛𝑛(𝜂𝜂) = 𝑓𝑓0(𝜂𝜂) + 𝑓𝑓1(𝜂𝜂) + 𝑓𝑓2(𝜂𝜂) + ⋯∞
𝑛𝑛=0 𝑔𝑔(𝜂𝜂) = ∑ 𝑔𝑔𝑛𝑛(𝜂𝜂) = 𝑔𝑔0(𝜂𝜂) + 𝑔𝑔1(𝜂𝜂) +∞

𝑛𝑛=0
𝑔𝑔2(𝜂𝜂) + ⋯            (28) 
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Results and Discussions 
In this section, we present the approximate 
analytical results obtained in solving the 
nonlinear ordinary differential equations 
resulting from the nondimensionalization of the 
model equations. To demonstrate the accuracy, 
dependability, and convergence, we compare the 
results obtained using Temimi-Ansari method 

with the numerically obtained solution using 
Keller Box Scheme. The characteristics of the 
diversified parameters on the velocity and micro-
rotation profiles are presented graphically and in 
tables. The results obtained in this study have 
excellent agreement with results in literature 
which proves the validity and efficiency of the 
semi-analytical technique. 

 

Table 1. Comparison between numerical result, VPM, ADM and TAM Solutions for 𝑓𝑓(𝜂𝜂)  
and 𝑔𝑔(𝜂𝜂) profiles when 𝑅𝑅𝑅𝑅=0.25, 𝑁𝑁1=𝑁𝑁2=𝑁𝑁3=0.5 

𝜂𝜂 𝑓𝑓(𝜂𝜂) 𝑔𝑔(𝜂𝜂) 
Keller Box 

Scheme 
VPM ADM TAM Keller Box 

Scheme 
VPM ADM TAM  

0.00 0.000000 0.000000 0.000000 0.0000000 0.000000 0.000000 0.000000 0.000000 
0.10 0.150798 0.150798 0.150798 0.150798 -0.040795 -0.040795 -0.040795 -0.040795 
0.20 0.298451 0.298451 0.298451 0.298451 -0.079260 -0.079260 -0.079260 -0.079260 
0.30 0.439825 0.439825 0.439825 0.439825 -0.113030 -0.113030 -0.113030 -0.113030 
0.40 0.571811 0.571811 0.571811 0.571811 -0.139680 -0.139680 -0.139680 -0.139680 
0.50 0.691341 0.691341 0.691341 0.691341 -0.156700 -0.156700 -0.156700 -0.156700 
0.60 0.795401 0.7915401 0.7915401 0.7915401 -0.161460 -0.161460 -0.161460 -0.161460 
0.70 0.881059 0.881059 0.881059 0.881059 -0.151210 -0.151210 -0.151210 -0.151210 
0.80 0.945482 0.945482 0.945482 0.945482 -0.122990 -0.122990 -0.122990 -0.122990 
0.90 0.985973 0.985973 0.985973 0.985973 -0.073700 -0.073700 -0.073700 -0.073700 
1.00 1.000000 1.000000 1.00000 1.00000 0.000000 0.000000 0.000000 0.000000 

 

Table 2. Comparison between numerical result, OHAM, DTM and TAM Solutions for 𝑓𝑓(𝜂𝜂) 
and 𝑔𝑔(𝜂𝜂) profiles when 𝑅𝑅𝑅𝑅=0.25, 𝑁𝑁1=𝑁𝑁2=𝑁𝑁3=0.5 

𝜂𝜂 𝑓𝑓(𝜂𝜂) 𝑔𝑔(𝜂𝜂) 
Keller Box 

Scheme 
OHAM DTM TAM  Keller Box 

Scheme 
OHAM DTM TAM  

0.00 0.000000 0.000000 0.0000000 0.0000000 0.000000 0.000000 0.000000 0.000000 
0.10 0.150798 0.149991 0.149991 0.149991 -0.040795 -0.040103 -0.040103 -0.040103 
0.20 0.298451 0.296953 0.296953 0.296953 -0.079260 -0.077978 -0.077978 -0.077978 
0.30 0.439825 0.437849 0.437849 0.437849 -0.113030 -0.111348 -0.111348 -0.111348 
0.40 0.571811 0.569633 0.569633 0.569633 -0.139680 -0.137845 -0.137845 -0.137845 
0.50 0.691341 0.689251 0.689251 0.689251 -0.156700 -0.154969 -0.154969 -0.154969 
0.60 0.795401 0.793657 0.793657 0.793657 -0.161460 -0.160059 -0.160059 -0.160059 
0.70 0.881059 0.879835 0.879835 0.879835 -0.151210 -0.150267 -0.150267 -0.150267 
0.80 0.945482 0.944829 0.944829 0.944829 -0.122990 -0.122540 -0.122540 -0.122540 
0.90 0.985973 0.985783 0.985783 0.9857831 -0.073700 -0.073611 -0.073611 -0.073611 
1.00 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000 0.000000 0.000000 

 

Table 3. Comparison between numerical result, AGM, HAM, and TAM Solutions for 𝑓𝑓(𝜂𝜂) 
and 𝑔𝑔(𝜂𝜂) profiles when 𝑅𝑅𝑅𝑅=0.25, 𝑁𝑁1=𝑁𝑁2=𝑁𝑁3=0.5 

𝜂𝜂 𝑓𝑓(𝜂𝜂) 𝑔𝑔(𝜂𝜂) 
Keller Box 

Scheme 
AGM HAM TAM  Keller Box 

Scheme 
AGM HAM TAM  

0.00 0.0924003 0.0924003 0.0924003 0.0924003 0.0924004 0.0924004 0.0924004 0.0924004 
0.10 0.1046310 0.1046310 0.1046310 0.1046310 0.1120970 0.1120970 0.1120970 0.1120970 
0.20 0.1080870 0.1080870 0.1080870 0.1080870 0.1405680 0.1405680 0.1405680 0.1405680 
0.30 0.1006590 0.1006590 0.1006590 0.1006590 0.1799230 0.1799230 0.1799230 0.1799230 
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0.40 0.0800048 0.0800048 0.0800048 0.0800048 0.2325040 0.2325040 0.2325040 0.2325040 
0.50 0.0435011 0.0435011 0.0435011 0.0435011 0.3009360 0.3009360 0.3009360 0.3009360 
0.60 -0.0118118 -0.0118118 -0.0118118 -0.0118118 0.3881780 0.3881780 0.3881780 0.3881780 
0.70 -0.0892912 -0.0892912 -0.0892912 -0.0892912 0.4975910 0.4975910 0.4975910 0.4975910 
0.80 -0.1927610 -0.1927610 -0.1927610 -0.1927610 0.6330060 0.6330060 0.6330060 0.6330060 
0.90 -0.3265860 -0.3265860 -0.3265860 -0.3265860 0.7988030 0.7988030 0.7988030 0.7988030 
1.00 -0.4957600 -0.4957600 -0.4957600 -0.4957600 0.9999990 0.9999990 0.9999990 0.9999990 

 

Table 4. Comparison between numerical result, OHAM, DTM and TAM Solutions for 𝑓𝑓(𝜂𝜂) 
and 𝑔𝑔(𝜂𝜂) profiles when 𝑅𝑅𝑅𝑅=0.25, 𝑁𝑁1=𝑁𝑁2=𝑁𝑁3=0.5 

𝜂𝜂 𝑓𝑓(𝜂𝜂) 𝑔𝑔(𝜂𝜂) 
Keller Box 

Scheme 
SQLM FEM TAM  Keller Box 

Scheme 
SQLM FEM TAM  

0.00 0.000000 0.000000 0.0000000 0.0000000 0.000000 0.000000 0.000000 0.000000 
0.10 0.150798 0.149991 0.149991 0.149991 -0.040795 -0.040103 -0.040103 -0.040103 
0.20 0.298451 0.296953 0.296953 0.296953 -0.079260 -0.077978 -0.077978 -0.077978 
0.30 0.439825 0.437849 0.437849 0.437849 -0.113030 -0.111348 -0.111348 -0.111348 
0.40 0.571811 0.569633 0.569633 0.569633 -0.139680 -0.137845 -0.137845 -0.137845 
0.50 0.691341 0.689251 0.689251 0.689251 -0.156700 -0.154969 -0.154969 -0.154969 
0.60 0.795401 0.793657 0.793657 0.793657 -0.161460 -0.160059 -0.160059 -0.160059 
0.70 0.881059 0.879835 0.879835 0.879835 -0.151210 -0.150267 -0.150267 -0.150267 
0.80 0.945482 0.944829 0.944829 0.944829 -0.122990 -0.122540 -0.122540 -0.122540 
0.90 0.985973 0.985783 0.985783 0.9857831 -0.073700 -0.073611 -0.073611 -0.073611 
1.00 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000 0.000000 0.000000 
 

  
Figure 2. Variation in velocity profile when 

𝑵𝑵𝟏𝟏 = 𝑵𝑵𝟐𝟐 = 𝟏𝟏,𝑵𝑵𝟑𝟑 = 𝟎𝟎.𝟏𝟏,𝑹𝑹𝑹𝑹 = 𝟏𝟏 
Figure 3. Effect of velocity profile for 

different values of 𝑹𝑹𝑹𝑹 when 𝑵𝑵𝟏𝟏 = 𝑵𝑵𝟐𝟐 =
𝟏𝟏,𝑵𝑵𝟑𝟑 = 𝟎𝟎.𝟏𝟏,𝑹𝑹𝑹𝑹 = 𝟏𝟏 
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Figure 4. Influence of 𝑵𝑵𝟏𝟏 on velocity profile 
when 𝑵𝑵𝟏𝟏 = 𝑵𝑵𝟐𝟐 = 𝟏𝟏,𝑵𝑵𝟑𝟑 = 𝟎𝟎.𝟏𝟏,𝑹𝑹𝑹𝑹 = 𝟏𝟏 

Figure 5. Effect of 𝑵𝑵𝟐𝟐 on velocity profile 
when 𝑵𝑵𝟏𝟏 = 𝑵𝑵𝟐𝟐 = 𝟏𝟏,𝑵𝑵𝟑𝟑 = 𝟎𝟎.𝟏𝟏,𝑹𝑹𝑹𝑹 = 𝟏𝟏 

  
Figure 6. Variation of rotation profile for 

𝑵𝑵𝟏𝟏 = 𝑵𝑵𝟐𝟐 = 𝟏𝟏,𝑵𝑵𝟑𝟑 = 𝟎𝟎.𝟏𝟏,𝑹𝑹𝑹𝑹 = 𝟏𝟏 
Figure 7. Influence of Reynold number on 
micro-rotation when 𝑵𝑵𝟏𝟏 = 𝑵𝑵𝟐𝟐 = 𝟏𝟏,𝑵𝑵𝟑𝟑 =

𝟎𝟎.𝟏𝟏,𝑹𝑹𝑹𝑹 = 𝟏𝟏 

  
Figure 8. Influence of 𝑵𝑵𝟐𝟐 on micro-rotation 

when 𝑵𝑵𝟏𝟏 = 𝑵𝑵𝟑𝟑 = 𝟏𝟏,𝑹𝑹𝑹𝑹 = 𝟏𝟏 
Figure 9. Influence of 𝑵𝑵𝟏𝟏 on micro-rotation 

when 𝑵𝑵𝟐𝟐 = 𝑵𝑵𝟑𝟑 = 𝟏𝟏,𝑹𝑹𝑹𝑹 = 𝟏𝟏 

 
Figure 10. Influence of 𝑵𝑵𝟑𝟑 on micro-rotation when 𝑵𝑵𝟏𝟏 = 𝑵𝑵𝟐𝟐 = 𝟏𝟏,𝑹𝑹𝑹𝑹 = 𝟏𝟏 

 

The convergence of the Temimi-Ansari 
technique with the numerical scheme (Keller 
Box method) and other semi-analytical methods 
for the velocity profile is displayed in Figure 2. It 

is clear that the result agrees with various other 
methods, including the Abkari-Ganji method 
(AGM), the Spectral Quasilinearization method 
(SQLM), the Finite Element method (FEM), the 
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Adomian decomposition method (ADM), the 
Differential transform method (DTM), the 
Homotopy analysis method (HAM), and the 
optimal homotopy asymptotic method 
(OHAM). 

In figure 3, the impact of Reynold number on 
the velocity profile is presented. We observe that 
increasing the value of the Reynold number lead 
to deceleration in the velocity profile. The 
influence of 𝑁𝑁1 on the velocity distribution is 
given in figure 4. The finding reveals that, the 
velocity profile plumets by increase in the value 
of the 𝑁𝑁1 parameter. 

The varying effect of the 𝑁𝑁2 parameter on the 
velocity profile is shown in Figure 5. The results 
show that raising the 𝑁𝑁1 value causes the velocity 
profile to increase 

Figure 6 shows the convergence of the Adomian 
decomposition approach, Temimi-Ansari 
method (TAM), variation of parameter method 
(VPM), and optimal homotopy asymptotic 
method (OHAM) on the micro-rotation profile 
with numerical scheme (Keller Box scheme). 
The outcome made it abundantly  clear that the 
solution obtained by applying the suggested 
technique agreed with the findings of other 
approaches. 

The micro-rotation profile's characteristics are 
shown in Figures 7–10 under different 
conditions, including Reynold number, 𝑁𝑁1, 𝑁𝑁2, 
and 𝑁𝑁3. We observed that the micro-rotation 
profile decreased with rising values of Reynold 
number (𝑅𝑅𝑅𝑅), 𝑁𝑁1 and 𝑁𝑁2, while the micro-
rotation profile increased with increasing 𝑁𝑁2 
parameter. 

 

Conclusion 
Approximate analytical Solution of the 
micropolar fluid problem passing through a 
porous permeable channel is examined in this 
study. A novel semi-analytical technique known 
as Temimi-Ansari method is implemented to 
solve the nonlinear equations upon similarity 
transformation. Using graphical representation, 
the characterises of the flow distributions are 
illustrated as they are affected by the parameters 

entering the flow model. Based on our findings, 
the conclusions of the study are summarized as 
follows. 

• The result obtained using TAM agree 
with results of other studies as see in figures 1 
and 6. 

• Increasing values of Reynold number 
cause a decrement in the velocity profile. 

• The effect of increased in the values of 
𝑁𝑁1 cause a decrease in the velocity profile. 

• The velocity profile increased by increase 
in the values of 𝑁𝑁2. 

• It is observed that increasing values of 
the Reynold lead to a decrease in the micro-
rotation profile of the flow. 

• Increase in 𝑁𝑁2 lead to an increase in the 
micro- rotation profile. 

• Increase in the parameter 𝑁𝑁1 lead to a 
decrease in the micro-rotation profile. 

• Micro-rotation profile decreased with an 
increase in the 𝑁𝑁3 parameter. 
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Appendix 1 
Nomenclature 

Symbols  Definition 

𝐶𝐶   Specie concentration 

𝑥𝑥∗   thermal conductivity and molecular diffusivity 

𝑓𝑓   Dimensionless stream functi 

𝑔𝑔   Dimensionless microrotation 

ℎ   Half width of the channel 

𝑗𝑗   Micro-inertia density 

𝑁𝑁   microrotation/angular velocity 

𝑁𝑁1,2,3   Dimensionless parameters 

𝛿𝛿1, 𝛿𝛿2, 𝛿𝛿3, 𝛿𝛿4  Undetermined constants  

𝛼𝛼1,𝛼𝛼2   Undetermined constants 

𝑁𝑁𝜕𝜕𝜕𝜕   Local Nusselt number 

𝑆𝑆ℎ𝜕𝜕   Local Sherwood number 

𝑃𝑃   pressure 

𝑃𝑃𝑃𝑃   Prandtl number 

𝑞𝑞   mass transfer parameter 

𝑅𝑅𝑅𝑅   Reynold number 

𝑇𝑇   Fluid temperature 

𝑠𝑠   microrotation boundary condition 

(𝑢𝑢, 𝑣𝑣)   Cartesian velocity components 

(𝑥𝑥,𝑦𝑦)  Cartesian coordinate components parallel and normal to channel axis. 

Greek Symbols 

𝜂𝜂   Similarity variable 

𝜇𝜇   dynamic viscosity 

𝜌𝜌   Fluid density 

𝜓𝜓   stream function 

𝜎𝜎   electric conductivity 

𝜃𝜃   dimensionless temperature 

𝜙𝜙   dimensionless mass transfer parameter 

𝑘𝑘   coupling coefficient 

𝜈𝜈𝑠𝑠   microrotation/spin-gradient viscosity 



 

   

          
www.ejtas.com                                                                     EJTAS                    2024 | Volume 2 | Number 1 

17  

Abbreviation 

VPM   Variation of parameter method 

OHAM  Optimal Homotopy asymptotic method 

DTM   Differential transformation method 

ADM   Adomian decomposition method 

TAM   Temimi-Ansari method 

HAM   Homotopy analysis method 

FEM   Finite Element method 

AGM   Abkari-Ganji method 

SQLM   Spectral Quasilinearisation method 

 


