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The neuroimmunology of traumatic brain injury (TBI) has recently gained

recognition as a crucial element in the secondary pathophysiological

consequences that occur following neurotrauma. Both immune cells residing

within the central nervous system (CNS) and those migrating from the periphery

play significant roles in the development of secondary brain injury. However,

the precise mechanisms governing communication between innate and adaptive

immune cells remain incompletely understood, partly due to a limited utilization

of relevant experimental models and techniques. Therefore, in this discussion,

we outline current methodologies that can aid in the exploration of TBI

neuroimmunology, with a particular emphasis on the interactions between

resident neuroglial cells and recruited lymphocytes. These techniques encompass

adoptive cell transfer, intra-CNS injection(s), selective cellular depletion, genetic

manipulation, molecular neuroimaging, as well as in vitro co-culture systems and

the utilization of organoid models. By incorporating key elements of both innate

and adaptive immunity, these methods facilitate the examination of clinically

relevant interactions. In addition to these preclinical approaches, we also detail

an emerging avenue of research that seeks to leverage human biofluids. This

approach enables the investigation of how resident and infiltrating immune cells

modulate neuroglial responses after TBI. Considering the growing significance

of neuroinflammation in TBI, the introduction and application of advanced

methodologies will be pivotal in advancing translational research in this field.
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Introduction

Traumatic brain injury (TBI) continues to be a leading cause of
morbidity and mortality (Maas et al., 2008). Globally, it is estimated
that 69 million individuals are diagnosed with TBI annually
(Hammond F. M. et al., 2019), among which approximately 1.7
million occur in the United States (Georges and Das, 2023). The
socioeconomic burden of TBI is profound given its association
with mortality and debilitating chronic neurological, psychological
and cardiovascular (Izzy et al., 2022). Neurodegeneration plays an
important role in the pathogenesis of TBI (McKee et al., 2015) and
is governed by an array of molecular and cellular mechanisms that
ultimately contribute to the development of neurocognitive deficits
among TBI survivors (Abou-El-Hassan et al., 2017a).

It is prudent to note that TBI is heterogeneous in nature
and the underlying pathobiology is inherently complex (Jassam
et al., 2017). TBI causes a primary injury followed by a secondary
biochemical and cellular response, which involves the induction
of the neuroinflammatory response (Jassam et al., 2017). The
neuroglia present within the central nervous system (CNS), that
play a pivotal role in maintaining neuroglial homeostasis and
neurovascular integrity (Nasser et al., 2016; Abou-El-Hassan et al.,
2017b, 2020; Nokkari et al., 2018), can be activated and altered in
the setting of traumatic injuries. The infiltration of immune cells
from the periphery (e.g., T cells) and their ultimate pathologic
crosstalk with neuroglia further facilitates TBI pathology and
neurodegeneration (Jassam et al., 2017; Abou-El-Hassan et al.,
2023). The involvement of microglia, infiltrated monocytes and
leucocytes have been observed in animal and human TBI studies.
However, the investigations in TBI have been hampered by the lack
of the understanding of the exact mechanisms governing innate-
adaptive immune response crosstalk (i.e., between lymphocytes and
neuroglia, such as microglia and astrocytes) and limited utilization
of relevant experimental models/methods.

Traumatic brain injury (TBI) survivors suffer from long-term
disabling impairments in cognition, sensorimotor function, and
behavioral changes (Lipton et al., 2008; Galea et al., 2022). Several
animal models of TBI, as detailed elsewhere (Xiong et al., 2013),
have been developed over the past decades to mimic the various
types and severities of human brain injuries. TBI models are either
open head injury by subjecting the animal to a physical injury
directly to the actual brain parenchyma such as the controlled
cortical impact (CCI) model, or a closed head injury model whereby
the brain tissue is spared from any direct injury such as the weight
drop model. Altogether, such models have been developed to
recapitulate the various aspects of acute and chronic characteristics
of TBI at the cellular and phenotypic levels with the goal of better
understanding the underlying TBI pathophysiology and help guide
the development of neurotherapeutics. Nevertheless, experimental
drugs that were found to be neuroprotective at the preclinical stage,
have failed in the advanced phases of TBI clinical trials. This failure
at the translational level provides compelling evidence on the need
to revisit the current status of models and methods of pertaining to
TBI investigations.

Accordingly, herein we describe methods and approaches
capable of facilitating the study of the neuroimmunology
underlying TBI with a focus on neuroglia-lymphocyte crosstalk.
These methods include adoptive cell transfer, intra-CNS injections,

cell depletion, tissue- and temporal-specific genetic manipulations,
molecular neuroimaging as well as in vitro co-culture systems
(Figure 1). It is important to note that this body of work is not
meant to serve as a systematic review of the neuroimmunology of
TBI as has been described elsewhere (Jassam et al., 2017; Bouras
et al., 2022) but rather a methodological overview of the approaches
currently used to study TBI neuroimmunology with an eye toward
the future (i.e., both preclinical and clinical).

Adoptive cell transfer

Adoptive cell transfer (ACT) is one of the commonly employed
experimental techniques in immunology. This method involves
isolating a specific cell population and subsequently introducing
it into a recipient host. In animal models of disease, this transfer
is typically accomplished through intravenous or intraperitoneal
routes (direct intra-CNS injection, referred to as “CNS ACT,”
is discussed separately below) (Rosenberg et al., 2008). Before
the transfer, the isolated cell population may undergo culture in
suitable media for a certain period. However, with today’s cell
sorting technology, it’s possible to immediately isolate and transfer
live cells, bypassing the need for ex vivo culturing steps (Baron et al.,
2019). In cases where a substantial number of cells is required for
ACT, expansion through cell culture is often essential.

Historically, ACT-based immunotherapy was first described
in 1988 for the treatment of patients with metastatic melanoma
(Dudley et al., 2005). For example, clonal repopulation of tumor-
infiltrating lymphocytes have been used in such oncological
applications (Dudley et al., 2002) along with the use of autologous
regulatory T cells (Tregs) in autoimmune diseases (Bluestone et al.,
2015; Canavan et al., 2016). Since then, several modifications
have been suggested/employed whereby donor cells are modified
in an effort to amplify their desired therapeutic role(s). More
recently, lymphocytes were genetically modified to identify
immune antigens to facilitate the disease regression (Morgan
et al., 2006). For example, tumor regression was observed in mice
receiving engineered splenocytes expressing an anti-melanoma
T-cell receptor (TCR) (Abad et al., 2008) and prevention of allograft
rejection was achieved using chimeric antigen receptor (CAR) Treg
cell therapy in experimental allogeneic transplantation (Noyan
et al., 2017).

Given the correlation between T cell infiltration and
neurodegeneration (Daglas et al., 2019) in addition to our
work centered on defining the role(s) of lymphocyte subsets in
TBI (Abou-El-Hassan et al., 2023), it is imperative to further
highlight methods capable of integrating/exploring immunological
mechanisms driving the sequela of brain injury. In the setting
of TBI, very few studies have attempted ACT of T cells or
T cell subsets (Table 1). These include three main studies,
described below, investigating the effect of adoptively transferring
CD4+CD62LlowCD44high T cells (Fee et al., 2003), bone marrow-
derived monocytes (Braun et al., 2017), and γδ T cell subsets
(Abou-El-Hassan et al., 2023) after TBI.

Knowing that the adaptive immune system is activated in
TBI (Jassam et al., 2017), the adoptive transfer of effector
CD4+CD62LlowCD44high T cells 24 h prior to injury into
RAG1−/− mice (which do not contain mature B or T cells),
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FIGURE 1

Experimental methods to study the neuroimmunology of TBI. Neuroimmunology methods include adoptive cell transfer, cell depletion, intra-CNS
injections, genetic engineering, co-culture systems and molecular imaging. Created with biorender.com.

resulted in significant worsening of the cerebral injury at 24 h
after TBI as compared to control C57BL/6 control mice (Fee et al.,
2003); in contrast, transfer of CD4+CD62LhighCD44low T cells did
not result in the degree of injury. This is consistent with the
fact that CD44 has been used as a prominent activation marker
that distinguishes effector T cells from their naïve counterparts
(Schumann et al., 2015). Of note, the transferred cells were also
found to localize around the lesion site post-injury confirming
their direct effect(s) within the perilesional brain tissue. While
these results did not detail the interaction between neuroglia
and CD4+CD62LlowCD44high T cells, these findings suggest the
involvement of the adaptive immune system in acute TBI, where
specific CD4 T cell subsets are capable of driving pathogenic
inflammation (Guan et al., 2011).

Beyond driving injury, the subset of T cells that have
been shown capable of ameliorating neuroinflammation after
TBI is Tregs. Tregs are known to play an important role
in buffering/modulating inflammation (Vignali et al., 2008).
In animal models of stroke (Li et al., 2013), post-stroke
hemorrhage (Mao L. et al., 2017) and intracerebral hemorrhage
(Mao L.-L. et al., 2017), the adoptive transfer of Tregs has
reduced neuroinflammation and improved preclinical outcomes.
Unfortunately, such investigation(s) have not been extended to
experimental TBI but given the underlying biology it would be
reasonable to expect similar outcome(s). The increased number
of activated macrophages following the adoptive transfer of
monocytes warrants potentiating the regulatory arm of the
adaptive immune system to alleviate the TBI neuropathology
(Braun et al., 2017). Further, given that in stroke patients,
the number of circulating Tregs decreases dramatically post-
stroke (Urra et al., 2009), investigating whether Tregs and

the regulatory factors produced, such as IL-10 or TGF-β,
ameliorate resultant neuroinflammation/neurodegeneration after
TBI is clearly warranted (Jassam et al., 2017).

Recent work has also shed light on gamma-delta (γδ) T cells
as major drivers of neuroinflammation (Shichita et al., 2009;
Sun et al., 2018). γδ T cells are more abundant in non-CNS
compartments and their frequency is lower than that of αβ T
cells within the CNS (Rezende et al., 2018). Our lab has recently
reported on the opposing roles of γδ T cell subsets, Vγ1 and
Vγ4, after TBI (Abou-El-Hassan et al., 2023). We found that Vγ1
γδ T cells are protective due to the secretion of TGF-β whereas
Vγ4 γδ T cells potentiate pathogenic inflammation following
TBI via the secretion IFN-γ and IL-17. In fact, the adoptive
transfer of Vγ1 γδ T cells into injured TCRδ−/− mice ameliorated
neuroinflammation whereas the adoptive transfer of Vγ4 γδ T cells
worsened neuroinflammation (Abou-El-Hassan et al., 2023). We
found that Vγ1 γδ T cells crosstalk with microglia resulting in a
decrease in microglial stress genes along with an upregulation of
homeostatic genes. In line with such findings, the adoptive transfer
of Vγ1 γδ T cells into injured wild-type mice improved neurological
function after TBI.

The referenced studies that employed ACT provided evidence
related to the involvement of the adaptive immunity system in TBI.
The temporal role of the adaptive immune system throughout the
natural course of TBI is not fully understood and time-specific
ACT-based immunoassays would help to further investigate
the roles of the adaptive immune cells. Further immunoassays
and applications would include transwell co-culture assays, cell
death assays and phagocytosis assays. In acute TBI thus far,
isolating Tregs or Vγ1 γδ T cells from patients hospitalized
with acute TBI and re-administering such cells into those same
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TABLE 1 A sample of TBI neuroimmunology studies categorized by methodological approach.

Intervention Method Timepoint Number of
cells/dose

Model of TBI Recipient
species

Outcomes References

Adoptive transfer

CD4+CD62LlowCD44high T
cells from spleen

ICV injection 24 h prior to injury 2× 106 cells per mouse aseptic cerebral injury RAG1−/− mice Worsened cerebral injury at
24 h post-injury

Fee et al., 2003

CD11b+ CD68+ F4/80+

macrophages from bone
marrow and spleen

ICV injection Onset of TBI 2× 105 cells per mouse CCI C57BL/6J mice Increased polarization of M1
macrophages at 72 h
post-injury

Braun et al., 2017

Vγ1 γδ T cells from spleen IV injection Onset of TBI 5× 105 cells per mouse CCI TCRδ−/− mice Modulated
neuroinflammation at 48 h
post-injury

Abou-El-Hassan et al.,
2023

Vγ4 γδ T cells from spleen IV injection Onset of TBI 5× 105 cells per mouse CCI TCRδ−/− mice Worsened
neuroinflammation at 48 h
post-injury

Abou-El-Hassan et al.,
2023

Cell depletion

Anti-CD8 depletion antibody IP injection (day 1–3), day 8 and 15.
4 weeks after TBI

0.1 mg in 200 µL CCI C57BL/6J mice Improved neurological
recovery at between 4 and
8 weeks post-injury.

Daglas et al., 2019

Macrophage/microglia
depletion using clodronate
liposomes

IP injection 3 straight days prior to
TBI

5 mg/mL in 200 µL CCI C57BL/6J mice Reduced Th1/Th17
polarization at 72 h
post-injury in brain and
blood

Braun et al., 2017

Anti-Vγ1 depletion antibody IP injection 24 h before TBI 200 µg in 200 µL CCI TCRδ−/− mice Modulated
neuroinflammation at 48 h
post-injury

Abou-El-Hassan et al.,
2023

Anti-Vγ4 depletion antibody IP injection 24 h before TBI 200 µg in 200 µL CCI TCRδ−/− mice Reduced neuroinflammation
at 48 h post-injury

Abou-El-Hassan et al.,
2023

Diphtheria toxin-induced
depletion of Tregs

IP injection 24 h before and 24 h after
TBI

1 µg CCI C57BL/6J DEREG-
mice

Worsened
neuroinflammation and
neurological score between 1
and 5 days post-injury

Krämer et al., 2019

Anti-CD25 depletion
antibody

IP injection 48 h prior to TBI 200 µg CCI C57BL/6J Enlarged lesion volume and
exacerbated sensorimotor
deficits at 5 days post-injury

Xie et al., 2022

Anti-Gr-1 depletion antibody IP injection 12 h prior and 12 h after
TBI

100 µg CCI C57BL/6J mice Reduced edema at 24 h/48 h.
Reduced
microglia/macrophage
activation at 7 days and
reduced lesion volume at 7-
and 14-days post TBI.

Kenne et al., 2012
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Fro
n

tie
rs

in
C

e
llu

lar
N

e
u

ro
scie

n
ce

0
4

fro
n

tie
rsin

.o
rg

https://doi.org/10.3389/fncel.2023.1322325
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-17-1322325
D

ecem
ber8,2023

Tim
e:12:16

#
5

A
b

o
u

-E
l-H

assan
e

t
al.

10
.3

3
8

9
/fn

ce
l.2

0
2

3
.13

2
2

3
2

5
TABLE 1 (Continued)

Intervention Method Timepoint Number of
cells/dose

Model of TBI Recipient
species

Outcomes References

Valganciclovir-induced
CD11b+ depletion

ICV osmotic pump 7 days before and 7 or
21 days after TBI

(low)1 mg/mL
(Inter)10 mg/mL
(High)50 mg/mL

rCHI CD11b-TK (thymidine
kinase) mice

No effect on silver staining,
amyloid precursor protein
accumulation,
neurofilament labeling, or
axonal injury

Bennett and Brody, 2014

Diphtheria toxin-induced
depletion of CD11b+ cells

IP injection 24 h before and 24 h after
TBI

20 ng/g CCI CD11b-DTR mice Increase in proinflammatory
gene expression in the brain
at 48/72 h after injury.

Frieler et al., 2015

Macrophage/microglia
depletion using clodronate
liposomes

IC injection 24 h after TBI 10 µL of 5 mg/ml CCI Sprague-Dawley rat pups Increased
neurodegeneration at 3 days
and fluoro-Jade B reactivity
at 2–4 weeks post-injury.

Hanlon et al., 2019

Macrophage/monocyte
depletion using clodronate
liposomes

IV injection 18 h before or 18 h
before/after and 3 days
after TBI

10 µL/g Body weight CCI C57BL/6J mice Abrogated the
neuroprotective effects of
B-cell adoptive cell transfer

Dwyer et al., 2023

Direct intra-CNS injection

B cell injection Intraparenchymal at
lesion site

Immediately before TBI 2.5× 106 cells per mouse CCI C57BL/6J mice Reduced lesion volume,
microglia and astrocyte
activation, and motor and
memory up to 35 days post
TBI

Sîrbulescu et al., 2019

B cell injection Intraparenchymal at
lesion site

Immediately before TBI 2.5× 106 cells per mouse CCI C57BL/6J mice Significantly increased
expression of IL-10, IL-35,
and TGFβ on myeloid cells
and reduced microglia
activation. From 4 days and
upto 2 months post-injury

Dwyer et al., 2023

Aquaporin-4 shRNA Bilateral intraventricular
injection

30 min, 12 h, 24 h and
every other day post-TBI

10 uL of 15 ug of virus
dissolved in
phosphate-buffered
saline

Hydraulic craniocerebral
trauma

Rats Reduced brain edema,
neuronal apoptosis,
astrocyte activation at 3 days
post TBI and neurological
deficits up to 14 days post
TBI

Li et al., 2022

β-Ngf pseudo lentivirus Bilateral intraventricular
injection

Onset of TBI 10 uL of 1× 107 TU/mL CCI Rats Increased neurite growth
starting at 3 days and up to
28 days post-injection and
improved memory at
14 days post-injection

Lin et al., 2015

IFN-γR1 lentivirus targeting
CD11b+ cells

Bilateral intraventricular
injection

– 1× 107 IU CCI C57BL/6J mice Increase in microglia
homeostatic profile at 2 days
post-injury

Abou-El-Hassan et al.,
2023

(Continued)
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TABLE 1 (Continued)

Intervention Method Timepoint Number of
cells/dose

Model of TBI Recipient
species

Outcomes References

Genetic engineering

Inducible global HMGB1
knockout

IP injection of tamoxifen 6–7 weeks of tamoxifen
in mice aged 6 weeks or
older

– CCI HMGB1fl/fl mice Reduction in lesion volume
at 21 days post-injury

Aneja et al., 2019

Inducible deletion of Nhe1 in
Cx3cr1+ cells

IP injection of tamoxifen Postnatal day (30–40) for
5 straight days and then a
30 day wait period for
replenishment of
Cx3cr1+ monocytes

75 mg/kg body
weight/day at a
concentration of
20 mg/m

CCI Cx3cr1CreER± ;Nhe1f /f

mice
Accelerated oligodendrocyte
regeneration. Increased anti
and reduced
pro-inflammatory
microglia/infiltrated myeloid
cells transcriptomic profiles.
Improved sensorimotor and
cognitive

Song et al., 2022

Co-culture systems

3D co-culture of cortical
neurons using a silk scaffold
embedded in collagen

Mouse cortical neurons
were grown on a silk
scaffold embedded in
collagen and were
cultured for 14 days

3D co-culture was
injured at 14 days after
culture

– CCI – Degradation of neural
network structure and
necrosis marker
upregulation was observed
during the 24 h window
after injury

Liaudanskaya et al., 2020

Culture of stem cell-derived
microglia

Addition of IL-1β, IL-4,
IL-6, IL-10, TNF

– – – – Downstream cytokine
response was measured over
a 72 h time course period
during exposure

Alam et al., 2023

Direct co-culture of primary
microglia and
oligodendrocytes

LPS or LPS plus IFN-γ
was added to microglia
for M1 induction. IL-4
was added for M2
induction.

– – Scriptaid (histone
deacetylases inhibitor)

– M2 microglia preserved
oligodendrocytes viability
after 24 h of transwell
co-culture

Wang et al., 2015

Transwell co-culture of
microglia and Vγ1 γδ T
cells + anti-TGF-

A transwell system: Vγ1
γδ T cells (top chamber)
and microglia (bottom
chamber)

Sorted microglia 24 h
post-injury and Vγ1 γδ T
cells from spleens of
naïve mice

1× 105 microglia cells
and 5× 104 Vγ1 γδ T
cells. 10 µg/mL of
anti-TGF-β

CCI – Activation of microglia
pro-inflammatory
transcriptomic signature
after 48 h of co-culture

Abou-El-Hassan et al.,
2023

Transwell co-culture of
microglia and Vγ4 γδ T
cells + anti-IL-17A

A transwell system: Vγ4
γδ T cells (top chamber)
and microglia (bottom
chamber)

Sorted microglia 24 h
post-injury and Vγ4 γδ T
cells from spleens of
naïve mice

1× 105 microglia cells
and 5× 104 Vγ1 γδ T
cells. 10 µg/mL of
anti-IL-17A

CCI – Attenuation of microglia
pro-inflammatory
transcriptomic signature
after 48 h of co-culture

Abou-El-Hassan et al.,
2023
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patients using a CAR T-cell therapy-like approach, may therefore
represent a promising immunotherapy-centered approach for TBI.
Further preclinical and ultimately clinical research is warranted to
investigate lymphocyte-neuroglia crosstalk mechanisms using ACT
assays in cell- and time-specific fashion.

Among the advantages of ACT is that it allows for
highly targeted investigations of a particular cell population of
interest, with the ability to conduct precise cellular expansions
and modifications. Complexity, time-consuming and regulatory
challenges are among the challenges of ACT applications.

Direct intra-CNS injections

The direct intra-CNS injection of chosen immune cells, referred
here to as CNS ACT, along with immunomodulators, for studying
TBI neuroimmunology and as an immunotherapy, has not been
widely employed. This could be attributed in part to the technical
expertise and invasive nature required for intra-CNS injections.
One primary advantage of direct CNS injections is their ability to
bypass the blood-brain barrier (BBB), simplifying the delivery of
cells or pharmacological agents. In preclinical experiments, these
injections typically involve carefully passing a syringe through
soft tissue to administer a specific cell population into the
brain parenchyma or cerebrospinal fluid. In a clinical context,
CNS injections are feasible, especially in patients with external
ventricular drains and similar ventriculostomies. It’s crucial to note
that determining the appropriate quantity of cells to inject or the
dosage of a particular modulator often necessitates an in-house
optimization process.

Few preclinical TBI studies have employed the direct intra-
CNS injection approach to assess the role of B and T lymphocytes
and their role in outcomes (Table 1). These studies, as described
below, have been limited to the injection of B cells and that of
various immunomodulating lentiviruses (discussed in the genetic
engineering section).

Regarding B cells, intraparenchymal administration of B
cells resulted in improved motor coordination and memory in
C57BL/6 mice using the CCI model of TBI (Sîrbulescu et al.,
2019), suggesting that B cells may play a neuroprotective role
in acute brain injury. This is in contrast to cytotoxic CD8+

T cells that were found to promote neurodegeneration after
TBI (Daglas et al., 2019). Moreover, lesion volume in B cell-
recipients was significantly decreased as compared to controls.
In a separate investigation, B cell subsets expressing IL-10 or
TGF-β dominated at 10 days in situ (Dwyer et al., 2023). In
fact, proteomic analysis revealed that B cells likely exhibit a
homeostatic function in the injured microenvironment as evident
by the overexpression of genes involved in tissue remodeling and
oxidative protection (Sîrbulescu et al., 2021). Furthermore, fewer
TNF-α, IFN-γ and IL-6 producing cells were detected in mice
treated with 1 × 107 B cells as well as increased number of
CD206+ infiltrating monocytes/macrophages (Dwyer et al., 2023).
Interestingly, depletion of peripheral monocytes abrogated the
regulatory phenotype of exogenous B cells suggesting that crosstalk
between the activated adaptive and innate immune systems is
required for the neuroprotective immunomodulatory effects of
exogenous B cells.

Delineating the definite crosstalk mechanisms between the
adaptive and innate immune responses requires advanced cell-
specific technology such as single-cell RNA-seq. Using intra-CNS
injections and other neuroimmunology assays will enable such
investigations. The dynamic nature of TBI neuroimmunology
across the various phases of TBI (acute, subacute, and chronic)
requires temporal analysis of those molecular and cellular changes.
Although intra-CNS injections prior to TBI may be an invasive
approach from a translational standpoint in mild or moderate
TBIs, they provide immunological insights and may confirm
the inter-cellular mechanisms involved. Nevertheless, the use
of intra-CNS injections after TBI should not be limited by
invasiveness given the feasibility of these approaches and the
therapeutic potential of, for example, regulatory cells of the
adaptive immune system. For example, intra-CNS injection of
Tregs has never been investigated and may theoretically offer a
faster and more effective recovery compared to an intravenous ACT
yet at the expense of a more invasive approach. In animal models
of subarachnoid hemorrhage, intracisternal or intraventricular
injection of nimodipine-containing microparticles resulted in more
cerebrospinal fluid (CSF) bioavailability compared to intravenous
administration (Fowler et al., 2020). Similar to intrathecal baclofen
pump to alleviate autonomic disorders and spasticity in severe TBI
(François et al., 2001), the development of alike pumps of immune
cells, such as Tregs or regulatory B cells, sounds theoretically
promising in acute TBI but requires further preclinical and clinical
investigation. Several studies reported the beneficial effects of intra-
CNS injections of various types of stem cells after TBI (Bonilla and
Zurita, 2021). A similar approach using immune cells is currently
lacking and the direct immunomodulation via intra-CNS injections
is a field that requires further research.

Among the advantages of direct intra-CNS injections is that it
allows for precise delivery of a substance with the ability to control
the dose and timing of injection. Invasiveness, ethical concerns, and
technical expertise are among the challenges of CNS injections.

Cell depletion therapy

Cell depletion therapy (CDT) has garnered much attention
after the success of preclinical and clinical B-cell CDT trials in
autoimmune diseases such as multiple sclerosis (Hauser et al.,
2008), pemphigus vulgaris (Joly et al., 2007), and rheumatoid
arthritis (Edwards et al., 2004). While the pathogenesis of
autoimmune diseases differs from that of TBI, the generation of
autoantibodies after TBI is a known phenomenon (Zhang et al.,
2014; Nasser et al., 2016). Classically, following the activation of T
cells as described above, B cell activation is believed to occur via
a cognate B cell-T cell interaction that take place in the germinal
centers of secondary lymphoid organs (Lee et al., 2021). Those T
cells express key costimulatory proteins, such as CD40L, and secrete
cytokines that guide the B cell response (Lee et al., 2021). Some of
the reported autoantibodies after TBI include those against antigens
such as glial fibrillary acidic protein (Zhang et al., 2014) and S100B
(Zhang et al., 2014).

Cell depletion therapy (CDT) may be achieved using
pharmacological agents that may be administered intravenously or
intraperitoneally. For example, an anti-CD19 antibody may be used
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to deplete B cells (Zhang et al., 2023) and anti-Gr-1 antibody may be
used to deplete neutrophils (Stirling et al., 2009). The development
of transgenic animals has allowed for the contribution of particular
cell types to be studied, thereby providing confirmatory evidence
to the pharmacological experiments. For example, microglia
depletion can be achieved using several approaches such as
clodronate-containing liposomes as well as using Cx3cr1Cre

transgenic mice (Basilico et al., 2022). However, genetic cell
deficiency since birth has several limitations particularly pertaining
to the maturation and differentiation of those cells. To solve this
problem, transgenic mice using an inducible depletion of cells,
using the diphtheria toxin receptor (DTR) or the estrogen receptor,
can be used. In some animal models of TBI that do not involve
direct physical disruption of the BBB (such as the weight-drop
model), such experiments may require one to perform intrathecal,
intraventricular and/or intraparenchymal injections of depleting
agents to ensure adequate therapeutic concentrations are achieved.
Experimental findings observed secondary to pharmacological
CDT may ultimately be confirmed using animal models that are
genetically deficient in particular cell population(s).

A decent number of studies employed the cell depletion
approach to investigate TBI neuroimmunology. These studies,
as described below, include the depletion of CD8 T cells,
macrophages/microglia, γδ T cell subsets, Tregs, CD25+ T cells,
neutrophils, Cd11b+ cells, and macrophages/monocytes (Table 1).

Regarding B cells, their depletion was found to reduce
neuroinflammation in spinal cord injury (Casili et al., 2016);
the data in animal models of stroke has been inconsistent
(Malone et al., 2023). For example, B-cell deletion was initially
shown to exacerbate pathology and functional deficits acutely
after stroke (Ren et al., 2011), whereas later studies revealed that
the pharmacological CDT of B-cells did not affect acute infarct
volumes/functional outcomes (Schuhmann et al., 2017). In TBI,
B-cell CDT, as an interventional therapeutic trial (for example,
using depleting antibodies), has not been explored yet. However,
direct intraparenchymal administration of exogenous mature and
naïve B cells, as detailed in the direct CNS-injections section above,
was associated with structural and functional neuroprotection after
TBI (Sîrbulescu et al., 2019). In fact, mice genetically devoid
of B cells demonstrated a heightened neuroinflammatory profile
after TBI (Daglas et al., 2019). It is therefore hypothesized that,
based on B-cell deficient models and direct CNS B-cell ACT
methods, B cells may be neuroprotective and their depletion
may worsen neuroinflammation and neurodegeneration. However,
further research is needed to dichotomize the roles of specific
subsets of B cells, such as regulatory B cells, in a tissue- and
time-specific fashion, and across the various phases of TBI.

Contrary to B-cell depletion, reduced lesion volume(s) were
reported after selective depletion of CD4 or CD8 T cells as well
as with combined total T + B cell deficiency in animal models of
stroke (Hurn et al., 2007; Liesz et al., 2011). In TBI, it was found
that depletion of CD8+ T cells but not CD4+ T cells improved
neurodegeneration and neurological outcomes (Daglas et al., 2019).
However, given that a protracted increase in CD8+ T cells in the
injured brain was preceded by infiltration of IL-17-producing CD4
T cells, it is believed that the CD4 Th17 response ultimately drives
cytotoxic T cell activity after TBI (Kebir et al., 2007; Braun et al.,
2017). In terms of γδ T cells, our group showed that the depletion
of Vγ4 γδ T cells ameliorated neuroinflammation secondary to TBI

whereas depletion of Vγ1 γδ T cells worsened neuroinflammation
(Abou-El-Hassan et al., 2023). Regarding Tregs, diphtheria toxin-
induced depletion of Tregs increased CNS T cell infiltration,
reactive astrogliosis, IFN-γ signaling as well as improved functional
deficits after TBI (Krämer et al., 2019). Depleting Tregs using an
anti-CD25 antibody after TBI led to a decrease in lesion size and
a concurrent improvement in functional deficits via IL-33 after
CCI (Xie et al., 2022). Similar detrimental findings related to Treg
depletion have been shown in experimental stroke (Liesz et al.,
2009). In summary, these CDT preclinical studies provide evidence
on the cell-specific roles of adaptive immune responses in TBI.

In addition to lymphocytes, myeloid cells such as neutrophils,
monocytes, and macrophages are among the first responders after
TBI and as such accumulate at sites of injury within hours post-
injury (Soares et al., 1995; Jassam et al., 2017). Moreover, the
severity of injury has been shown to correspond to the number of
neutrophils recruited to the injured brain parenchyma (Clark et al.,
1994). Despite such associations the precise mechanisms played by
neutrophils in the pathobiology of TBI have yielded inconclusive
results. For example, although an increase in neutrophils has been
observed together with BBB breakdown and neurodegeneration,
attempts to deplete neutrophils have failed to establish a direct
link between neutrophils and the loss of BBB integrity (Whalen
et al., 1999). However, neutrophil depletion has in fact been shown
to decrease edema, apoptotic cells, and macrophage/microglia
activation at 24 and 48 h after brain contusion (Kenne et al.,
2012). In line with such findings neutrophil elastase-knockout mice
exhibited diminished edema at 24 h after TBI (Semple et al., 2015).
Interestingly, depletion of CD11b+ cells, including monocytes,
macrophages, and microglia, did not affect lesion size and/or axonal
damage after TBI in a valganciclovir-inducible model of CD11b+

CDT (Bennett and Brody, 2014). Conversely, diphtheria toxin-
induced depletion of CD11b+ cells in transgenic CD11b-DTR mice
resulted in an increase of proinflammatory gene expression in
both the ipsilateral and contralateral hemispheres (Frieler et al.,
2015); likewise, microglia depletion in an animal model of stroke
resulted in an enlarged ischemic lesions (Marino Lee et al., 2021).
Depletion of microglia did not affect the extent of injury-induced
traumatic axonal injury suggesting that microglia activation may
be important for phagocytosis of apoptotic neurons (Hanlon et al.,
2019). Furthermore, it was recently discovered that the depletion
of highly phagocytic CD45hiCD11bhi monocytes/macrophages
abrogated the neuroprotective effects of B-cell ACT (Dwyer et al.,
2023). Overall, it appears that neutrophils play a detrimental role
and their depletion may be neuroprotective whereas depletion of
CD11b+ cells is detrimental.

Similar to ACT, among the advantages of CDT is that it allows
for targeted investigation of a particular cell population of interest
and is currently in use in autoimmune and cancer treatments.
Off-target effects, immune suppression, complexity, and ethical
considerations are among the challenges of CDT.

Genetic engineering

Other in vivo experimental approaches in neuroimmunology
involve the use of genetically engineered animal models using
the Cre-loxP system and CRISPR/Cas9 as well as employing
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lentiviruses for gene silencing. The Cre-loxP system is the most
commonly used breeding system to generate genetically engineered
animals (Nagy, 2000). Mouse models are preferred due to their
rapid breeding as well as their resemblance to genetic and
pathophysiological mechanisms in humans (Perlman, 2016). The
Cre-loxP system allows researchers to investigate genes of interest
in controlled conditions via cell/tissue-specific (spatial control)
and/or time-specific (temporal control) manner. The system is
often used to make knockout alleles, but it can also be used to
activate gene expression.

Mammalian gene editing using the Cre-loxP system is
universally used and represents a powerful technology for the
generation of mutant strains that are in use today in almost all
fields of biomedical research. Briefly, Cre (Cre recombinase) is one
of the tyrosine site-specific recombinases that recognizes specific
DNA fragment sequences referred to as loxP (locus of x-over, P1)
sites and mediates site-specific deletion of DNA sequences between
two loxP sites (the floxed DNA segment) (Sauer and Henderson,
1988). Once a Cre recombinase recognizes two directly repeated
loxP sites, the Cre excises the loxP-flanked (floxed) DNA segment.
To generate a cell/tissue-specific mutant model, Cre recombinase is
designed to be expressed by a promoter that specifically targets the
cell or tissue of interest. For example, some of the commercially
available promoter-driven models that may be used in studying
the neuroimmunology of TBI include Aldh1l1-Cre, CD11b-Cre,
CD4-Cre and TCRδ-Cre. Breeding the Cre-driver strain with a
floxed mouse strain results in the desired conditional knockout
mutant. Tissue specificity is determined by the used promoter and
temporal specificity can be achieved using an inducible Cre-loxP
system. Induction via the exogenous administration of tamoxifen
(Brocard et al., 1997) or tetracycline (Gossen and Bujard, 1992)
is often employed to allow time-specific gene knockout. This is
a critical advantage from a neuroimmunology standpoint since
global gene knockout since birth may affect the proliferation and
differentiation of immune cells. It is important to mention that
appropriate controls must be used to account for the effect of the
inducer itself.

A summary of the used Cre promoters of cells of the nervous
and immune systems has been summarized elsewhere (Kim et al.,
2018). Notably, specific gene knockout in astrocytes may be
achieved using the Aldh1l1Cre strain (Winchenbach et al., 2016)
and in microglia using the Cx3cr1Cre strain (Goldmann et al., 2013,
2016). For example, to study the cell-specific effect of Apoe in
TBI, genetic deletion of Apoe in microglia or astrocytes can be
achieved by crossing Apoefl/fl animals with Cx3cr1Cre or Aldh1l1Cre,
respectively. On the other hand, specific gene knockout in αβ CD4
T lymphocytes may be achieved using the CD4Cre (Lee et al., 2001)
and in γδ T cells using the TCRδCre strain (Zhang et al., 2015).
Similarly, to study the cell-specific effect of Cd40l in TBI, genetic
deletion of Cd40l in αβ CD4 T cells can be achieved by crossing a
Cd40lfl/fl strain with a CD4Cre strain.

Few studies used the Cre-loxP system in experimental TBI
(Table 1). Global tamoxifen-induced deletion of HMGB1 after
TBI resulted in a significant reduction in the volume of the TBI
contusion (Aneja et al., 2019). Furthermore, selective deletion
of the Na+/H+ exchanger (NHE1) gene in microglia using
a tamoxifen-induced Cx3cr1CreERT 2:Nhe1fl/fl strain resulted in
accelerated oligodendrocytes regeneration as well as accelerated
functional recovery (Song et al., 2022). It is noteworthy to

mention that in some instances, deletion of a specific gene in
different cell types may result in opposing effects. For example, the
silencing of IFN-γ signaling using an astrocyte-specific lentivirus
resulted in attenuated neuroinflammation whereas silencing of
IFN-γ signaling using a microglia/macrophage-specific lentivirus
worsened disease severity in an animal model of multiple sclerosis
(Ding et al., 2015). It is therefore crucial to comparatively
investigate whether the deletion of genes of immunological
significance expressed by neuroglia, such as Hmgb1 and Nhe1
among other, would influence chronic neurodegeneration and
long-term neurocognitive deficits after TBI.

Other genetic engineering approaches include the use of
CRISPR/Cas9 technology (Cota-Coronado et al., 2019). We found
one study that used CRISPR/Cas9 gene editing in TBI (Swanson
et al., 2020); however, no studies exist that employed tissue-
(Meltzer et al., 2019) or cell-specific (Hoffmann et al., 2019)
CRISPR/Cas9 in TBI neuroimmunology.

A burdening therapeutic modality in the TBI space relates
to the use of short hairpin RNA (shRNA) lentiviruses for gene
silencing. Given the role of aquaporin-4 in mediating brain
edema after TBI (Xiong et al., 2021), it is perhaps unsurprising
that aquaporin-4 shRNA treatment alleviated TBI-induced brain
edema, neuronal apoptosis, astrocyte activation and neurological
deficits in experimental TBI (Li et al., 2022). Similarly, small
interfering RNA (siRNA) targeting AQP4 (siAQP4) resulted in
reduced cerebral edema, astrocyte activation and improved motor
function (Fukuda et al., 2013). In contrast, delivering the nerve
growth factor (β-Ngf) fusion gene using a pseudo lentivirus via
a hippocampal injection accelerated cognitive recovery after TBI
(Lin et al., 2015). shRNA lentiviruses may be further edited to
silence a specific gene on a specific cell type. For example, we
designed a GFP-shRNA lentivirus that targets IFN-γR1 specifically
on CD11b+ cells (Abou-El-Hassan et al., 2023). Via intraventricular
injection of this GFP-shRNA lentivirus after TBI, we were able
to demonstrate that silencing IFN-γR1 on CD11b+ microglia
resulted in a more homeostatic microglial profile. Developing
nanoparticle platform to improve siRNA permeability across the
BBB is a promising tool that may modulate immune responses (Li
et al., 2021). Similar lentiviruses may be designed to target specific
neuroglia genes of immunological significance in neurotrauma.

Among the advantages of genetic engineering is that it allows
for better understanding of the genetic basis of disease as well as
precise genetic modifications that have enabled the development
of customized pharmaceuticals. Technical expertise, unintended
consequences, social acceptance, and regulatory challenges are
among the disadvantages of genetic engineering.

Molecular imaging

Molecular imaging of neuroglia has matured exponentially
over the past decades (Kreisl et al., 2020). The development of
new radiopharmaceuticals enabled investigations pertaining to
the metabolic state of specific neuroglia in health and disease
(Crişan et al., 2022). With growing evidence on the pathologic
roles of cells of the innate and adaptive immune systems in
mediating glial activation and neuronal damage (Daglas et al.,
2019; Abou-El-Hassan et al., 2023), employing suitable imaging
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tools to investigate glial metabolic states can be used as a
marker of neurodegeneration after TBI and as tools to measure
treatment efficacy (Politis et al., 2012). One of the growing imaging
modalities is positron emission tomography (PET) that involves
the use of radioactive tracers (Vaquero and Kinahan, 2015). Briefly,
radiotracers release positrons that undergo radioactive decay and
interact with electrons, resulting in the creation of two photons
(Shukla and Kumar, 2006). The PET scanner captures these
photons, identified as gamma rays, to generate spatial density
images depicting the inner workings and metabolic activities of
the brain (Shukla and Kumar, 2006). Customized radioactive
tracers, designed for specific neurometabolic processes, enable
the detection of these processes (Schwaiger and Wester, 2011).
As a result, PET scans employing various tracers offer a non-
invasive means of assessing brain metabolism, potentially providing
valuable insights into the nature of brain injuries (Bouter et al.,
2018).

Translocator protein-18 kDa (TSPO) is one of the molecular
biomarkers of microglial activation that have been most commonly
used in PET imaging using 11C-PK11195 as its radioligand
(Debruyne et al., 2003). However, it was found that astrocytes
also upregulate TSPO in neuroinflammation limiting its use as a
molecular biomarker specific for microglial activation (Chechneva
and Deng, 2016). While none is cell-specific, other molecular
targets include cyclooxygenase [using 11C-Celecoxib (Majo et al.,
2005) or 11C-Rofecoxib (de Vries et al., 2008)], cannabinoid
receptors [using 11C-NE40 (Ahmad et al., 2013)], purinergic
ion channel receptors [using 11C-JNJ-54173717 (Van Weehaeghe
et al., 2019)], β-glucuronidase [using 18F-FEAnGA (Antunes et al.,
2012)], adenosine receptor 2A [using 11C-TMSX (Mishina et al.,
2011)] and nicotinic acetylcholine receptors [using 2-18F-fluoro-
A85380 (Martín et al., 2015)] among others. Likewise, tracers
of lymphocytes have been driven from engineering fragments of
lymphocyte depleting antibodies (for example, YTS169 for CD8
T cells) with radionuclide such as 64Cu to generate 64Cu-NOTA-
YTS169 (Tavaré et al., 2014). As such, 89Zr-malDFO-GK1.5 cDb
has been used to detect CD4 T cells (Tavaré et al., 2015). While these
lymphocyte tracers have been validated in lymphoid organs, their
applicability in the CNS compartment is largely unknown (Wei
et al., 2018).

Positron emission tomography (PET) molecular neuroimaging
has been used across several neurological diseases including stroke
(Thiel et al., 2010), Alzheimer’s disease (Passamonti et al., 2018),
Parkinson’s disease (Bartels et al., 2010), and amyotrophic lateral
sclerosis (Turner et al., 2004) as well as TBI (Folkersma et al., 2011).
In a cohort of 18 patients with ischemic stroke who underwent
11C-PK11195 PET imaging, persisting tracer uptake in the infarct
was found to negatively correlate with clinical outcome (Thiel
et al., 2010). Similarly, a higher TSPO signal was detected among
14 National Football League players as compared to controls
(Coughlin et al., 2017), that may explain the possible increased
risk of development of chronic traumatic encephalopathy among
athletes (Jordan, 2013). Furthermore, in a cohort of eight patients
with TBI, PET imaging at 6 months revealed widespread increase
in 11C-PK11195 binding suggestive of diffuse neuronal damage
(Folkersma et al., 2011). At the therapeutic level, PET imaging
with 11C-PBR28 showed that minocycline treatment reduced
chronic microglial activation in patients with moderate-to-severe
TBI (Scott et al., 2018). Several tracers were developed to detect

tau [such as 18F-Flortaucipir (Mantyh et al., 2020)] as well as
amyloid-beta [such as 18F-florbetapir (Wang et al., 2017)]. PET
imaging in clinical TBI has been reviewed elsewhere (Huang
et al., 2022). Therefore, combining molecular neuroimaging with
interventional neuro-immunotherapies (such as ACT or CDT)
would help investigate the metabolic recovery of neuroglia after
TBI.

Two-photon in vivo imaging is another emerging molecular
neuroimaging modality that is yet to be employed in TBI
neuroimmunology. Two-photon microscopy involves a laser
scanning microscopy where a laser beam is directed to a specific
location to stimulate fluorescent molecules (Helmchen, 2009).
Typically, laser-scanning microscopes capture fluorescence light
from that location in the sample at a given instant (Helmchen,
2009). Spatial details are obtained by relocating or “scanning”
the laser focus within the tissue. Thus, two-photon in vivo
imaging requires fluorescence labeling of the structures of interest
(Benninger and Piston, 2013). For example, Sword et al. (2013) used
FVB/N-Tg(GFAP-EGFP)GFEA-FKi (green-fluorescent astrocytes)
and B6.Cg-Tg(Thy1-YFPH)2Jrs/J (yellow-fluorescent neurons)
animal strains to demonstrate neuronal and astroglial disruption
after experimental TBI along with the decline of peri-contusional
cerebral blood flow, while others have demonstrated the use
of adeno-associated virus expressing enhanced green fluorescent
protein (EGFP) under synapsin promoter to visualize neurons
(Zhong et al., 2023). Interestingly, two-photon in vivo imaging
revealed, besides vasospasm, the formation and clearance of
transient microthrombi in capillaries within 1 h post-TBI using an
animal model expressing yellow-fluorescent neurons (Han et al.,
2020). Likewise, the concept of using transgenic mice expressing
fluorescent proteins or the use of viral vectors can be extrapolated
toward investigating the role of the adaptive immune response.
For example, it may be possible to combine T-cell ACT using
CD45.2 cells into a Thy1-YFPH transgenic model to investigate
the crosstalk between T cells and neurons with the ability to
perform transcriptomic profiling of CD45.2 cells in a CD45.1 host.
In either case, the limited availability of cell-specific molecular
modalities and multimodal neuroimaging poses a challenge to
utilizing advanced molecular tools in TBI neuroimmunology.

Among the advantages of molecular imaging is the nature
of its non-invasive approach, its use for early detection of
disease and its possible use as biomarker of disease activity and
response to treatment. Cost, radiation and contrast exposure,
limited availability and complexity of data analysis are among the
disadvantages of molecular imaging.

Co-culture systems and organoids

Unlike the experimental in vivo immunology methods
described above, several in vitro co-culture system models
have been devised to study natural or synthetic interactions
between cell populations. At the very basic, two or more cell
populations are cultured together with some degree of contact.
For example, cells may be co-cultured together or physically
separated via a membrane such as a transwell co-culture system
(Goers et al., 2014). Cell co-culture requires the isolation of
the cell populations first. In TBI, microglia are often isolated
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FIGURE 2

Neuroinflammation and neurotoxicity after TBI. Leukocytes, lymphocytes, and other cells infiltrate the brain parenchyma across the compromised
blood-brain barrier after TBI resulting in the activation of resident glial cells and subsequent neurodegeneration. The inflammatory cascade may be
attenuated using immunotherapies such as depleting antibodies, neutralizing antibodies, viral therapy and liposomal depletion of glia and immune
cells. Created with biorender.com.

using a Percoll gradient (Hammond T. R. et al., 2019; Abou-
El-Hassan et al., 2023) whereas the isolation of astrocytes may
be achieved using a papain-based chemical digestion technique
(Wheeler et al., 2020). Using cell-surface staining antibodies and
single-cell sorting technology, we recommend the isolation of
microglia using the microglia-specific anti-4D4 antibody described
by our lab (Butovsky et al., 2012; Krasemann et al., 2017) gated
on as live CD45+CD11b+4D4+Ly6C− (Abou-El-Hassan et al.,
2023). Astrocytes may be isolated using the ACSA2 cell surface
marker (Kantzer et al., 2017). Alternatively, mouse astrocytes
expressing green fluorescent protein under the control of the
Aldh1l1 promoter may be used (Sanmarco et al., 2021). For
cells of the adaptive immune system, αβ or γδ T cells can be
isolated from peripheral immune organs, such as the spleen and
deep cervical lymph nodes, using the corresponding cell surface
marker. Once the desired cell populations are isolated, cells may
be co-cultured per the co-culture system used. Subsequently, cell-
culture manipulations may include the addition of exogenous
factors or cytokine neutralizing antibodies to investigate a
specific hypothesis. RNA-seq is one of the emerging tools in
cell biology that enables unbiased transcriptomic profiling of
cells. At the conclusion of a co-culture experiment, RNA-seq
can be used to detail the molecular profile of the cultured
cell populations. Single-cell RNA-seq provides the added benefit
of identifying and characterizing the behavior of cell subsets,

including novel subsets, within each cell population (Saliba et al.,
2014).

Some models include biomimetic environments to re-create,
with limitations, the natural milieu including the non-cellular
components to aid in resembling an artificial tissue (Goers
et al., 2014). For example, organoids are stem cell-derived
three-dimensional culture systems that are increasingly used to
recapitulate the architecture and physiology of human organs
(Kim et al., 2020). Using such organoids, cell migration assays
such as the migration of monocytes (Rothhammer et al., 2018)
across an artificial BBB allows the investigation of the role of
the innate immune system in TBI. Such organoids, such as
brain chips, have not yet been employed in experimental TBI
neuroimmunology yet. Advanced tissue engineering strategies have
enabled the development of pathomimetic models of penetrating
TBI composed of astrocytes, microglia, and oligodendrocytes
(Liaudanskaya et al., 2020; Basit et al., 2021, 2023) and some
included a BBB-like platform composed of endothelial cells and
pericytes (Wei et al., 2023). Thus, the use of co-culture systems
is useful in certain circumstances such as studying specific cell
interactions among cell populations and for further confirming an
in vivo finding using animal or human cells. Furthermore, since
research on human subjects has some limitations particularly in
TBI, the use of human cells in vitro enables, to some extent, human
neuroimmunology investigations. Intercellular communication,
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paracrine signaling, synaptic signaling as well as chemical and
physical cues from the extracellular environment can be assessed
among neuroglia and lymphocytes using a co-culture system or an
organoid.

Few studies have employed co-culture methods in TBI
neuroimmunology (Table 1). Exposing human induced
pluripotent stem cell-derived microglia to concentrations of
neuroinflammatory cytokines within ranges identified in clinical
TBI studies, resulted in a robust microglial response that was
found to be more potent compared to that of astrocyte and
neuron cultures (Alam et al., 2023). Co-culturing microglia
and oligodendrocytes revealed that microglia may modulate the
myelinating function of oligodendrocytes in TBI (Wang et al.,
2015). Neuroglia cell cultures may also be used for cell death assays,
phagocytosis assays (Ritzel et al., 2023) as well as cell viability and
tube formation assays (Cai et al., 2022). In addition, we recently
confirmed the opposing effects of Vγ1 and Vγ4 γδ T cells on
microglia in TBI using an ex vivo transwell co-culture system
(Abou-El-Hassan et al., 2023). We discovered the upregulation of
microglia activation genes in microglia isolated from the TBI group
when co-cultured with Vγ1 γδ T cells and anti-TGF-β whereas
those co-cultured with Vγ4 γδ T cells and anti-IL-17A neutralizing
antibody exhibited downregulation of microglia activation genes.
In other transwell co-culture studies, LPS was used to activate
microglia and investigate their effect on neuronal apoptosis (Cai
et al., 2022). However, isolating microglia directly from TBI brains
represents a better recapitulation of TBI pathogenesis as compared
to using LPS in cultures. While experimental TBI studies have
not used human biofluids in vitro to date, co-culture models
constitute one of the few methods where human biofluids may
be used. For example, culturing neuroglia with CSF isolated
from TBI survivors may help investigate the pathways leading to
neurodegeneration and identify specific targets for therapy. In fact,
it was demonstrated that CSF can maintain the viability and induce
proliferation of neural stem cells in in vitro cultures (Miyan et al.,
2006). Several growth factors, such as fibroblast growth factor
and vascular endothelial growth factor, are known to be secreted
by the choroid plexus directly into the CSF (Stopa et al., 2001)
and these may play a role in cell migration from the ventricular
zone to the cortical plate (Ohmiya et al., 2002). Thus, it may be
hypothesized that viability promoting factors in the CSF of TBI
patients are decreased compared to healthy controls, contributing
to the compromised neurogenesis and functional recovery after
TBI.

Among the advantages of co-culture systems and organoids
is that they allow for cellular crosstalk investigations, disease
modeling as well as drug screening. Complexity, cellular
heterogeneity, and technical and analytical complexity
are among the challenges involving the use of co-culture
systems and organoids.

Current challenges and future
directions

Investigating the neuroimmunology of TBI is a daunting task
due to the heterogeneity of TBI itself, the dynamic nature of the
central and peripheral immune responses and the interplay across

neuroglia and immune cells in a time- and location-dependent
fashion. This complexity makes it challenging to develop a one-
size-fits-all investigative approach to study neuroimmunological
aspects all at once. First, understanding the immunological
pathogenesis of TBI in experimental models may not necessarily
translate into human pathophysiology, limiting the application of
promising immunological TBI neurotherapeutics. While animal
models are critical for studying TBI, there are challenges in
translating findings from animals to humans. Species differences
and the inability to fully replicate the complexity of human TBI
pose therapeutic challenges. Furthermore, the lack of investigations
on some neurovascular compartments poses a challenge for
a comprehensive understanding of TBI neuroimmunology. For
instance, the leptomeninges, the glymphatics and the BBB are
among the biological milieus that often get overlooked and
are rarely investigated. The role of meningeal and endothelial
cells, as well as mast cells, in acute and chronic TBI is poorly
understood and an abundance of knowledge pertaining to alike
microenvironments is thought to be lacking. With the development
of cell-specific isolation technology, it will be exciting to use recent
advances to dissect the role and function of such cells in TBI. From
a clinical research standpoint, ethical and practical challenges limit
our understanding of the chronic phase of TBI. Research involving
TBI patients can raise ethical issues, particularly when considering
invasive experimental methods where it can be challenging to
recruit and retain participants. In parallel, developing sensitive
and specific diagnostic tools for assessing neuroimmunological
responses in TBI patients is an ongoing challenge.

Moving forward, employing the substantial advancements
in biotechnology and emerging tools would enable detailed
investigations at the inter and intra-cellular levels simultaneously.
Utilizing some of the neuroimmunology methods detailed in this
article, in vivo and in vitro as well as ex vivo, helps provide detailed
insights into the neuroimmunological mechanisms after TBI. It
will be important to define the unique transcriptional changes that
occur in infiltrating and primary CNS cells at different stages of TBI
and in different TBI models, in a time and site-specific approach.
In this regard, we propose to steer away from the good-bad
dichotomy, such as the M1 versus M2 classification for microglia,
and rather define the TBI cell-specific inter and intra-cellular
networks with a time and site-specific signature. Such approach
would guide the development of immunomodulatory therapies to
potentiate pathways that dampen neurogenerative programs while
promoting tissue remodeling and homeostasis.

Concluding remarks

Neuroimmunology of TBI is an emerging research field
of neurotrauma with a promising translational potential.
Accumulating evidence on the roles of the peripheral and
central immune responses after TBI have provided new avenues
for TBI immunotherapy. These responses are initiated as soon as
the initial brain insult occurs and may continue for years leading
to chronic neurodegeneration and post-traumatic encephalopathy
(Figure 2). Employing methods and approaches to study TBI
neuroimmunology, such as the ones highlighted in this article,
across the natural course of a brain injury have enabled the
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discovery of the roles of lymphocyte subsets in TBI. Beneficial
aspects of CNS immunity following brain injury take place through
innate and adaptive immune mechanisms such as phagocytosis
of dead neurons, resolution of inflammation and release of
growth factors. Designing strategic experimental investigations
using the described neuroimmunology techniques will help further
identify the mechanisms of TBI neuroimmunology and guide the
development of efficacious TBI immunotherapies.
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