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Proteinortho is a widely used tool to predict (co)-orthologous groups of genes
for any set of species. It finds application in comparative and functional genomics,
phylogenomics, and evolutionary reconstructions. With a rapidly increasing
number of available genomes, the demand for large-scale predictions is also
growing. In this contribution, we evaluate and implement major algorithmic
improvements that significantly enhance the speed of the analysis without
reducing precision. Graph-based detection of (co-)orthologs is typically based
on a reciprocal best alignment heuristic that requires an all vs. all comparison of
proteins from all species under study. The initial identification of similar proteins is
accelerated by introducing an alternative search tool along with a revised search
strategy—the pseudo-reciprocal best alignment heuristic—that reduces the
number of required sequence comparisons by one-half. The clustering
algorithm was reworked to efficiently decompose very large clusters and
accelerate processing. Proteinortho6 reduces the overall processing time by
an order of magnitude compared to its predecessor while maintaining its small
memory footprint and good predictive quality.
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1 Introduction

Comparative analyses of nucleic and amino acid sequences have become routine
approaches in modern biology. A problem frequently encountered in comparative and
functional genomics as well as in phylogenomics and evolutionary reconstructions is the
detection of homologous genes that share an evolutionary ancestry. These genes are
orthologs if they have derived from a common ancestor by means of a speciation event.
Paralogs, in contrast, have derived from a duplication event and thus represent gene copies
(Fitch, 1970). Orthologs are of particular interest as their function is likely conserved due to
selective pressure (ortholog conjecture (Koonin, 2005)). In contrast, paralogs diverge faster,
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specialize, acquire new functions, or become dysfunctional (Ohno,
1999; Lynch and Conery, 2000). Gene duplications followed by
subsequent speciation events create two ormore genes in one lineage
that are, collectively, orthologous to one or more genes in another
lineage. These sets of genes are termed co-orthologs (Koonin, 2005).
Even though orthology is not a transitive relation (Johnson, 2007),
large-scale orthology assessment is often treated as a clustering
problem, resulting in clusters of (co)-orthologous genes (COGs),
see, e.g., (Setubal and Stadler, 2018) for a review.
Proteinortho (Lechner et al., 2011) in its previous version 5
(Proteinortho5) is a well-established tool for the detection of
(co-)orthologs in large-scale analysis that also adheres to this
approach. It has demonstrated its utility in various studies within
the field of comparative genomics including, e.g., evolutionary
analyses (Peter et al., 2018), genomic signatures (Kapheim et al.,
2015), functional annotation (Pinho et al., 2013), phylogenetic
reconstructions (Klemm et al., 2022), and so on.
Proteinortho also found integration into tools and databases,
such as Echinobase (Arshinoff et al., 2022) or Funannotate
(Palmer and Stajich, 2023).

Sequence-based orthology inference is based on pairwise
sequence comparisons. This stage requires scoring the similarity
of all proteins in order to determine groups with high similarity. To
simplify the terminology, we use the term “protein” to designate the
amino acid representation of protein-coding gene sequences in the
following. The well-known reciprocal best alignment heuristic
(RBAH) (Bork et al., 1998), can be used to retrieve at least a
good approximation of the correct ortholog set. We refer to
Schaller et al. (2021) for a comprehensive mathematical analysis
of the relation between best matches and orthology.
Proteinortho extends the RBAH to an adaptive version,
which includes alternative matches to the set of potential
orthologs if they closely resemble the similarity of the best
match. For details, refer to the original implementation (Lechner
et al., 2011). Pairwise sequence comparisons are typically the most
time-consuming stage as the computational effort scales
quadratically to the number of proteomes analyzed.

When all pairwise sets of reciprocal best hits are known, this
information is merged. In this process, all proteins are represented as
nodes in a graph that are connected by edges whenever their
similarity score is within the adaptive RBAH criterion. A set of
proteins linked to each other by any path is called a connected
component (CC). Each CC represents a potential co-orthologous
group. However, the small world phenomenon (Milgram, 1967) also
applies to empirical orthology graphs: Even though the number of
possible protein sequences is practically limitless, there are relatively
few basic folding shapes, of which some folds and superfamilies are
extremely abundant (Koonin et al., 2002). CCs quickly become large
and thereby non-informative. This effect increases with the number
of proteins analyzed at once. Therefore, a clustering step is required.
CCs are divided into smaller, more informative CCs by iteratively
isolating well-connected subsets. The results are clusters of mutually
similar proteins reported as co-orthologous groups.

In this contribution, we evaluate major algorithmic
improvements for Proteinortho and present version 6 of the
tool (Proteinortho6). All improvements primarily aim towards
a significant speedup of orthology analyses while keeping the quality

of its results and the small memory footprint that makes it applicable
on large HPC systems and average off-the-shelf desktop systems.

2 Methods

2.1 Alternative sequence search tools

The first stage of Proteinortho analyses is a pairwise
sequence comparison. Proteinortho5 relies on BLAST

(Camacho et al., 2009) which is still considered the gold standard
for any homology search (Ward and Moreno-Hagelsieb, 2014).
BLAST implements a seed-and-extend paradigm. Meanwhile, it
has inspired numerous alternative algorithms that can be used as
direct replacements. Here, we evaluate these alternatives for use in
the context of the adaptive RBAH strategy in order to speed up the
sequence comparisons performed for orthology inference.

Proteinortho6 directly supports the following BLAST

alternatives: ucsc BLAT is optimized for quickly finding very
similar sequences of closely related species. It uses an index of
non-overlapping k-mers (Kent, 2002) to speed up the search.
UBLAST uses spaced seeds and a reduced alphabet to facilitate
the comparison of distant gene sequences with a low identity (Edgar,
2010). USEARCH instead requires exact matches and was designed
for comparisons of sequences with a high identity (Edgar, 2010).
LAST implements a suffix array for a variable seed length, spaced
seeds, and a reduced alphabet. A design goal was to handle repeat-
rich sequences more efficiently than other tools (Kiełbasa et al.,
2011). The parameter m (default 10) controls the maximum initial
matches per query position comparable to the max_target_

seqs parameter of BLAST. The higher the m, the more hits are
reported at the cost of increased running time and memory usage.
RAPSearch2 is based on a collision-free hash table of sorted 6-
mers and a reduced alphabet for amino acid sequences (Zhao et al.,
2012). DIAMOND implements a double index alignment, spaced
seeds, and a reduced database alphabet (Buchfink et al., 2015). It
provides several sensitivity modes depending on the expected
sequence identity of reported hits. The default is optimized
for hits > 60% identity and short-read alignment. The fast

mode aims for highly similar hits with > 90%. The sensitive

mode is recommended for comparisons above > 40% sequence
identity, while the highest sensitivity setting ultra-

sensitive is supposed to perform well even below 40%
identity, although with largely increased running time. MMSeqs2
uses a memory-efficient inexact k-mer matching optimized for
multi-core systems (Steinegger and Söding, 2017). Speed and
sensitivity can be controlled with the s parameter. A reasonable
range starts from 1, corresponding with fast but coarse results, to 7.5,
which is highly sensitive but slow. The default value is 5.7 and thus
aims towards sensitivity over speed. Topaz is the most recent
addition of BLAST replacements. It uses an advanced version of
the SANS algorithm (Koskinen and Holm, 2012) that generalizes the
symmetric suffix array neighborhood search to an asymmetric
search in combination with scored seeds, a variation of spaced
seeds (Medlar and Holm, 2018). Similarly to the tools above, a fast
mode is implemented that decreases running time at the expense of
sensitivity.
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The results obtained using BLAST were considered as the point
of reference. Based on these, we computed sensitivity and precision,
where sensitivity = TP/(TP + FN) and precision = TP/(TP + FP) and
TP is the number of true positive reported edges, that coincide with
BLAST, FP is the number of false-positive reported edges, that do
not coincide with BLAST, and FN is the number of false-negatives
edges, that are only reported by BLAST. Computational efficiency
was quantified in terms of total running time (wall time), scalability
(running time in relation to the number of species), and maximal
memory allocation (peak memory consumption). The evaluation
was performed using the following tool versions: BLAST+ (v2.13.0),
ucsc BLAT (v377), UBLAST and USEARCH (v11.0.667), LAST
(v1318), RAPSearch2 (v2.24), DIAMOND (v2.0.15), MMSeqs2
(v14.7e284), and topaz (commit 24bdb61).

Note that the free 32-bit versions of USEARCH and UBLAST

were used instead of the 64-bit versions that are available only
commercially. Even though these versions are likely faster, we do not
expect that the sensitivity and precision of the tool are affected by the
build architecture.

2.2 Pseudo-reciprocal sequence
comparison strategy

Pairwise similarity scores between all proteins in the dataset are
the foundation of sequence-based orthology inference via adaptive
RBAH. For reasons of complexity, only scores below a certain
expectation value (E-value) are considered. In Proteinortho,
sets of proteins S1, S2, . . . , Sn are presented for each species of
interest. Similarity scores are then calculated using a sequence search
tool st, like BLAST. This is performed reciprocally for all pairs of
sets, e.g., st(S1, S2), st(S2, S1), st(S1, S3), st(S3, S1),/ in order to obtain
all scores required for RBAH. Notably, the alignments of any two
proteins a ∈ Sn and b ∈ Sm are calculated twice if their match is below
the E-value threshold in the comparisons st(Sn, Sm) and st(Sm, Sn).

The new feature pseudo (pseudo-reciprocal) in
Proteinortho6, calculates only one pair st(Sn, Sm) and
approximates the results of the st(Sm, Sn). The missing E-values
of st(Sm, Sn) are calculated based on the query sequence length l, and
the database size |Sn| of the respective set of proteins in order to
resemble E-values comparable to a pair-wise search:

e � l · |Sn|
2bitscore

2.3 Clustering algorithm

2.3.1 Eigenvector decomposition
Proteinortho uses a spectral clustering algorithm. It

recursively divides connected components into two connected
subcomponents that are maximally connected with respect to
their algebraic connectivity (Fiedler, 1975). Spectral clustering has
a long history in multivariate statistics, image processing, and
machine learning, see, e.g., Shi and Malik (2000) for detailed
descriptions. The implementation is based on the eigenvector
decomposition of subgraphs, which are calculated via the power
iteration in Proteinortho5 (Boutsidis et al., 2015). As large

components usually build up due to bridge and hub clusters, most
nodes within a connected component are not connected by an edge
which is exploited by representing the data via a space-efficient edge
list rather than a largely unoccupied adjacency matrix. This data
structure is also well utilized by the power iteration. In contrast to
alternative implementations based on adjacency matrices, non-
existing edges do not require memory nor do they require
consideration during the calculations. The strategy enables large-
scale clustering by minimizing memory requirements and
computational effort (Lechner et al., 2011).

In addition to the power iteration, Proteinortho6

implements ssyevr (single precision, symmetric eigenvalue
problem, RRR algorithm). It is based on the “Relatively Robust
Representation” algorithm (Parlett and Dhillon, 2000) that can
compute an eigenpair in linear time (Bientinesi et al., 2005)
which is provided via the highly optimized Fortran 77 library
Lapack (v3.8.0) (Anderson et al., 1999). Although ssyevr

outperforms the power iteration by orders of magnitude in many
scenarios, the Lapack routine cannot be applied for large clusters
of protein as it is bound by quadratic memory requirements due to
the reliance on adjacency matrices.

2.3.2 Flooding heuristic
With a growing number of species that are analyzed at once,

connected components in orthology graphs grow exponentially in
size due to the small world phenomenon. The resulting CCs can
quickly cover a large proportion of the whole protein set. An
example of this observation is shown in Supplementary Data
Sheet S1. Theoretically, these huge CCs are easily broken down
into informative subsets by spectral clustering. However, with an
increasing number of species, their size poses a computational
problem. The power iteration algorithm is not able to process
them in a reasonable time while the memory requirements for
ssyevr are not feasible. Hence, orthologs in these large CCs
cannot be recovered.

To salvage the issue with large CCs, Proteinortho6 employs
an iterative approach that removes batches of outlier edges based on
their associated bitscore when spectral clustering is not possible.
Therefore a cutoff threshold is raised until a significant number of
outliers is covered with respect to the one-sided Grubb-Smirnov
outlier test. If necessary, this process is repeated until spectral
clustering is possible.

2.3.3 Multithreading
Proteinortho6 introduces support for parallel computing at

the clustering stage. The main thread employs a breadth-first search
(BFS) approach to identify CCs. The worker threads then calculate
the algebraic connectivity in parallel for each CC. Split components
are added back to the processing queue if necessary. This feature also
facilitates distribution across multiple computing nodes by
processing batches of connected components in parallel. An
overview can be found in Supplementary Data Sheet S1.

2.3.4 Adaptive clustering
The spectral clustering approach follows a bisecting paradigm.

Groups are successively divided until a predefined algebraic
connectivity threshold is met. The choice of this threshold
directly affects the size and quality of reported (co-)orthologous
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groups. A high connectivity threshold will only return sets of
mutually similar proteins but can lead to excessive fragmentation
of the orthology graph in numerous small CCs. Orthologous groups
might fall apart into several subsets. A low threshold, on the other
hand, might return non-informative large CCs with multiple
putative co-orthologs for each species that actually represent
unions of several orthologous groups. The default threshold
applied by Proteinortho was defined empirically and
represents a reasonable trade-off between both extremes.

Different protein families have different overall similarities.
Therefore, a connectivity threshold that works well for one
protein family, might be suboptimal for another. To address this,
Proteinortho6 offers an adaptive clustering with the core

option. It assumes that members of orthologous groups should be
found in all species. Iterative spectral clustering is applied
irrespective of the graph’s connectivity until the graph would
split into two subgraphs of which neither covers all species that
were covered by the original CC. The CC is only clustered further if
it appears too big, e.g., comprises many (co-)orthologous genes per
species. This threshold is defined by the parameter
coreMaxProts (default 10), which continues clustering if
more than 10 proteins are present per species.

2.4 Evaluation

2.4.1 Datasets
Several real-world datasets were used as a biologically relevant

basis for representative comparisons. These are summarized in
Supplementary Table S1. It shows the number of species and
proteins for each dataset and how this translates into a reciprocal
best hit graph (RBH) using Proteinortho6 with BLAST

(E-Value threshold 10–5).
The dataset QfO2020/04 was provided by the QfO benchmark

service (Altenhoff et al., 2016). It comprises a curated set of
proteomes from 23 Bacteria, 7 Archaea, and 48 Eukaryota
sampled from UniProt (UniProt-Consortium, 2018). Note that
QfO provides two versions of this dataset, and we used the newer
version with updated UP000008143 sequences.

The Bac dataset comprised all bacterial reference proteomes
from UniProt, release 2022/03 (UniProt-Consortium, 2018). This
set was downsampled to incremental subsets of random proteomes.
For instance, Bac10 contains 10 randomly selected bacterial
proteomes, Bac20 extends this set by 10 additionally randomly
selected proteomes, and so on. A full list is shown in Supplementary
Table S1.

The BigCC set comprises connected components of
1,800 bacteria for which an origin of replication was identified
(related study not published so far). Due to a huge connected
component, this dataset represents a challenge for the clustering
algorithm. So far, it was not solvable using regular spectral
clustering. A subset of this is BigCC100 which focuses on larger
CCs with at least 100 nodes. To evaluate edge cases that were not
covered by this real-world dataset, such as components with high
density and a large number of nodes, a set of 300 simulated graphs
was generated. The set will be referred to as simulated. Its
connected components were generated in three steps: An
unweighted path graph was generated with the given number of

nodes n and n − 1 edges connecting each node in a series to ensure
connectivity. Edges were added one by one, randomly assigning
unconnected nodes until the given graph density was satisfied.
Bitscores were defined randomly (between 1 and 2000). E-Values
were trivially set to 1/bitscore.

2.4.2 Benchmark system
All benchmarks were conducted on the HPC cluster

MaRC3 located at the University of Marburg using AMD EPYC
7702P processors with 64 cores and 256 GB RAM.

2.4.3 Clustering algorithms
The spectral clustering algorithms were applied to the

datasets BigCC100 and simulated, representing
particularly large connected components. A total of
8,881 connected components were evaluated in this way, see
Supplementary Table S1. If the relative clustering time differed by
less than 5 min or one log2 fold, the algorithms were considered
to be equally fast. To evaluate the comparability of both
clustering approaches, the adjusted rand index (ARI) was used
(Hubert and Arabie, 1985). The higher the ARI value, the more
similar the partitioning.

2.4.4 Precision of orthology predictions
The QfO benchmark service was used to evaluate the orthology

predictions (Altenhoff et al., 2016). The Nextflow implementation of
the benchmark system was used as provided in the corresponding
GitHub repository Altenhoff (2023). All benchmarks were
performed using the QfO2020/04 (2020.2) dataset. In this analysis,
the precision metrics of the three categories of benchmarks were
employed.

1. Phylogeny-based benchmarks GSTD2 (4 tests), the generalized
species tree discordance, as well as the STD (3 tests), the species
tree discordance, using the Average Robinson-Foulds (RF)
distance between predicted gene trees based on the set of
orthologs and the underlying species tree (the lower the
better). The RF metric is a dissimilarity measure that
quantifies the difference between two trees by counting the
number of partitions that can be observed in one phylogenetic
tree but not the other and vice versa. This metric can be seen as an
approximation of the false discovery rate or the inverse of
precision Altenhoff et al. (2016).

2. Function-based benchmarks used EC, the Enzyme Classification
Conservation, and GO, the Gene Ontology Conservation, through
the Average Schlicker Similarity as a proxy for precision (the
higher, the better). The Average Schlicker Similarity is a semantic
similarity measure used to assess the terms.

3. ReferenceOrthology-based benchmarks examined the agreementwith
the SwissTree, VGNC or TreeFam-A gene phylogeny, measured
by the Positive Predictive Value (PPV, the higher, the better).

Full details on the test statistics can be found in (Altenhoff et al.,
2016).

To combine the precision metrics of the different benchmarks,
we define improvement as the mean log2 fold ratio between all
scores. The scores of Proteinortho v5.16b with default settings
serve as the baseline and, for example, an improvement of
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0.5 corresponds to scores that are on average 41% better than the
results of Proteinortho5.

2.4.5 Scalability
The evaluation was performed with the Bac datasets of

increasing size (Bac10, Bac20, /). The following tools were
evaluated in the comparison: OrthoFinder v2.5.4 (Emms and
Kelly, 2019) in the graph-based modus (-og) using MMSeqs2

v14.7e284, SonicParanoid2 v1.3.8 (Cosentino and Iwasaki,
2023) using DIAMOND v2.0.15 in sensitive mode, OMA v2.5.0
(Altenhoff et al., 2019) without an out-group set, Proteinortho5
v5.16b utilizing BLAST v2.13.0, and Proteinortho6 v6.3.0 with
DIAMOND v2.0.15 in sensitive mode, as well as the pseudo-
reciprocal variation. A full list of all dependencies, versions, and
parameters is provided in Supplementary Table S1.

3 Results

3.1 Sequence search tools

Pairwise similarity data is fundamental to graph-based
orthology inference. The computation of all vs. all comparisons
using a sequence search tool is also the most costly step. Typically,
BLAST was the search tool of choice. It offers excellent performance
compared to directly calculating scores from pairwise alignments
and is considered the gold standard in terms of sensitivity and
precision (Ward and Moreno-Hagelsieb, 2014). To our knowledge,
more modern search tools are less accurate in general but perform
much better in respect to processing time andmemory consumption
(see Table 1). We systematically compared potential alternatives to
BLAST in the context of Proteinortho’s adaptive reciprocal

TABLE 1 Performance and resource consumption of sequence search tools in the context of Proteinortho based on the QfO benchmark dataset 2020/04.
Alternative search modes are listed below the tool’s names. The default option is indicated (def.). Sensitivity and precision are given relative to the BLAST results
in line 1. Edges: number of edges in the initial orthology graph; wall time: total processing time; memory: peak memory usage; l2FC: log2 fold change relative to
Proteinortho5 results; *: default option of Proteinortho6, pseudo: pseudo-reciprocal sequence comparison strategy as described in 2.2. Ranks are

indicated: top 25%, top 50%.

Algorithm Edges Sensitivity Precision Wall time Memory

% % l2FC h l2FC GB

Proteinortho5 5435 k 100 100 0 77.8 0 97

DIAMOND

default 4701 k 77 89 7.2 0.5 4.1 6

sensitive 5366 k 88.4 89.5 6.4 0.9 4 6

sensitive + pseudo* 5417 k 88.7 88.9 7.5 0.4 4.3 5

ultrasens 5457 k 89.7 89.3 4.6 3.2 3.8 7

fast 3894 k 63.8 89 7.3 0.5 4.4 4

LAST

m10 (def.) 4853 k 79.5 89 6.6 0.8 3.5 9

m100 5118 k 84.2 89.4 5.1 2.3 2.3 20

m1000 5239 k 86.2 89.5 2.2 16.5 1.9 25

MMSeqs2

s1 3877 k 64 89.7 6.9 0.7 3.4 9

s5.7 (def.) 5149 k 85.6 90.4 4.5 3.5 2.9 13

s7.5 5235 k 87.1 90.5 2.7 12 2.9 13

topaz

default 5025 k 82.3 89 4 4.9 3.2 10

fast 5025 k 82.3 89 4.1 4.5 3.2 11

USEARCH

ublast 5167 k 81.1 85.3 5.5 1.8 2.1 23

usearch 3215 k 51.8 87.5 7.6 0.4 5.5 2

ucsc BLAT 1158 k 20 94 7.8 0.3 5.5 2

RAPSearch2 2781 k 46.6 91.1 2.2 16.9 3.1 11
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best-hit heuristic (Lechner et al., 2011). The evaluation is based on
the QfO 2020/04 dataset (Altenhoff et al., 2016), which comprises a
representative mix of eukaryotic, bacterial, and archaeal proteomes.

The original implementation of Proteinortho5 relies on
BLAST. It required 97 GB of memory and about 3 days (78 h) of
processing time in total. Table 1 shows that both running time as
well as memory consumption improve significantly if alternative
search tools are used. In terms of precision, ucsc BLAT stands out
with 94% and is best in total processing time (21 min, 7.8 log2 fold
improvement) as well as memory footprint (2 GB, 5.5 log2 fold
improvement over BLAST). However, this tool returns the lowest
number of edges and achieves the by far worst sensitivity of all
options (20%). Similarly, RAPSearch2, and USEARCH also fall
behind in terms of sensitivity (47% and 52%, respectively). The
remaining tools are close regarding precision (around 90%) and
sensitivity (usually between 80% and 90%). With respect to both
measures of quality, DIAMOND, LAST, MMSeqs2, topaz, and
UBLAST could serve as suitable BLAST replacements when
applying the right search mode. Factoring in processing time and
memory requirements, DIAMONDwith the sensitive option was
evaluated to be the most optimal approach.

Using DIAMONDwith the sensitive option as the search tool
improved the running time by a log2 fold of 6.4 (to 56 min instead of
77.8 h) and the memory consumption by 4 log2 units (peak memory
usage of 6 GB instead of 97 GB). In addition, we applied the pseudo-
reciprocal sequence comparison strategy, pseudo. Here, protein
alignments are calculated only in one direction while the reverse
direction is estimated. See the Methods section for details. This
approach additionally speeds up the calculation by half. Compared
to the classic search strategy, the measures of quality are hardly
affected. Precision decreases from 89.5% to 88.9% while sensitivity
increases from 88.4% to 88.7%.

Comparable outcomes were noted for a group of closely related
species and for randomly selected bacterial proteomes from the
Bacn dataset. For additional details, please refer to Supplementary
Data Sheet S1. The pseudo-reciprocal best alignment heuristic using
DIAMOND with the sensitive option, therefore, became the new
default for Proteinortho6.

3.2 Clustering algorithm

Once pairwise similarity data was merged into an overarching
graph structure, spectral clustering is applied to reduce it to an
orthology graph. Proteinortho recursively divides connected
components into two connected subcomponents that are maximally
connected with respect to their algebraic connectivity. For this
process, the space-efficient power iteration is used in
Proteinortho5. With Proteinortho6, the ssyevr

algorithm is available as an alternative. It relies on full matrices
and is thus less space-efficient. We conducted a comprehensive
evaluation of the running time differences between the power
iteration and ssyevr algorithms using the real-world dataset
BigCC100 was used together with a simulated set that
comprises components with high density and a large number of
nodes. See the Methods section for details.

Lapacks ssyevr has a significantly larger memory footprint for
large connected components. The maximal requirement for

processing a CC in the reference datasets was around 18 MB
(ssyevr) vs. 0.1 MB (power iteration), see Supplementary Table
S1 for details. Given the availability of system memory in modern
computer systems, these additional requirements are largely
outweighed by the improvement in performance. The maximal
relative improvement in running time was 9.3 log2 folds for a
graph with 1,921 nodes (4 s using ssyevr vs. 40 min the power
iteration), and the maximum absolute running time difference was
1.36 h for a simulated graph with 7,731 nodes. 217 out of the
8,881 connected components were processed significantly faster
using ssyevr over the power iteration. The improvement was
5.1 log2 folds on average. Our evaluation shows that the ssyevr

implementation is consistently faster for large components and on
par with the power iteration for small components. For this reason,
the power iteration was replaced by the ssyevr as the default
clustering algorithm in Proteinortho6.

Notably, the chosen algorithm scales quadratically in memory
with the number of nodes. The BigCC100 dataset already
comprises a connected component with 4 million nodes which
exceed feasible computing capacities. While the power iteration
would be able to handle this component from amemory perspective,
the processing time would largely exceed any reasonable value. We
stopped the comparative evaluation of clustering this component
after 10 days. The increasing appearance of large connected
components with an increase of species that are analyzed for
(co-)orthologous proteins is expected due to the small world
phenomenon (Milgram, 1967). We found a number of additional
components in real-world datasets that are close in size. Hence, a
large proportion of the proteins cannot be assigned to any (co-)
orthologous group, if the components are ignored. To avoid a loss of
information due to this effect, Proteinortho6 employs a
flooding heuristic. Low-scoring edges are iteratively removed
from large components until they are decomposed to sufficiently
small subcomponents that are suitable for spectral clustering. See
Methods sections for details.

3.3 Pseudo-reciprocal best alignment
heuristic

To assess the validity of the pseudo approach, the reciprocal
best hit graph from the QfO 2020/04 data sets was evaluated
using the classic RBAH and the pseudo approach. Here, bitscores
calculated by DIAMOND differ by 1.1% in median and 1.9% on
average for any pairs of proteins (Proteinortho6 with
default parameters), see Supplementary Table S1. It is not
surprising, given that the same sequences are aligned just with
differing starting points. Although st(Sn, Sm) ≠ st(Sm, Sn) in general,
the reciprocal bitscores for any two proteins of these sets are highly
similar. With that, one can assume st(Sn, Sm) ~ st(Sm, Sn), hence the
calculation of st(Sm, Sn) can be omitted by estimating the scores based
on st(Sn, Sm) as described in the Method section. This reduces the
algorithmic effort by a factor of two. E-values calculated in this way
strongly correlate with the reciprocal E-values (R2

adj = 0.99). This
correlation between the pseudo and classic approach is
stronger compared to any comparison between two homology
search tools using the classic approach. For more details see
Supplementary Data Sheet S1.
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3.4 Adaptive clustering

Regular clustering of a CC is performed by bisecting it into two
sub-CCs of maximized connectivity until a predefined algebraic
connectivity threshold is met. The default threshold applied by
Proteinortho was defined empirically. Instead of working
with a fixed threshold, the adaptive clustering strategy (core)
assumes that members of orthologous groups should be found in
all species. Iterative spectral clustering is applied until the
component would split into two subcomponents of which neither
covers all species that the original CC covered. The algorithm is
aimed to keep orthologous groups as big as they need to be to cover
all initially present species, even if the connectivity criterion is not
met yet. This strategy is meant to identify the pan-genome as, e.g.,
the basis for reconstructing phylogenetic supertrees based on the
reconstruction of trees from multiple orthologs.

Table 2 shows an overview of the number of reported
orthologous groups relative to the percentage of species covered
in the dataset. We found a high number of core-groups,
i.e., orthology groups that span all input species, using the
adaptive clustering, especially compared to the default
connectivity threshold for the QfO dataset 2020/04. A
comparable number of core-groups is found with a very low
threshold of 1e−5 but at the same time increases the maximal
number of proteins per group dramatically. Overall the core

module shows the best trade-off between the number of core-
groups and size. It is worth noting that the results of the core

approach differ drastically from the results from Proteinortho5

(ARI: 0.35).

3.5 Scalability

Proteinortho6 implements a number of upgrades that
improve the processing time to a level that matches recent tools
for the identification of orthologs such as SonicParanoid2

(Cosentino and Iwasaki, 2023) without compromising the quality
of the predictions. As large-scale orthology assessment relies on
pairwise sequence comparisons, processing time grows quadratically
with the number of proteins to be compared. This number correlates
with the number of species in an orthology analysis. To portray the
scalability and thus the processing time relative to the size of
analyses, we used a real-world dataset. It is based on randomly
sampled proteomes of the bacteria kingdom provided by UniProt
(UniProt-Consortium, 2018). Details can be found in the 1.4 section.

Figure 1 shows the processing time and Supplementary Data
Sheet S1 the memory consumption for an orthology analysis as a
function of the number of species. OMA and Proteinortho5

exhibited the poorest scaling in terms of processing time, with a
quadratic coefficient of 1.9 · 10–3 and 2.9 · 10–4 respectively, making

TABLE 2 Key performance indicators of different clustering parameters applied to the QfO benchmark dataset 2020/04 (78 species). Similarity: ARI compared to
the Proteinortho5 clustering with default parameters, classic: classic adaptive reciprocal best hit algorithm, *: default, α: algebraic connectivity threshold,
core: adaptive clustering as described in 2.3.4, pseudo: pseudo-reciprocal sequence comparison strategy as described in 2.2.

ortho-groups Core-groups

Total 0%–25%
species

25%–50%
species

50%–75%
species

75%–100%
species

Total max(proteins/
group)

Similarity

Proteinortho5

default (BLAST) 84 k 80 k 3 k 988 97 0 0 1

default clustering
(DIAMOND)

79 k 75 k 3 k 984 97 0 0 .816

Proteinortho6 with DIAMOND sensitive

pseudo α = 0.1* 72 k 67 k 3 k 1 k 105 0 0 .822

classic α = 0.1 72 k 68 k 3 k 1 k 106 1 97 .821

classic α = 0.05 65 k 61 k 3 k 1 k 147 1 97 .819

classic α = 0.2 79 k 75 k 3 k 994 60 0 0 .797

classic α = 0.3 83 k 79 k 3 k 831 40 0 0 .769

classic α = 0.01 53 k 48 k 3 k 1 k 231 9 149 .706

classic α = 0.5 90 k 87 k 2 k 484 11 0 0 .692

classic α = 0.75 99 k 97 k 2 k 186 10 0 0 .606

classic + core 44 k 40 k 2 k 1 k 392 51 706 .352

classic α = 0.005 48 k 43 k 3 k 1 k 262 12 152 .15

classic α = 0.001 42 k 37 k 3 k 1 k 319 30 315 .141

classic α = 0.00001 36 k 32 k 2 k 1 k 377 50 3 k .0923
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an application to large species sets unfavorable. OrthoFinder,
SonicParanoid2 and Proteinortho6 scale significantly
better with the number of species. Proteinortho6 applying
the classic reciprocal best alignment heuristic scales similarly
to OrthoFinder in terms of processing time and outperforms the
alternatives in terms of memory consumption. SonicParanoid2 and
the pseudo reciprocal best alignment heuristic of Proteinortho6
show the best overall scaling results in regards to both metrics.

3.6 QfO sensitivity bias

An assessment of orthology prediction quality can be performed
using Quest for Orthologs (QfO). The evaluation tool offers various
tests to measure the precision and recall of predictions from different
perspectives (for more information, refer to the Materials section). As
exemplified below, we noticed a bias in the evaluation tool regarding the
recall metric. True orthology relations can only be estimated based on
existing data, e.g., via shared GO terms or congruence to curated species
trees or datasets (Altenhoff and Dessimoz, 2009). Some QfO tests use
the number of predicted orthologs as a proxy for sensitivity or recall,
which translates into the number of edges in the orthology graph. In
turn, the metric prefers large graphs. We exemplify this based on the
results of “OrthoMCL” (Hickman, 2021) and “SonicParanoid_
sensitive” (Consentino, 2021), which are among the highest recall
scores across the different benchmarks. The referenced results of
“SonicParanoid_sensitive” from 78 species include an orthology
group that comprises over 407,000 proteins that are predicted to be
co-orthologous to one another. Similarly, the results of “OrthoMCL”
contain a group with 3,249 proteins. The biological informativeness of
such a large group, in particular in relation to the small number of input
species is questionable at best. In comparison, the largest group
Proteinortho reports contain 3.5 proteins per species (with
default clustering). In our observations, there appears to be a
consistent trend where an increased count of edges generally results
in higher sensitivity or recall scores across most benchmarks.

To further exemplify this bias we constructed a “group
reference” using Proteinortho6 with DIAMOND and a
relaxed clustering that results in huge reported groups
(α = 0.00001). To magnify the effect, we opted to work with
groups instead of a list of pairs, where every pair of proteins
within a group was predicted to be orthologous. In total “group
reference” contained approximately ten to twenty times as many
orthologs as most other tools like “SonicParanoid” or
Proteinortho5. This approach achieved a Pareto optimal
solution with high recall, as shown in Figure 2 e.g., for a
Generalized Species Tree Discordance benchmark. Similar effects
could be observed for almost all benchmark results (see
Supplementary Data Sheet S1 and Supplementary Table S1). We
are questioning this metric used and the strength of the Pareto
optimal solution as a benchmark system as it is tied to this metric.
Consequently, we are primarily evaluating the precision
measurements of the benchmarks, as they remain unaffected by
this bias.

3.7 QfO assessment

We found that using Proteinortho6 classic, which
utilizes the classic adaptive best hit algorithm, with default

clustering (ssyevr) mostly achieves precision scores within the
top 25% and otherwise among the top 50% for all benchmark tests
with the exception of the VGNC benchmark as summarized in
Table 3. In general, all Proteinortho parameterizations and
variations produce below-average precision scores in the VGNC
benchmark. Proteinortho6, including the pseudo extension,
showed similar precision scores to those obtained with
Proteinortho5, with the majority of the benchmarks ranking
within the top 25%. Overall, precision scores are similar to the
Proteinortho5 results with mean log2 ratios below 0.005.
Exchanging BLAST with DIAMOND in Proteinortho5 results
in similar but slightly improved scores. Regarding Proteinortho

FIGURE 1
Scalability of total orthology prediction, including the all-versus-all sequence comparison and clustering, relative to dataset size of randomly
selected bacterial proteomes of UniProt 2022_03 (Bac10,20, . . . ,1000). Average processing times are indicated by circles and fitted using a quadratic
function (solid line, R2

adj ≥0.99) for extrapolation (dashed lines). Classic: classic adaptive reciprocal best hit algorithm, pseudo: pseudo-reciprocal
sequence comparison strategy as described in 2.2. Details on parameters and versions can be found in the Supplementary Data Sheet S1 and
Supplementary Table S1.
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parameterizations, the adaptive clustering (core) performs slightly
worse overall with an improvement of −0.028.

We found that the flooding heuristic performed similarly to the
case without any clustering, highlighting the validity of this
approach as a fallback system for the clustering if the size of a
CC extends the capabilities of the spectral clustering algorithm. The
conceptually simplified versions pseudo mode exhibited slightly
better precision scores that are very similar to the results of
Proteinortho5.

The orthology prediction results of “OMA Pairs”,
“SonicParanoid”, and “SonicParanoid-fast” showed high precision
specific to the phylogenetic benchmarks, where at least 6/
7 benchmarks are among the top 25%. The largest average
differences were found in comparison to “OrthoMCL”
(−0.648 improvement), “Ensembl Compara”
(−0.272 improvement) and “SonicParanoid2”
(−0.224 improvement). Additionally, “OMA Pairs” produces
the overall closest results compared to Proteinortho. A full
assessment of all benchmarks can be found in the Supplementary
Table S1.

In the context of sensitivity scores, Proteinortho consistently
yields some of the lowest scores, as demonstrated in detail in
Supplementary Data Sheet S1. For example, the number of ortholog
relations in the function-based Gene Ontology (GO) benchmark, is
depicted in Figure 3. Proteinortho6 generates approximately 10 k
orthologs, comparable to that reported by Proteinortho5 and
“OMA pairs”. In contrast, “SonicParanoid” generates around 20 k
orthologs, while the highest sensitivity scores are achieved by

“Ensembl Compara” and “OMA GETHOGs,” which report between
30 k and 40 k orthologs.

3.8 Usability

Proteinotho6 is now readily available across various
operating systems through multiple repositories, namely,
Bioconda (Conda), Homebrew (Brew), and the Debian apt
repository. Additionally, a containerized version of Docker
can be obtained from quay. io. Proteinotho6 is now
actively developed on GitLab fostering collaborative
development and providing a transparent platform for
community involvement. Furthermore, we implemented
continuous integration and continuous deployment (CI/CD)
routines through GitLab, ensuring efficient and seamless
updates and frequent releases.

In order to assist researchers with limited programming
experience, a graphical interface has been developed, which
facilitates the generation of command lines and allows for the
exploration of the output related to the orthology groups.
Moreover, Proteinotho6 is now accessible in usegalaxy.eu
(tools-iuc), providing a graphical interface and free computing
resources for users. For large datasets, Proteinortho6 now
includes a convenient interface to deploy jobs to multiple
computing nodes in an HPC (High-Performance Computing)
environment for Slurm systems. Furthermore, the clustering
algorithm of Proteinotho6 is now not limited to

FIGURE 2
Assessment of Proteinortho and selected orthology tools provided by the QfO benchmark service using the 2020/04 dataset. The Generalized
Species Tree Discordance benchmark Luca (G-STD2-Luca) with zoomed region. Proteinortho provides high precision at the cost of recall when used
with default settings and slight variations between the different variants (classic: classic adaptive reciprocal best hit algorithm, pseudo: pseudo-reciprocal
sequence comparison strategy as described in 2.2, core: adaptive clustering as described in 2.3.4, Proteinortho5with BLAST and DIAMOND). The blue
outlier on the right was generated using Proteinortho6 with DIAMOND and a relaxed clustering step (α = 0.00001, group reference).
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TABLE 3 Quantifying Orthology Inference Precision: Assessing Proteinortho and Other Tools Using precision metrics of QfO benchmark dataset 2020/04. Three categories of benchmarks were employed: phylogeny-based
benchmarks, function-based benchmarks, and reference orthology-based benchmarks, see the Method section for more details. A full description of all tools and the detailed benchmark results can be found in Supplementary
Table S1. Proteinortho parameters are given in the form X + Y, where X specifies variation in the reciprocal best hit algorithm and Y the clustering modus. improvement: average log2 improvement relative to
Proteinortho5 default. classic: classic adaptive reciprocal best hit algorithm. *: new default configuration of Proteinortho6, pseudo: pseudo-reciprocal sequence comparison strategy as described in 2.2, core:
adaptive clustering as described in 2.3.4, flooding: flooding heuristic as described in 2.3.2. Group reference: Proteinortho6with DIAMOND and a relaxed clustering step (α = 0.00001).: RBH output of Proteinortho6 using

DIAMOND in sensitive mode used for clustering with Proteinortho5. : top 25%, : top 50% of published tools.
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Proteinortho6 with DIAMOND sensitive

classic + default 10 −0.001

pseudo + default * 10 0.003

classic + core 8 −0.028

classic without clustering 9 −0.014

classic + flooding 9 −0.017

group reference 0 −1.473

published tools

Domainoid+ 0 −0.082

Ensembl Compara 0 −0.272

Hieranoid 2 9 −0.028

MetaPhOrs v.2.5 2 −0.135

OMA GETHOGs 4 −0.059

OMA Pairs 7 −0.007
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TABLE 3 (Continued) Quantifying Orthology Inference Precision: Assessing Proteinortho and Other Tools Using precision metrics of QfO benchmark dataset 2020/04. Three categories of benchmarks were employed:
phylogeny-based benchmarks, function-based benchmarks, and reference orthology-based benchmarks, see theMethod section for more details. A full description of all tools and the detailed benchmark results can be found
in Supplementary Table S1. Proteinortho parameters are given in the form X + Y, where X specifies variation in the reciprocal best hit algorithm and Y the clustering modus. improvement: average log2 improvement
relative to Proteinortho5 default. classic: classic adaptive reciprocal best hit algorithm. *: new default configuration of Proteinortho6, pseudo: pseudo-reciprocal sequence comparison strategy as described in 2.2,
core: adaptive clustering as described in 2.3.4, flooding: flooding heuristic as described in 2.3.2. Group reference: Proteinortho6with DIAMOND and a relaxed clustering step (α = 0.00001).: RBH output of Proteinortho6
using DIAMOND in sensitive mode used for clustering with Proteinortho5. : top 25%, : top 50% of published tools.
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Proteinotho output formats and now can be used on any
undirected graph in the widespread ABC format.

Proteinortho6 was implemented with a focus on
minimizing dependencies to ensure portability and avoid
conflicts between multiple installed programs (“dependency
hell”). In the Bioconda repository, Proteinotho6 has only
10 direct dependencies, while similar programs such as
SonicParanoid2 and OrthoFinder have 15 and
14 dependencies, respectively.

4 Discussion

Proteinortho was designed to predict (co-)ortholog groups,
with a focus on large datasets. Previous implementations have been
unable to keep up with the deluge of newly sequenced genomes that
calls for the analysis of millions of proteins and pairwise best-match
graphs with billions of edges. With Proteinortho6, we present a
comprehensive algorithmic update for both, the similarity
comparisons, and the clustering step.

Based on the detailed evaluation, the sensitive variation of
DIAMOND replaces BLAST in the sequence comparison step. This
leads to a considerable speedup with an acceptable loss of sensitivity
in the initial reciprocal best-hit graph. Proteinortho6 offers the
use of all similarity search tools listed above as an alternative. An
example is ucsc BLAT. It offers an even higher speedup at the cost
of sensitivity. It primarily reports very similar sequences. This might
be desirable if the dataset comprises only closely related species. We
further explored an improved search strategy for the reciprocal best

hit calculations, the pseudo approach. Results proved similar to
classic strategies while consistently yielding an additional significant
speed up. To optimize the performance, the pseudo option has
been selected as the new default modus operandi. This method has
the potential for broader adoption in other tools in the field.

In the clustering procedure of Proteinortho6, a new strategy is
implemented to compute the algebraic connectivity and the associated
Fiedler vector using the Fortran library Lapack, which is significantly
faster for connected components of larger sizes. The analysis of real-
world connected components in combination with artificially generated
ones shows the superiority of Lapack’s ssyevr approach over the
original power iteration in terms of running time. The precision
evaluation showed no major changes. A downside, however, is the
quadratic memory requirement of ssyevr. Very large connected
components are inevitable when analyzing large datasets. Technically
these would be workable through the power iteration. However, at the
enormous cost of CPU time. Hence, the flooding heuristic was
introduced. The reworked clustering implementation also makes
efficient use of multiple CPU cores and can even be distributed
among multiple computing nodes.

A regular application of orthology tools is the calculation of
robust phylogenetic reconstructions via a supertree analysis based
on single-copy orthologs among a given set of species. The new
adaptive clustering facilitates better results in this context as it
automatically optimizes the clustering parameters for each group
to cover as many species as possible without overestimating the
amount of paralogs. Besides this specific research question, core
falls behind the default clustering approach in terms of precision and
thus is not chosen as the default.

FIGURE 3
Number of ortholog relations in the function-based GO benchmark. Proteinortho parameters are given in the form X + Y, where X specifies
variation in the reciprocal best hit algorithm and Y the clustering modus. classic: classic adaptive reciprocal best hit algorithm. *: new default
configuration of Proteinortho6. pseudo: pseudo-reciprocal sequence comparison strategy as described in 2.2. core: adaptive clustering as described
in 2.3.4. flooding: flooding heuristic as described in 2.3.2. Group reference: Proteinortho6 with DIAMOND using DIAMOND in sensitive mode.
Names correspond to the tool names provided by QfO.
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For the comparison with other orthology prediction tools and
databases, the standardized QfO benchmark system was used.
Despite the usefulness of the benchmark system, we encountered
some shortcomings that may affect the comparisons. In particular,
the recall metric of the system is biased towards large inputs.
Execution parameters and tool versions are typically not
documented. Nevertheless, the precision estimates provided by
QfO gave valuable insights regarding changes in the quality of
our predictions when introducing alternative algorithms. Results
generated by Proteinortho are consistently among the highest-
performing tools in terms of precision and archived scores are
generally close to the results of OMA. In terms of sensitivity,
Proteinortho produces among the lowest scores compared to
the other tools, highlighting a distinct trade-off. Proteinortho6
notably excels in terms of execution time and provides a
considerable speedup over its previous implementation. This
substantially increases the size of datasets that can be processed
and makes efficient use of the hardware provided.
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