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Standardized MRI acquisition protocols are crucial for reducing the measurement
and interpretation variability associated with response assessment in brain tumor
clinical trials. The main challenge is that standardized protocols should ensure
high image quality while maximizing the number of institutions meeting the
acquisition requirements. In recent years, extensive effort has been made by
consensus groups to propose different “ideal” and “minimum requirements”
brain tumor imaging protocols (BTIPs) for gliomas, brain metastases (BM), and
primary central nervous system lymphomas (PCSNL). In clinical practice, BTIPs
for clinical trials can be easily integrated with additional MRI sequences that may
be desired for clinical patient management at individual sites. In this review, we
summarize the general concepts behind the choice and timing of sequences
included in the current recommended BTIPs, we provide a comparative
overview, and discuss tips and caveats to integrate additional clinical or research
sequences while preserving the recommended BTIPs. Finally, we also reflect on
potential future directions for brain tumor imaging in clinical trials.
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1. General concepts

1.1. Role and aims of BTIPs in clinical trials

More than 80,000 patients are diagnosed with primary CNS tumors every year in the

United States (incidence 24.7 per 100,000 population), with malignant forms accounting

for 28.3% of the cases (1, 2). Among malignant primary tumors, gliomas have the highest

incidence (4.26 per 100,000), while primary CNS lymphomas (PCNSL) are significantly

rarer (0.46 per 100,000) (2). The incidence of metastatic CNS tumors is remarkably

higher than primary tumors, with approximately 200,000 patients receiving a new

diagnosis every year in the United States (3). Given the poor prognosis of these types of
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tumors, newer treatment options are constantly tested, including

anti-angiogenic treatments, immunotherapy, and targeted therapy

(3–7). Although the optimal endpoint of clinical trials for

proving drug efficacy is an increase in overall survival (OS) in

clinical trials, radiologic progression-free survival (PFS) and

objective response rate (ORR) are considered valuable surrogate

endpoints (8, 9). This concept applies to primary CNS tumors,

and is even more relevant for patients with brain metastases

(BM). In patients with BM, OS is frequently linked to systemic

disease and the tested drugs may show heterogeneous efficacy on

CNS localization compared to the systemic ones. For these two

reasons, in BM patients the radiologic evaluation may be the

most reliable measurement for drug efficacy in CNS.

One limitation of radiologic response assessment in clinical

trials is the variability among images acquired in different

institutions and on different scanners. Such variability arises

from a number of factors including technique, acquisition

parameters, two- vs. three-dimensional acquisition schemes, slice

prescription and tilt/pitch differences, use of fat saturation, and

timing of sequences with respect to the moment of gadolinium

based contrast agent (GBCA) injection (10). In recent years,

extensive effort has been made by consensus groups to propose

standardized brain tumor imaging protocols (BTIPs), aiming to

reduce such variability in measurement and interpretation

(8, 11–13). The concept behind BTIPs is to ensure high image

quality while maximizing the number of institutions meeting the

acquisition requirements. Indeed, recommending ambitious

guidelines that cannot be implemented in smaller institutions

would dramatically reduce the number of centers eligible for

clinical trials. As a partial solution for this compromise, BTIPs

consensus papers feature both an “ideal” protocol and a

“minimum” recommended protocol, with variations dependent

on field strength. Additionally, proposed BTIPs comply to the

will of limiting the protocols to 30 min, in order for them to be

feasible in patients with low compliance on one hand, and

compatible with the integration of additional clinically-required

sequences on the other hand.
1.2. BTIPs serve RANO evaluation and
beyond

The choice of BTIPs pulse sequences and the structure of the

protocols are conceived to provide datasets whose evaluation can

determine treatment response or failure as defined by the current

recommended criteria. Treatment response in brain tumor clinical

trials is assessed through Response Assessment in Neuro-Oncology

(RANO) criteria. The first RANO criteria were originally proposed

for high-grade gliomas (HGG), and are therefore often referred to as

RANO-HGG (14). In the following decade, consensus groups

proposed numerous variations and updates of RANO, including

modified RANO (mRANO) for glioblastoma (15), specific criteria

for lesions receiving immunotherapy (iRANO) (16), and for

low-grade gliomas (LGG-RANO) (17). The latest effort in this regard

is represented by the upcoming RANO 2.0, which aim to integrate

previous considerations from different RANO guidelines and to
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address their reported limitations, to ultimately propose unified

criteria (18). Of note, RANO 2.0 are conceived to be applicable to

both LGG and HGG gliomas in adult patients, while brain

metastases (BM) and pediatric patients may still be evaluated with

dedicated criteria: RANO-BM (19) and RAPNO (20), respectively.

Finally, separate response criteria have been proposed for PCNSL (21).

All variations of RANO criteria propose that, at every

timepoint of the trial, each patient is assigned either progressive

disease (PD), stable disease (SD), partial response (PR), or

complete response (CR) compared to baseline or previous scans.

The category assigned depends on the integrated evaluation of

radiographic findings, clinical findings, and steroid dose. For the

radiologic assessment, the most important sequence to evaluate is

post-contrast T1-weighted (T1-post), since the enhancing tumor

volume is the best radiologic surrogate of tumor burden in HGG

(22–27), with some exceptions, and since BM tissue is exclusively

enhancing. PCSNL radiologic evaluation, too, is based exclusively

on enhancing lesions (21). Obviously, this does not apply to

non-enhancing LGG, for which radiologic assessment is based on

non-enhancing tumor volume (see LGG-RANO), evaluated on

T2-weighted (T2) and T2-weighted fluid-attenuated inversion

recovery (FLAIR). Notably, the evaluation of non-enhancing

components in HGG is featured in RANO-HGG and iRANO,

although no strict rules are mandated to perform such

evaluation, while mRANO focus only on the enhancing tissue.

The upcoming RANO 2.0 criteria propose to eschew the

evaluation of non-enhancing components in tumors with

contrast-enhancement, while preserving the evaluation of non-

enhancing components in tumors that are largely-non-enhancing.

The main role of pre-contrast T1-weighted (T1-pre) images is to

exclude from the enhancing portion measurements any areas of

spontaneous T1-hyperintensity (e.g., blood products, melanin).

Interestingly, mRANO criteria propose a more thorough usage of

T1-pre, by (optionally) evaluating the enhancement components

based on T1-subtraction maps, which increase contrast-to-noise

ratio of the enhancing tissue. T1-subtraction maps are obtained

by normalizing T1-post and T1-pre signals, co-registering the

two, and operating a voxel-wise subtraction (25). Finally, at this

time none of the proposed RANO variations mandate an

evaluation of diffusion MRI (dMRI) or perfusion MRI (pMRI),

which are nonetheless included (dMRI) and encouraged (pMRI)

in BTIPs, respectively.

While the main objective of the proposed BTIPs is to obtain

high-quality images for response assessment in the present

clinical trial, it must be emphasized that clinical trials represent

an occasion to collect abundant longitudinal datasets from a

patient population with set inclusion/exclusion criteria and with

serial clinical evaluations. As such, images obtained during

clinical trials are a valuable resource for subsequent retrospective

radiologic studies on brain tumor patients, with the possibility of

hypothesis testing with clinical and prognostic correlations. This

should be taken into consideration when BTIPs are first

implemented and potentially integrated with additional pulse

sequences. Finally, BTIPs represent an occasion to reflect and

reach consensus among panels of experts regarding the best

strategies to obtain images to assess treatment efficacy. As such,
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concepts and guidelines emerging from BTIPs should also inspire

and guide the choices of sequences and strategies for imaging

protocols in the clinical routine.
2. Rationale behind BTIP sequences
and technical considerations

2.1. T1-pre and T1-post images

As mentioned, the evaluation of the enhancing components

with T1-weighted imaging is the most crucial step of the

radiologic response assessment. The key concepts of T1-weighted

imaging in BTIPs include matching parameters of T1-pre and

T1-post, the timing, dosage, and type of contrast agent, the

requirement for 3D imaging, and recommendations regarding

the choice of gradient-echo (GRE) and/or spin-echo (SE)

acquisitions (8, 11–13).

BTIPs recommend parameter-matched T1-pre and T1-post

because acquiring both sequences with the same parameters and

technique optimizes the comparative evaluation of enhancement

with respect to inherent T1-pre signal, as well as the generation

of T1-subtraction maps, if desired.

The timing of contrast injection is another relevant factor that

can influence the evaluation. According to all BTIPs, T1-post

images should be collected 4–8 min after contrast agent injection.

This recommendation is based on previous evidence that the

maximum contrast uptake takes place in this time window (28).

Notably, for most lesions evaluated in this study the ratio between

the enhancing tissue and normal gray matter reached its peak

after 4–8 min and then plateaued for several minutes before slowly

decreasing. Conversely, at 3.5 min 30% of lesions still hadn’t

reached their enhancement peak. Overall, this suggests that the

highest lesion conspicuity is obtained by waiting at the very least

4 min from injection to T1-post acquisition, while waiting a little

longer than 8 min may in theory not be as problematic. However,

the 4–8 min time window should be respected also to maximize

longitudinal reproducibility. This 4–8 min gap is typically filled

with the acquisition of T2-weighted images. Additionally, the

injection can be performed during the acquisition of dynamic

susceptibility contrast (DSC) perfusion imaging. In this case, the

time gap between injection and T1-post corresponds to the sum of

the acquisition time of the post-bolus volumes of DSC and the

acquisition time of the T2-weighted sequence.

BTIPs recommend to acquire T1-post after one single dose of

GBCA of 0.1 mmol/kg. This corresponds to 1 ml/10 kg for

contrast agents with molar concentration 1 mmol/ml, and 2 ml/

10 kg for contrast agents with molar concentration 0.5 mmol/ml.

This concept is important to keep in mind in case of integration

with clinical or research protocols acquiring multiple boli of

GBCA, for instance in case both DSC and DCE (dynamic

contrast enhanced) imaging are performed, as discussed in the

following paragraphs. On a related note, the commercially

available gadolinium-based agents are characterized by

remarkably different relaxivities, which impact the enhancement

obtained for a given dose of contrast agent (29, 30). Therefore,
Frontiers in Radiology 03
the same type of GBCA should be used consistently at all follow-

up scans for a given patient, to maximize the reliability of

longitudinal comparisons, and should be reported on the

DICOM header along with the dosage (8).

Moreover, 3D imaging is recommended. One of the reasons is

that 3D imaging achieves thinner slices, which are known to allow a

better evaluation of enhancement, including better detection of

small lesions (31). 3D imaging also allows reformatting of the

acquired imaging volume into other planes and to potentially

adjust slice orientation. This is relevant because it has been

shown that changes in head tilting can impact the treatment

response evaluation (10). As an additional advantage, 3D

imaging allows a better volumetric segmentation of the contrast-

enhancing lesions. Improved segmentations have two advantages.

First, they can be used to assess the radiologic response with

volumetric thresholds as proposed by mRANO and RANO 2.0

(15, 18). Of note, the volumetric thresholds are applied to

measurable disease, whose assessment is central for the response

and progression criteria in RANO 2.0, together with the

evaluation of the non-measurable disease, the clinical status, the

steroid dosage, and the leptomeningeal involvement (18). Second,

improved segmentations benefit further imaging analyses beyond

clinical trials, for imaging studies focusing on tumor radiomics

or advanced imaging.

Finally, BM and PCNSL BTIPs overall advocate that 3D TSE

images should be preferred to 3D IR-GRE. This indication

follows evidence supporting a better tumor-to-background

contrast and lesion conspicuity using SE compared to GRE,

when the slice thickness is comparable (31, 32). The historical

reason for BTIPs including 3D IR-GRE (inversion recovery GRE,

such as MPRAGE or IR-SPGR) is that on older scanners a

thinner slice thickness is achievable with IR-GRE (8), and data

showed that enhancement rate and contrast rate are higher for

thin-sliced IR-GRE than for thick-sliced SE (31). When the slice

thickness can be matched, though, and SE can be obtained with

1 mm voxels, the detectability of small lesions with SE is

superior, as confirmed in a meta-analysis (33). This may be also

ascribable to the high white matter signal in IR-GRE, which can

mask small enhancing lesions for lack of tumor-to-background

contrast. As an additional advantage, applying motion-sensitized

driven-equilibrium preparation to TSE T1-post also allows black

blood imaging (34), eliminating vascular enhancement that is

typically seen in 3D IR-GRE and achieving a higher sensitivity in

the identification of small superficial lesions of the cortex and

leptomeningeal neoplastic involvement (35, 36). Finally, unlike

IR-GRE, SE T1 allows for fat saturation, which is particularly

helpful in case of metastastic involvement of the bony structures

(12). Therefore, the recent BM and PCNSL BTIPs recommend

employing pre- and post-contrast 3D TSE (turbo SE) in the

“ideal” protocol, while leaving 3D IR-GRE in the “minimum”

requirements together with an additional 2D SE T1 (12, 13), also

considering that 3D TSE T1 superiority to 3D IR-GRE has been

more thoroughly investigated at 3 T. As for gliomas, 3D IR-GRE

is currently still the sequence of choice for T1-weighted imaging

in clinical trials. In the original glioma BTIP initiative, 3D IR-

GRE was preferred because it yields adequate image quality and
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is available on almost all MR systems as a result of the standardized

ADNI initiative (37, 38), while 3D TSE is not available on all

scanners and the various pulse sequences are not standardized

across vendors. On a side note, adopting 3D TSE to improve

lesion conspicuity and identify smaller lesions would be less

relevant for gliomas in clinical trials, since, according to RANO

2.0, only measurable new contrast-enhancement (≥1 cm × ≥
1 cm in-plane diameters) should be categorized as progressive

disease. Overall, whether 3D TSE or 3D IR-GRE should be the

T1-weighted sequence of choice for future glioma BTIPs is

debated, as more institutions have been adopting 3D TSE in the

clinical practice and pieces of evidence in its favor are being

collected for gliomas (39). As of today, it is advisable to maintain

3D IR-GRE as the core T1-weighted sequence for gliomas to

comply with glioma BTIP, with the option of acquiring

additional post-contrast 3D TSE after, in case an institution has

a preference toward it. However, this recommendation may

change if a new agreement from a large panel of experts is reached.
2.2. T2-weighted images, T2-weighted
FLAIR, and post-contrast T2-weighted FLAIR

T2-weighted TSE and T2-weighted FLAIR images are acquired

to evaluate the non-enhancing components of tumors. As

mentioned, the evaluation of non-enhancing tissue is central for

LGG, marginal for HGG only according to RANO-HGG,

iRANO, and RANO 2.0, and not acknowledged in mRANO,

RANO-BM, and PCNSL response criteria. Overall, when the

evaluation of non-enhancing sub-regions is required, response

criteria do not dictate whether it should be performed using

mainly T2 or FLAIR, and this choice is left to the preference of

the reader, even though it is good practice to evaluate both.

Glioma BTIP proposes to optionally obtain T2 images through a

dual-echo proton density and T2-weighted (PD/T2) TSE sequence

(8). This approach allows to compute “effective T2”, a quantitative

measurement of T2 relaxation with the potential of distinguishing

vasogenic edema from non-enhancing tumor (40). While this

quantitative metric is not currently used in response assessment, it

has potential for the evaluation of non-enhancing tumor burden,

and the acquisition of PD/T2 comes with no additional time penalty.

Both T2-weighted FLAIR and T2 images can be collected using

2D or 3D acquisition schemes. While 3D FLAIR has been

encouraged since 2015 glioma BTIP (8), it only appeared as a

required sequence in the recent PCNSL BTIP, in both the “ideal”

and “minimum” protocols (13). The underlying reason is that,

once again, BTIPs were structured to be inclusive of institutions

with older scanners. However, 3D T2-weighted FLAIR images of

good quality are progressively becoming more easily available on

many scanners in use. As discussed for 3D T1, 3D T2-weighted

FLAIR has the advantage of allowing tilting readjustment,

reformatting in other planes, thinner slice thickness and better

feasibility of lesion segmentation. For this reason, when images

of good quality are obtainable, 3D FLAIR is highly

recommended particularly for clinical trials involving LGG,

where the assessment of the non-enhancing tumor is essential.
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Indeed, it has been recently demonstrated that 3D volumetric

measurements obtained from lesion segmentation in LGG should

be preferred for treatment response assessment, as they are have

better inter-reader agreement and stable longitudinal measurements

compared to 2D bidirectional diameters (41).

The use of fat saturation and the specific inversion time (TIs)

prescribed are two aspects of FLAIR acquisition worth further

discussion. The presence or absence of fat saturation can

significantly impact the apparent extent and intensity of FLAIR

signal alteration, constituting a potential confounding factor

during interpretation of changes over time (10). Without the use

of fat saturation, the bone marrow within the skull appears the

brightest on T2-weighted FLAIR, while after fat saturation the

bone marrow signal is nulled and T2 hyperintense areas are the

brightest. Given the resulting images have a fixed dynamic range

of signal intensities, the application of fat saturation can therefore

dramatically change the contrast between non-enhancing tumor

and surrounding brain tissue. Similar to other potential

confounding factors (e.g., field strength, contrast agent type,

scanning parameters), fat saturation is challenging to homogenize

across institutions and the best practice is longitudinal consistency

throughout all follow-up scans for a given patient. Currently, the

PCNSL BTIP reports fat saturation on FLAIR as optional. As for

TI, it has been shown that a lower TI (<2,400 ms at 3 T) enhances

T2-FLAIR mismatch (T2FM) sign. T2FM is a radiogenomic sign

with high specificity for IDH-mutant 1p19q-intact molecular

status in gliomas (i.e., astrocytomas) when compared to IDH-

mutant 1p19q-codeleted (i.e., oligodendrogliomas) and IDH-wild-

type (i.e., glioblastomas), and arises from a partial T2 signal

suppression on FLAIR images (42). The aforementioned study

showed that a lower TI appears to increase the accuracy of T2FM

to identify astrocytomas without causing an increase in false

positive results (43). While a lower TI may improve the T2 signal

suppression in some tumor regions for molecular profiling

purposes, it also causes the corresponding tumor regions to appear

isointense to normal tissue, with potential underestimation of non-

enhancing tumor burden. Current BTIPs allow a certain flexibility

when setting the TI (2,000–2,500 ms), with potential heterogeneity

in T2 signal suppression in non-enhancing regions across different

protocols. This once again advocates for evaluating both FLAIR

and T2 during radiographic reads, if an assessment of the non-

enhancing components is warranted, especially in protocols

acquired with a higher FLAIR TI.

T2-weighted FLAIR images can also be acquired after the

administration of contrast (FLAIR-post), which is preferred by some

institutions and is featured in the PCNSL BTIP (13). FLAIR-post

both display tissue with T2 hyperintensity and areas of contrast

enhancement, since FLAIR images contain a mixture of both T1 and

T2-weighting. In certain conditions such as low gadolinium

concentration in the tissue, FLAIR-post has been reported to be

more sensitive than T1-post in detecting subtle enhancement.

FLAIR-post has potential applicability in several settings, including

the detection of subtle intra-axial enhancement and the evaluation of

lepto- and pachymeningeal neoplastic involvement (44). Such

characteristics justify the inclusion of FLAIR-post in PCNSL BTIP,

since lymphomas frequently disseminate to the meninges.
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Additionally, these characteristics support a potential application in

gliomas and metastases to identify meningeal spread and for the

detection of small intra-axial lesions (45–49), and some institutions

prefer to acquire FLAIR-post in gliomas and BM, too. Acquiring

FLAIR after contrast injection, as opposed to before, probably does

not interfere with treatment response assessments. Indeed, the area

of FLAIR intra-axial enhancement would lie within the T2-FLAIR

hyperintense tissue, and therefore would not affect the measurement

of the non-enhancing component in gliomas. As for meningeal

spread, FLAIR-post may increase the sensitivity to meningeal

involvement, which can be useful in both gliomas and BM. Overall,

it is reasonable to consider FLAIR-post as an acceptable BTIL-

compliant alternative in BM and gliomas—as long as protocol

consistency is respected throughout timepoints. In the case FLAIR-

post is preferred, the sequence order should be acquired as in

PCNSL BTIP, with T2 before contrast and FLAIR after contrast. For

efficiency, FLAIR-post should be acquired immediately after

contrast agent injection per in PCNSL BTIP recommendations;

however, data suggests contrast may be maximized through a

delayed acquisition (20 min after contrast injection) (44), suggesting

a potential role of collecting FLAIR-post after acquisition of

conventional post-contrast T1-weighted images.
2.3. Diffusion and perfusion imaging

Diffusion-weighted imaging (DWI) and dynamic susceptibility

contrast (DSC) perfusion imaging are common in both routine

clinical and research studies in brain tumors (50–52).

DWI-derived apparent diffusion coefficient (ADC) images

reflect microscopic water Brownian diffusion (53) and its values

are considered a proxy for tumor cell density and tumor

microstructure (52, 54). ADC has been proposed as a biomarker

in neuro-oncology for molecular profiling (55–57), differential

diagnosis (58), and treatment response assessment (54, 59). All

current BTIPs propose 2D DWI acquisitions with at least 3

directions and at least 3 b-values (approximately 0, 500, and

1,000 s/mm2), per consensus recommendations by the

International Society for Magnetic Resonance in Medicine (60).

While DWI is part of BTIPs and of the clinical neuroimaging

protocols, ADC evaluation are currently not part of response

assessment criteria. Part of the reason is that ADC interpretation

is not trivial in the follow-up phase. Following treatment, and

specifically radiation, changes in ADC values probably result from

complex combined changes not only in cellularity, but also in

extracellular matrix composition, in the presence of necrotic foci

and edematous tissue, and possibly in vascular permeability.

Additionally, ADC measurements suffer from susceptibility

artifacts mainly induced by air-tissue interfaces and paramagnetic

material (e.g., blood products) (61). Evidence from post-surgical

case series (62) and from clinical trial images (63) suggest that

artifacts and corrupted images may remarkably reduce the number

of usable diffusion datasets, with a rate of images with unusable

ADC values reported around 27.5% and 32%, respectively.

DSC perfusion is commonly employed in neuro-oncology to

evaluate cerebral blood volume (CBV), and/or its derivates
Frontiers in Radiology 05
relative CBV and normalized relative CBV (rCBV and nrCBV,

respectively), in order to quantify the degree of angiogenesis or

tumor vascularity (64–66). Traditional measures of CBV has

been shown to correlate with vascular density (67), thus

providing a measure of relative tumor vascularity. Extensive

literature has demonstrated the value of CBV for molecular

profiling of gliomas (52, 55, 68), differential diagnosis (65, 69),

treatment response assessment (70–72), and the discrimination

between treatment effects and tumor recurrence (65, 73–75).

From a technical standpoint, the estimation of CBV using DSC

assumes the GBCA remains within the vasculature during

acquisition (i.e., doesn’t leak into the extravascular, extracellular

space), and thus, the accuracy of CBV measurements is strongly

affected by violations of this assumption (76). In particular, T1

leakage effects may result in CBV underestimation, therefore

recent guidelines propose strategies to reduce CBV sensitivity to

these effects (11). Current guidelines for DSC implementation in

HGG include a combination of the following strategies: reducing

the flip angle (FA) while using an appropriate field strength

dependent echo time (TE), administering a preload bolus, and

applying leakage correction during post-processing (11). FA and

TE adjustments act on DSC sensitivity to T1 relaxation, since T1

sensitivity is mitigated by a low FA and/or high TE (76, 77). The

administration of a preload bolus is aimed to partially saturate

the baseline T1 contribution to the signal, therefore mitigating T1

leakage effects (11). Finally, post-hoc leakage correction using

mathematical modeling to account for contrast leakage should be

performed to further improve the accuracy of the measurements

(11, 78). The current consensus guidelines for DSC on HGG

recommend GRE echo planar imaging (GRE-EPI), either with a

full preload GBCA dose (1 + 1 dosing) and FA 60°

(“intermediate” FA) or with no preload (0 + 1 dosing) and FA

30° (“low” FA), with TE 30 ms (at 3 T) or 45 ms (at 1.5 T), and

uni- or bidirectional leakage correction (11). BM and PCNSL

BTIPs adopted DSC HGG guidelines and comply with the DSC

consensus by proposing the alternative with low FA and no

preload, if the 0 + 1 dosing is desired (12, 13). It is worth

mentioning that only some of the previously proposed preload

schemes are BTIP-compliant. The 0 + 1 (no preload), 1 + 1 (full

dose preload) and ½ +½ (half dose preload and half dose

injection) schemes are all BTIP-compliant because they allow the

acquisition of T1-post after a single dose of GBCA. Other

schemes, such as ½ + 1 dosing, are not acceptable because T1-

post would be acquired either after half dose or after one and a half.

In addition to CBV, DSC perfusion can potentially provide

additional information about the tumor microenvironment. The

comparison of post-bolus to pre-bolus DSC signal intensity, as

measured with the percentage of signal recovery (PSR), is

thought to be influenced by tissue microstructure, and therefore

useful for differential diagnosis (65, 79). Post-bolus signal

intensity is influenced by the balance between T2* and T1

leakage effects, which has been suggested to reflect tissue

cytoarchitecture (77, 80, 81). PSR utility has been demonstrated

in the diagnostic phase rather than in treatment response

monitoring so far, thus its evaluation may not be directly

relevant for clinical trials at the moment. However, it is worth
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noticing that a recent study supported the validity of PSR even

when derived from BTIP-compliant DSC protocols that are

optimized for CBV computation and therefore bear a weaker T1-

weighting (82). This is relevant because it supports the adoption

of BTIP-compliant DSC protocols for both CBV and PSR, both

in the diagnostic and follow-up phases.

Although DSC is part of the clinical work-up of brain tumor

and included in BTIPs, CBV assessment is not integrated in

response criteria. During the monitoring of treatment response,

CBV is potentially useful in cases of pseudoprogression (74, 83,

84), where tumor size assessment is not a reliable surrogate of

tumor burden, since in such cases there is discrepancy between

the apparent size changes and the actual response to the

treatment. Another potential application of CBV in clinical trials

is the demonstration of angiogenesis reduction following

antiangiogenetic treatment (85, 86), even though such reduction

does not appear to predict an extended OS (85). However, no

reliable quantitative CBV cutoffs have been validated to identify

disease progression. This is due to most studies being small and

single center, inhomogeneity in DSC protocols, and a modest

repeatability and reproducibility of CBV measurements (87).

Overall, more efforts to achieve reliable and reproducible

perfusion assessments are warranted in order to test CBV

evaluations in multicenter trials.
3. Overview of current BTIPs

Table 1 provides a comparative overview of “ideal”

recommended BTIPs at 3 T for gliomas (8), BM (12), and

PCNSL (13). Table 2 illustrates the corresponding “minimum”

BTIPs at 1.5 T. While the tables compare the protocols at the

extreme of the spectrum (ideal at 3 T and minimum at 1.5 T),

the cited BTIPs also propose “minimum” protocols at 3 T (only

BM and PCNSL BTIPs) or an “ideal” protocol at 1.5 T (only

glioma BTIP) (not reported in the tables). In both tables, DSC

recommendations for gliomas have been integrated from the

separate consensus paper for DSC in HGG (11).

As previously mentioned, 3D IR-GRE T1 is featured in the

glioma BTIP, while 3D TSE T1 sequences are recommended as

ideal in PCNSL and BM BTIPs. In case 3D TSE T1 are not

available, it is suggested to use 3D IR-GRE T1-pre and acquire

an additional 2D SE T1-post before 3D IR-GRE T1-post. When

both a 3D IR-GRE and a 2D SE T1-post are acquired according

to the minimum requirement protocols, it is advisable to use 2D

SE T1-post to detect new non-measurable intra-axial lesions and

osseous involvement, thanks to the superior conspicuity of small

lesions on SE and to the possibility of fat saturation. On the

other hand, if SE T1-post is acquired 2D, it is advisable to base

lesion measurements on 3D IR-GRE, as it is parameter-matched

with T1-pre, allowing for a better pre-to-post comparison and to

exclude from the measurements the spontaneous T1-

hyperintensity (e.g., due to hemorrhage or melanin), whether T1-

subtraction maps are employed or not.

Other differences include 3D imaging for FLAIR and T2 in the

most recent PCNSL BTIP, although 3D FLAIR was already strongly
Frontiers in Radiology 06
recommended in the glioma BTIP. Additionally, 3D FLAIR is

acquired after contrast (FLAIR-post) according to the PCNSL

BTIP, which eliminates the need for T2 being acquired after

contrast injection.

Overall, the ideal protocols and a higher magnetic field (3 T)

should be preferred, if possible. However, large-scale multicenter

clinical trials often involve smaller academic and non-academic

community-based hospitals, where only the “minimum” protocols

may be feasible. In such cases, it is advisable, for the sake of

consistency and standardization, that all the centers involved in the

same trial comply with MRI protocols applicable to all the trial

locations. As a result, most later stage clinical trials may choose to

adopt the “minimum” protocols, whereas the “ideal” protocols

designed for high-performance 3 T scanners may be more applicable

in smaller, early phase studies at specific academic institutions.

Figure 1 displays a representative BTIP-compliant MRI exam

for a glioma case. Figure 2 shows demonstrative images of

improved lesion conspicuity on TSE T1-post compared to IR-

GRE T1-post in a BM patient.
4. Integration of additional sequences

BTIPs are typically acquired in the same MRI session as

imaging needed for the clinical management of the patients and

potentially also together with research sequences, especially in

academic institutions. Therefore, it is important to be aware of

caveats to be observed when integrating BTIPs and other clinical

and research pulse sequences.

A crucial aspect to consider is the timing and dosage of GBCA

administration with respects to additional sequences and BTIP

sequences. Some additional sequences must be obtained before

GBCA (e.g., functional MRI, fMRI), some others can be obtained

either before or after (e.g., sodium imaging), and other ones

require an additional GBCA administration (e.g., DCE). As for

BTIP sequences, protocols integrating clinical or research

acquisitions should be BTIP-compliant, meaning they should

observe that T1-post images must be acquired around 4–8 min

after contrast injection and after exactly one single dose of GBCA

(0.1 mmol/kg).

Figure 3 shows some examples of additional advanced

sequences that can be integrated with BTIPs.
4.1. fMRI and DTI

fMRI and DTI (diffusion tensor imaging) may be acquired

either for research projects or for presurgical planning (88),

especially in gliomas. fMRI and DTI could be acquired as part of

research protocols, for instance in studies investigating the value

of DTI metrics for predicting treatment response (89) or in

studies employing fMRI to evaluate neural plasticity and

functional remapping (90). As for presurgical mapping, during

the acquisition of BTIPs, the investigators usually do not have to

include presurgical imaging, since clinical trials typically focus on

systemic treatments initiated after surgery. In fact, radiologic
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TABLE 1 Comparison of ideal BTIPs at 3 T for gliomas, PCNSL, and BM.

Gliomas T1-pre FLAIRa DWIb DSCc T2 T1-post
d

Sequence IR-GRE TSE EPI GRE-EPI TSE IR-GRE

Plane Sag/ax Ax Ax Ax Ax Ax/sag

Mode 3D 2D 2D 2D 2D 3D

TR [ms] 2,100 Si/Hi;
5–15 GE/Phi/To

>6,000 >5,000 1,000–1,500 >2,500 2,100 Si/Hi;
5–15 GE/Phi/To

TE [ms] Min 100–140 Min 25–30 for 30° FA
20–35 for 60° FA

80–120 Min

TI [ms] 1,100 Si/Hi;
400–450 GE/Phi/

To

2,500 1,100 Si/Hi;
400–450 GE/Phi/

To

FA 10°–15° 90°/≥160° 90°/180° 60°/30° w/ preload
30° w/o preload

90°/≥160° 10°–15°

Frequency 256 ≥256 128 128 or ≥96 ≥256 256

Phase 256 ≥256 128 128 or ≥96 ≥256 256

NEX ≥1 ≥1 ≥1 1 ≥1 ≥1
FOV 256 mm 240 mm 240 mm 220–240 mm 240 mm 256 mm

Slice thickness 1 mm 3 mm 3 mm 3–5 mm 3 mm 1 mm

Gap/spacing 0 0 0 0–1 mm 0 0

Options b = 0, 500, 1,000 s/mm2≥ 3 directions 30–50 tp before bolus; ≥120 total tp

Parallel imaging Up to 2x Up to 2x Up to 2x Up to 2x Up to 2x Up to 2x

Notes Pre-CA Adjust FA if preload Post-CA 1st Post-CA 2nd

BM T1-pre FLAIRa DWIb DSC T2 T1-post
Sequence TSE TSE SS-EPI GRE-EPI TSE TSE

Plane sag/ax Ax Ax Ax Ax sag/ax

Mode 3D 2D 2D 2D 2D 3D

TR 550–750 >5,000 >5,000 1,000–1,500 >2,500 550–750

TE Min 100–140 Min 25–35 80–120 Min

TI 2,500 3T

FA Default 90°/≥160° 90°/180° 30° 90°/≥160° Default

Frequency 256 ≥256 128 ≥96 ≥256 256

Phase 256 ≥256 128 ≥96 ≥256 256

NEX ≥1 ≥1 ≥1 1 ≥1 ≥1
FOV 256 mm 240 mm 240 mm 240 mm 240 mm 256 mm

Slice thickness 1 mm 3 mm 3 mm 3–5 mm 3 mm 1 mm

Gap/spacing 0 0 0 0–1 mm 0 0

Options b = 0, 500, 1,000 s/mm2≥ 3 directions 30–60 tp before bolus; >120 total tp

Parallel imaging Up to 3x Up to 2x Up to 2x Up to 2x Up to 2x Up to 3x

Notes Pre-contrast No preload Post-CA 1st Post-CA 2nd

PCNSL T1-pre FLAIR-poste DWIb,e DSC T2
e T1-post

Sequence TSE TSE SS-EPI GRE-EPI TSE TSE

Plane Any Any Ax Ax Ax Any

Mode 3D 3D 2D 2D 3D 3D

TR 550–750 >6,000 >5,000 1,000–1,500 >2,500 550–750

TE Min 90–140 Min 25–35 80–120 Min

TI 2,000–2,500

FA Default 90°/≥160° 90°/180° 30° 90°/≥160° Default

Frequency 256 ≥256 128 ≥96 ≥256 256

Phase 256 ≥256 128 ≥96 ≥256 256

NEX ≥1 ≥1 ≥1 1 ≥1 ≥1
FOV 256 mm 240 mm 240 mm 240 mm 240 mm 256 mm

Slice thickness 1 mm 1 mm 3 mm 3–5 mm 1 mm 1 mm

Gap/spacing 0 0 0 0–1 mm 0 0

Options Fat sat optional Fat sat optional b = 0, 500, 1,000 s/mm2≥ 3 directions 30–60 tp before bolus; >120 total tp Fat sat optional

Parallel imaging Up to 2x Up to 2x Up to 2x Up to 2x Up to 2x Up to 2x

Notes Post-CA 1st As first sequence No preload Pre-CA Post-CA 2nd

The most relevant differences between protocols are highlighted with bold. CA, contrast agent; Si, siemens; Hi, hitachi; GE, general electric; Phi, philips; To, toshiba; tp,

timepoints.
aAcquiring FLAIR post-contrast, if preferred, by inverting the order of T2 and FLAIR as in the PCNSL BTIP could be a reasonable variation to be considered BTIP-compliant

overall (see text for discussion).
bDTI can be considered a BTIP-compliant alternative to DWI (see text for discussion).
cDSC recommendations for gliomas are integrated from the separate consensus paper and DSC was considered optional in the original HGG BTIP.
dIn gliomas, if 3D TSE is preferred, it is currently advisable to acquire both 3D IR-GRE (first) and 3D TSE (second) to maintain glioma BTIP compliance (see text for discussion).
eFor an easier comparison across protocols, DWI, FLAIR and T2 are not displayed in chronological order in this PCNSL BTIP overview, as T2 is acquired pre-contrast, FLAIR

post-contrast, and DWI is proposed as first sequence of the protocol.
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TABLE 2 Comparison of minimum BTIPs at 1.5 T for gliomas, PCNSL, and BM.

Gliomas T1-pre FLAIRa DWIb DSC (optional)c T2 T1-post
d

Sequence IR-GRE TSE SS-EPI GRE-EPI TSE IR-GRE

Plane Sag/ax Ax Ax Ax Ax Sag/ax

Mode 3D 2D 2D 2D 2D 3D

TR [ms] 2,100 Si/Hi;
5–15 GE/Phi/To

>6,000 >5,000 1,000–1,500 >2,500 2,100 Si/Hi;
5–15 GE/Phi/To

TE [ms] Min 100–140 Min 40–50 80–120 Min

TI [ms] 1,100 Si/Hi;
400–450 GE/Phi/To

2,000 1,100 Si/Hi;
400–450 GE/Phi/To

FA 10°–15° 90°/≥160° 90°/180° 60°/30° w/ preload
30° w/o preload

90°/≥160° 10°–15°

Frequency ≥172 ≥256 ≥128 ≥96 ≥256 ≥172
Phase ≥172 ≥256 ≥128 ≥96 ≥256 ≥172
NEX ≥1 ≥1 ≥1 1 ≥1 ≥1
FOV 256 mm 240 mm 240 mm 220–240 mm 240 mm 256 mm

Slice thickness ≤1.5 mm ≤4 mm ≤4 mm 4–5 mm ≤4 mm ≤1.5 mm

Gap/spacing 0 0 0 0–1 mm 0 0

Options b = 0, 500, 1,000 s/mm2≥ 3 directions 30–50 tp before bolus; ≥120 total tp

Parallel imaging Up to 2x Up to 2x Up to 2x Up to 2x Up to 2x Up to 2x

Notes Pre-CA Adjust FA if preload Post-CA 1st Post-CA 2nd

BM T1-pre FLAIRa DWIb DSC (optional)c T2 T1-post add
e T1-post

Sequence IR-GRE TSE SS-EPI GRE-EPI TSE TSE/SE IR-GRE

Plane Sag/ax Ax Ax Ax Ax Ax/Cor Sag/ax

Mode 3D 2D 2D 2D 2D 2D 3D

TR 2,100 Si/Hi;
5–15 GE/Phi/To

>6,000 >5,000 1,000–1,500 >3,500 400–600 2,100 Si/Hi;
5–15 GE/Phi/To

TE Min 100–140 Min 40–50 80–120 Min Min

TI 1,100 Si/Hi;
400–450 GE/Phi/To

2,000 1,100 Si/Hi;
400–450 GE/Phi/To

FA 10°–15° 90°/≥160° 90°/180° 60°/30° w/ preload
30° w/o preload

90°/≥160° 90°/≥160° 10°–15°

Frequency ≥172 ≥256 128 ≥96 ≥256 ≥256 ≥172
Phase ≥172 ≥256 128 ≥96 ≥256 ≥256 ≥172
NEX ≥1 ≥1 ≥1 1 ≥1 ≥1 ≥1
FOV 256 mm 240 mm 240 mm 220–240 mm 240 mm 240 mm 256 mm

Slice thickness ≤1.5 mm ≤4 mm ≤4 mm 4–5 mm ≤4 mm ≤4 mm ≤1.5 mm

Gap/spacing 0 0 0 0–1 mm 0 0 0

Options b = 0, 500, 1,000 s/mm2≥ 3 directions 30–50 tp before bolus; ≥120 total tp Fat sat encouraged

Parallel imaging Up to 2x Up to 2x Up to 2x Up to 2x Up to 2x Up to 2x Up to 2x

Notes Pre-CA Adjust FA if preload Post-CA 1st Post-CA 2nd Post-CA 3rd

PCNSL T1-pre FLAIR-postf DWIb,f DSC T2
f T1-post add

e T1-post

Sequence IR-GRE TSE SS-EPI GRE-EPI TSE TSE/SE IR-GRE

Plane Sag/ax Any Ax Ax Any Ax/Cor Sag/ax

Mode 3D 3Dg 2D 2D 3Dh 2D 3D

TR 2,100 Si/Hi;
5–15 GE/Phi/To

>6,000 >5,000 1,000–1,500 >2,500 400–600 2,100 Si/Hi;
5–15 GE/Phi/To

TE Min 90–140 Min 45 80–120 Min Min

TI 1,100 Si/Hi;
400–450 GE/Phi/To

2,000–2,500 1,100 Si/Hi;
400–450 GE/Phi/To

FA 10°–15° 90°/≥160° 90°/180° 30–35° 90°/≥160° 90°/≥160° 10°–15°

Frequency 172 ≥256 128 ≥96 ≥256 ≥256 172

Phase 172 ≥256 128 ≥96 ≥256 ≥256 172

NEX ≥1 ≥1 ≥1 1 ≥1 ≥1 ≥1
FOV 256 mm 240 mm 240 mm 240 mm 240 mm 240 mm 256 mm

Slice thickness ≤1.5 mm ≤1.5 mm ≤4 mm 3–5 mm ≤1.5 mm ≤4 mm ≤1.5 mm

Gap/spacing 0 0 0 0–1 mm 0 0 0

Options Fat sat optional b = 0, 500, 1,000 s/mm2≥ 3 directions 30–60 tp before bolus; >120 total tp Fat sat optional

Parallel imaging Up to 2x Up to 2x Up to 2x Up to 2x Up to 2x Up to 2x Up to 2x

Notes Post-CA 1st As first sequence No preload Pre-CA Post-CA 2nd Post-CA 3rd

The most relevant differences between protocols are highlighted with bold. CA, contrast agent; Si, siemens; Hi, hitachi; GE, general electric; Phi, Philips; To, toshiba; tp,

timepoints; add, additional.
aAcquiring FLAIR post-contrast, if preferred, by inverting the order of T2 and FLAIR as in the PCNSL BTIP could be a reasonable variation to be considered BTIP-compliant

overall (see text for discussion).
bDTI can be considered a BTIP-compliant alternative to DWI (see text for discussion).
cDSC is optional for gliomas and BM, and not part of the minimum requirements in the original HGG BTIP and in the BM BTIP. Even though the separate consensus paper

for DSC was meant for HGG, it is reasonable to integrate the same DSC guidelines for both HGG and BM, as in this table.
dIn gliomas, if TSE/SE is desired, it is currently advisable to acquire both 3D IR-GRE (first) and TSE/SE (second) to maintain glioma BTIP compliance (see text for discussion).
eIn BM and PCNSL BTIPs, the recommendation is to acquire the additional T1-post SE 2D before the parameter-matched IR-GRE 3D T1-post.
fFor an easier comparison across protocols, DWI, FLAIR and T2 are not displayed in chronological order in this PCNSL BTIP overview, as T2 is acquired pre-contrast, FLAIR

post-contrast, and DWI is proposed as first sequence of the protocol.
g2D FLAIR is accepted as an alternative in PCNSL BTIP. If adopted, it should be set as in the BM BTIP.
hIf 3D T2 is not available for PCNSL BTIP, 2D T2 should be acquired with minimal slice thickness.
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FIGURE 1

Representative case of BTIP-compliant glioma MRI exam. The images are shown in chronological order, and are displayed in their native acquisition space
and voxel size. T1 images are acquired with matching technique (3D IR-GRE), parameters and voxel-size pre- and post-contrast, allowing for optimal T1-
subtraction maps. FLAIR and T2 images are acquired with 2D TSE sequences. Diffusion imaging is obtained through a DTI acquisition (b= 0–1,000; 64
directions), as an alternative to axial DWI at 3 directions. DSC perfusion imaging is acquired without preload with a 30° flip-angle, in compliance with DSC
guidelines.
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evaluation of treatment response starts on post-surgical scans

according to RANO (14) and on post-radiation scans according

to mRANO (15) and RANO 2.0 (18). However, it may be useful

to integrate presurgical fMRI and DTI during clinical trials when

employing neoadjuvant treatments (in which patients can be

imaged before surgery) or in case patients enrolled in clinical

trials are considered for repeat surgery during follow-up. In both

cases, it is possible that fMRI and DTI need to be integrated in

BTIPs protocols for presurgical mapping purposes.

fMRI, either task-based or resting-state, should be acquired

before contrast injection, since fMRI is based on T2*-weighted
FIGURE 2

Representative case comparing lesion conspicuity between 3D TSE and 3D IR-G
day after 3D TSE. 3D TSE shows a juxtacortical BM in the left superior frontal gy
right paravermian cerebellar BM (3 mm, teal arrow) is easily identifiable on 3D T
an incidental parafalcine meningioma (red arrow), which is also more conspi
bright cortical vessels. SCLC, small cell lung carcinoma.
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GRE-EPI sequences (91), similarly to DSC, and is therefore

sensitive to T1 and T2* signal changes induced by gadolinium.

fMRI acquisitions, tasks, and processing methods vary across

institutions. The ASFNR guidelines propose to acquire fMRI with

3.4 × 3.4 mm2 in-plane resolution and 4–5 mm slice thickness,

with six 10-volume blocks for tasks and six 10-volume blocks for

rest, for a total of 120 EPI volumes.

DTI should be preferably acquired before contrast injection

as well, in compliance to what is suggested for DWI in BTIPs.

For completeness, it should be noted that there is evidence of

contrast agent influencing DTI-metrics such as fractional
RE T1-post in a BM patient. 3D IR-GRE was acquired for SRS planning, one
rus (2 mm, yellow arrow), that is not appreciable on 3D IR-GRE. Similarly, a
SE, while it barely appreciable on 3D IR-GRE. Finally, both sequences show
cuous on 3D TSE, probably due to the reduced number of confounding

frontiersin.org

https://doi.org/10.3389/fradi.2023.1267615
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


FIGURE 3

Representative case with additional advanced imaging acquisitions that can be integrated with BTIPs. DTI allows to compute fractional anisotropy and
diffusivity, as well as perform tractography, if needed. Amine CEST can be employed to generate MTR asymmetry, reflecting tumor acidity. DSC maps
are useful to assess tumor vasculature and angiogenesis (nrCBV) and tissue cytoarchitecture (PSR). DCE maps reflect the contrast leakage
characteristics. In this case, DCE metrics were obtained simultaneously with DSC, using a dynamic spin-and-gradient-echo perfusion sequence as
described in (81). Finally, sodium images were obtained at the end of the protocol and sodium signal voxel-wise was normalized to the eye sodium signal.
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anisotropy (92), while ADC measurements do not seem to be

influenced by gadolinium (93, 94). The ASFNR guidelines for

clinical DTI recommend to acquire DTI with a single-shot SE-

EPI sequence, with isotropic voxels 2 × 2 × 2 mm3 at 3 T (2.5 ×

2.5 × 2.5 mm3 at 1.5 T), and with three b = 0 images and at

least 25 directions at b = 1,000 s/mm2 (https://www.asfnr.org/

clinical-standards). Multicenter trials focusing on non-

neoplastic diseases adopted similar parameters for DTI, with

single-shell b = 1,000 s/mm2, 64 directions, and 2 × 2 × 2 mm3

isotropic voxels (95, 96). Other multicenter trials adopted

similar protocols with some protocol variations, such as b =

700 s/mm2 (97) or b = 1,300 s/mm2 and voxel size 2.7 × 2.7 × 2.

7 mm3 (98). Compared to BTIP-compliant DWI, these DTI

sequences lack the b = 500 s/mm2 shell and have thinner slices, as

well as a higher number of directions for diffusion-encoding

gradients. The lack of b = 500 s/mm2 images may slightly affect the

accuracy of ADC computation, while the thinner slices may

decrease signal-to-noise ratio. However, in the case that DTI is

integrated in BTIPs, it is overall reasonable to replace BTIP-

compliant DWI with DTI (b = 1,000 s/mm2), as long as diffusion

acquisitions are kept consistent in all follow-up scans of a given

patient.
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4.2. DCE

DCE (“permeability”) perfusion imaging is a dynamic T1-

weighted imaging technique that is used in a variety of solid

tumors to provide insight into vascular permeability. Although

not included in BTIPs, DCE has applications in neuro-

oncologic imaging. In the brain, DCE is thought to reflect

alterations in the blood-brain barrier integrity (99). DCE-

derived metrics such as Ktrans have been employed for

differential diagnosis (100), to predict and/or monitor treatment

response (101–103), and to distinguish between treatment

effects and tumor recurrence (75, 104), similar to DSC

perfusion measures of CBV. The QIBA alliance has provided

consensus recommendations for brain DCE (https://qibawiki.

rsna.org/index.php/Profiles) (105). According to QIBA, DCE

should consist of a dynamic 3D T1w SPGR with TE/TR

minimal/3–8 ms, FA 10–15° at 3 T (25–35° at 1.5 T), ≤10 s
temporal resolution (ideally ≤5 s) with at least 5 dynamics

acquired before the bolus injection, acquisition time of ≥5 min,

FOV 220–240 mm, matrix 256 × 128–160, slice thickness

≤5 mm. Additionally, pre-injection T1 mapping with the

variable FA approach is suggested. As an example, a
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recent multicenter study employed a 6-minute long DCE

sequence with ∼5 s temporal resolution and 2.4 × 2.4 × 2.5 mm3

voxel size (106, 107).

While some research strategies have included both DCE and

DSC perfusion to estimate vascular permeability and volume,

respectively, DCE requires a separate injection of GBCA in

addition to the one needed for DSC. BTIP-compliant protocols

that include DCE and DSC can therefore be achieved with two

alternative strategies (11). The first strategy (1 + 1 scheme) is to

administer a full dose of GBCA while acquiring DCE and then

acquire post-contrast T1-weighted images followed by

administration of an additional full dose for DSC. An alternative

strategy (½ +½ scheme) would be to acquire DCE with half dose

of contrast agent, then DSC with another half dose bolus, and

lastly the post-contrast T1-weighted images. While the 1 + 1

scheme provides higher contrast-to-noise ratio and accuracy in

perfusion/permeability metrics, double dosage raises concerns for

gadolinium deposition in gray matter nuclei (even though little is

known about potential clinical implications of such deposition)

(108) and for toxicity in patients with chronic kidney disease

(109), also considering that brain tumor patients are followed

with many longitudinal scans. Both the ½ + ½ and the 1 + 1

schemes are BTIP-compliant, and the choice should be made

depending on the institution experience/preference and on the

type of GBCA employed, as for instance macrocyclic agents are

possibly linked with a very low risk of nephrogenic systemic

fibrosis. If the ½ +½ scheme is preferred, a 30° FA should be set

for DSC, which is more adherent to BTIP recommendations,

while 60° FA should be preferred in case of full preload injected

during DCE (1 + 1 scheme). Finally, it is worth mentioning that

some studies proposed to employ dual-echo DSC to perform

simultaneous DSC and DCE with a single bolus of GBCA and a

single acquisition (87, 110), which is a potential future approach

to obtain both DSC and DCE while limiting GBCA doses and

reducing acquisition time.
4.3. ASL, spectroscopy, CEST, sodium
imaging, and SWI

ASL (arterial spin labeling) is a technique that enables

estimation of cerebral blood flow (CBF) by imaging the

magnetically labeled inflowing blood (111), and it has been

increasingly employed in brain tumor imaging studies as a

perfusion technique (112–114). Similarly to DSC-derived CBV,

ASL-derived CBF has also been shown to correlate with

microvascular density (115). According to current guidelines

(116, 117), ASL should be performed with either pseudo-

continuous or pulsed labeling, with a post-labeling delay (or

inversion time) of 2,000 ms in the clinical adult population,

in-plane resolution of 3–4 mm, and slice thickness of 4–8 mm.

As discussed in a recent article, exogenous GBCA administration

causes significant signal loss in ASL, as GBCA-induced T1

shortening results in a rapid decay in the magnetic labeling of

blood spins (118). Therefore, ASL sequences should be integrated

in BTIPs before contrast injection.
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MR spectroscopy (MRS) techniques are traditionally employed

in brain tumor MRI mainly to assess the tissue concentration of

creatine, choline, and n-acetylaspartate. More recently, MRS

techniques to detect 2HG in gliomas have been optimized in some

institutions (119–121). 2HG is a product of mutant IDH, and its

detection is not only useful for IDH profiling at diagnosis, but

also for the longitudinal evaluation of IDH inhibition (122). MRS

sequences may be integrated with BTIPs in LGG clinical trials

testing IDH inhibitors, in order to correlate clinical outcomes with

longitudinal changes in 2HG. For non-enhancing lesions—e.g.,

most of IDH-mutant gliomas—MRS can be acquired either before

or after GBCA administration, since no significant amount of

GBCA is thought to be present in the extravascular extracellular

space in such cases. For enhancing lesions, it is debatable whether

MRS should be integrated in BTIPs before or after GBCA. In

single-voxel MRS, the administration of GBCA allows to more

accurately position the voxel on the enhancing component of the

lesion, and better avoid sampling cystic or necrotic areas or

vasogenic edema. However, distortions in the local magnetic field

induced by GBCA susceptibility may potentially affect the

accuracy of MRS measurements, particularly in long-TE protocols.

Evidence in this regard is inconclusive, as some data advocate for

GBCA not affecting the quantification of creatine, choline, and

n-acetylaspartate (123), while other findings showed a choline

underestimation only when using negatively-charged types of

GBCA (e.g., gadoteric acid) (124). Overall, common sense suggests

that partial volume effects due to necrotic/cystic/edematous tissue

sampling may impact on measurement accuracy more than GBCA

effects. Therefore, it is overall reasonable to acquire single-voxel

MRS after GBCA administration—as often happens in the clinical

practice –, as long as consistency is maintained across subjects and

timepoints, and the GBCA type is reported in the article.

Conversely, multi-voxel MRS is less impacted by an accurate voxel

positioning, and is perhaps more feasible before GBCA.

Amine-weighted CEST (chemical exchange saturation transfer)

and APT (amide proton transfer) CEST are techniques that have

been proposed to sample tumor acidity (with a contribution to

the signal dependent on protein content, especially in case of

APT), providing insights into tumor metabolism, with potential

applications in monitoring treatment response (125–127). CEST

MRI is typically performed at 3 T field strength or higher, and

should be integrated in BTIPs before contrast injection for

consistency with the common practice.

Sodium MRI has been recently included in imaging protocols in

some institutions, as it is a promising technique to study tumor

electrolyte homeostasis, with potential insights into tissue biology

and susceptibility to treatments (128–130). Sodium imaging can be

integrated in BTIPs either before or after contrast injection, since

there is evidence that the estimation of total sodium concentration

should not be impacted by gadolinium (131).

SWI (susceptibility-weighted imaging) may be helpful in

brain tumor imaging at diagnosis. Identifying intra-tumoral

susceptibility signals may be helpful for differential diagnosis

since they can be present in gliomas due to microhemorrhage

or microcalcification, while they are substantially less frequent

in PCNSL. Additionally, the evaluation of phase images can
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differentiate microcalcifications from microhemorrhage, which

may aid the molecular prediction of oligodendrogliomas (132).

Overall, the role of SWI in treatment response assessment

seems marginal at the moment. For the aforementioned

applications, SWI should be integrated in BTIPs before

contrast agent administration. Post-contrast SWI, on the other

hand, may have other applications, such as the evaluation of

vascular malformations (133).
5. Future directions and conclusions

BTIPs overall lean towards conventional imaging (T1, T2, and

FLAIR) acquisitions being performed with 3D imaging, with the

caveat that 3D imaging can be more technically challenging and

should be used when yields sufficient image quality. As

discussed, 3D images are useful for adjusting the tilt of image

planes, for multiplanar reconstructions, and for volumetric

assessments of lesion volumes. Whether lesion size should be

assessed through linear measurements (unidimensional 1D, or

bidimensional 2D) or volumetric segmentations (3D) in clinical

trials has been object of debate. Currently, both 2D and 3D

assessments are contemplated in RANO 2.0 (18). Some studies

showed good agreement between linear and volumetric

measurements, and advocated for 2D being non-inferior to 3D

when predicting overall survival (134–137). However, as already

mentioned, evidence shows that measuring lesion size through

3D segmentations can reduce the inter-observer variability

compared to 1D and 2D evaluations (138–144), and have smaller

bias and variability for the measurement of nodules (145). As for

the impact on response assessment, some studies in slower

growing tumor show significant differences in progression-free

survival between volumetric and 1D/2D methods (41, 134), and

studies on malignant gliomas reported that only volumetric

measures of tumor size were predictive of survival (146). Finally,

3D segmentations aid the quantification of tumor size in peculiar

scenarios where the disease is considered non-measurable

according to RANO-compliant 1D/2D measurements, for

instance in the case of rim enhancement surrounding a cyst or

surgical cavity. Overall, the current body of literature suggests

that 3D measurements for tumor burden quantification is equal

or better than 2D measurements. Therefore, adopting 3D

measurements for the quantification of tumor burden is

advisable, if technically feasible. Currently, the main technical

factors limiting the application of volumetric assessments are that

tumor segmentations are time-consuming and require dedicated

software (often not available on PACS systems). A potential

resource to overcome these obstacles and eventually make

volumetric assessments more widely feasible will be the use of

artificial intelligence (AI) for lesion segmentation, which has the

potential to yield automated tumor masks without the need of

human intervention (147). One recent study showed that PFS

computed from AI segmentations on clinical trials datasets was

comparable to the human centralized review read, while the local

human read yielded different PFS, possibly due to training and

expertise differences in the local institutions (148). Similarly,
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another study showed how an automatic assessment of RANO

(AutoRANO) is feasible through AI (149). As of today, both

open access and commercial AI segmentation tools are beginning

to become more and more available, with variable performance.

A general trend towards 3D acquisitions will contribute to

speeding up the process of obtaining more longitudinal brain

tumor imaging datasets to train AI, thereby improving their

performance, and consequently paving the way for a future use

of AI segmentations in clinical trials.

Another aspect that has been encouraged in BTIP articles is

the generation of T1-subtraction maps. T1-subtraction maps are

overall a more accurate approach to identify the enhancing

tissue compared to a separate side-by-side qualitative evaluation

of T1-pre and T1-post, and are essential in some otherwise

difficult cases. One such case is the identification of subtle

degree of enhancement, for instance in tumors treated with

anti-angiogenic therapy, for which the use of T1-subtraction

maps has been shown to improve the quantification of tumor

burden and the predictive value of the radiologic assessment

with regards to overall survival (25). Additionally, T1-

subtraction maps are helpful to sort out inherent T1-pre

hyperintensity due to hemorrhage (in glioblastoma, mostly),

melanin (in melanoma BM), or calcification. In this regard, the

voxel-wise subtraction is not only able to exclude from the

enhancing voxels the ones with inherent T1-hyperintensity but

also to capture potential enhancement in areas of inherent T1-

hyperintensity, where T1 signal is high before contrast and even

higher after contrast. As of today, T1-subtraction maps are

obtainable quite easily in neuro-imaging laboratories, and could

be generated during the central review of the scans in clinical

trials. Conversely, they are more challenging to generate in

clinical settings, since the normalization and co-registration of

T1-pre and T1-post warranted before voxel-wise subtraction are

commonly not feasible on the scanner nor on PACS at this

time. A wider use of T1-subtraction maps and further evidence

of their advantages may heighten interest towards the

development of integrated software tools for their clinical

implementation.

As for the efforts towards a better standardization of pulse

sequence parameters across institutions, a remarkable

advancement may be represented by synthetic MRI (SyMRI),

using a technique named quantification of relaxation times and

proton density by multi-echo acquisition of a saturation-

recovery using turbo spin-echo readout (QRAPMASTER) (150).

This technique estimates T2, T1, and PD values voxel-wise by

fitting the Bloch equations to a QRAPMASTER SyMRI

sequence: T2 values are computed from the multiple echoes

acquired, T1 values from the saturation pulses acquired with

different delays, and PD values by extrapolating the signal

intensity at TE zero (151). This approach not only allows to

obtain quantitative voxel-wise maps of T1, T2, and PD, but also

to generate T1-, T2-weighted and T2-weighted FLAIR images

with arbitrary TE, TR, and TI. This would potentially enable to

more easily generate images with uniform pulse sequence

parameters from multi-centric acquisitions. SyMRI is already

available on some commercial scanners (e.g., “SyntAc” on
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Siemens, “MAGiC” on GE), and some studies advocate for the

accuracy of SyMRI in parameter quantification (152) and for its

potential usefulness in gliomas (151). An alternative approach

to improve the comparability of images across institutions and

manufacturers may be represented by standardization methods

applied during post-processing (153), possibly with the aid of

AI (154).

Finally, a number of novel approaches have been proposed to

accelerate image acquisition with an enhanced exploitation of

parallel imaging (155), including parallel imaging with multi-slice

techniques (156) and controlled aliasing techniques (157), as well

as deep learning reconstruction (158, 159). A promising example

in this regard is the wave-CAIPI acceleration method, which has

been shown to generate images with quality comparable to

conventional acceleration methods in approximately one third of

the time (acquisition times: 1min14s for 3D IR-GRE T1, 1min19s

for 3D T2-weighted TSE, 2 min for 3D T2-weighted FLAIR,

1min29s for SWI) (160). Advancements in the field of

accelerated image acquisition have the potential to reduce the

acquisition time for BTIPs, which would alleviate the burden for

the patient and improve flexibility in scan planning. Additionally,

faster sequences also have the potential of reducing motion

artifacts, especially in oncologic patients who cannot always be

fully compliant.

In conclusion, imaging protocols complying with BTIPs

should be implemented for clinical trials, with some degree of

flexibility to accommodate institutional preferences that do not

conflict with treatment response assessments (e.g., DTI in place

of DWI). For the clinical routine, imaging centers can use

BTIPs as suggestions for imaging protocols in brain tumors,

keeping in mind that most BTIP recommendations are

conceived for standardization and feasibility in multicenter

clinical trials, and therefore the single institutions may need to

adapt them to their clinical needs. More in general, obtaining

standardized imaging datasets in brain tumor patients is not

only a need for reliably assessing treatment response in clinical

trials, but also a precious resource for future imaging studies

which would retrospectively analyze such datasets. When

implementing imaging protocols in neuro-oncology, general

concepts regarding dosage and timing of GBCA administration,
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as well as optimal pulse sequence parameters, should be taken

into consideration.
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