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Abstract

Collections of lymphocytes to be genetically modified to treat hematologic malignan-

cies have seen a dramatic increase over the last few years as commercial products have

been approved. Reports of new products in development that can possibly treat solid

organ malignancies represent a massive change in the field. Apheresis is at the center

of the collection of cells for the manufacture of these chimeric-antigen receptor

therapy products. The expansion of these collections represents one of the areas of

apheresis procedures growth. This review will summarize concepts important to this

type of collection and variables that need to be optimized to obtain desired cell yields

while increasing patients' safety.
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Novelty Statement

The beginning of chimeric-antigen receptor therapies has resulted in an increase in the number

of apheresis procedures performed to obtain cells for product manufacturing. Apheresis can

lead to adverse events due to its invasive nature. This manuscript outlines in a concise manner

those variables that must be considered to perform procedures with increased safety. These

important areas are discussed separately so that practitioners can proactively prepare for proce-

dures and adjust collections to increase their success with a focus on patient safety.

1 | INTRODUCTION

The war on cancer was declared in the early 1970s and despite many

discoveries since, cures or treatments that lead to long remissions have

remained mostly elusive. Nevertheless, there is one development over

the last decade that may represent a truly “seismic discovery” in the

fight against cancer and this is the dawn of chimeric-antigen receptor

T cell (CAR T) therapies. Indeed, the literature published outlining results

from CAR T clinical trials to hematological malignancies are an indicator

that these therapies represent a real opportunity to treat patients with

better outcomes. Impressive results from these trials brought about the

relatively rapid approval for the therapeutic use of tisagenlecleucel

(Kymriah) and axicabtagene ciloleucel (Yescarta) to treat B-cell acute

lymphoblastic leukemia and diffuse large B-cell lymphoma, respec-

tively.1 This has resulted in the logical increase in studies to expand not

only CAR T to other hematological malignancies but also to bridge the

gap to address solid organ malignancies as well.2

The manufacture of these therapies is at the mercy of the

successful collection of a sufficient number of T cells (109) by aphere-

sis to send to designated centralized manufacturing facilities to gener-

ate these products.3 These therapies are the result of a number of

innovations that have led to several generations of CAR T, with each
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generation showing improvements upon the prior ones. These newer

CAR T products have improved not only in the specificity of their

antigen-binding region but through the expression of co-stimulatory

signals and regulatory sequences in the receptor, allowing for better

control of signal transduction and response to stimulatory agents

such as interleukins that lead to improved proliferation and targeted

cell killing.4

CAR T therapies are currently limited to treat patients able to

donate their own cells for product manufacturing. These CAR T cells

either target a single antigen or at most two expressed on malignant

cells.5 Thus, an immediately obvious limitation of these therapies is

that they can only be used for the intended recipient and if the patient

cannot for one reason or another use the product, cells are of no

benefit to any other patient. This is one of the reasons for the push to

develop universal CAR T cellular products capable of targeting multi-

ple malignant cell types,6 including solid tumors.1 Likewise, research

into allogeneic CAR Ts, derived from healthy donors and engineered

to express chimeric receptors specific for a tumor-associated antigen

and modified through gene-editing so that they can be administered

to any patient regardless of major histocompatibility complex repre-

sents a promising breakthrough.7–9 Finally, the recent discovery of a

T-cell subpopulation that through its receptor targets and destroys

a broad spectrum of malignant cells may provide the cellular template

to develop universal products that can target a variety of malignant

neoplasms.10 Thus, the goal of this concise review is to outline

variables that must be considered to perform apheresis collection

procedures of cells for CAR T manufacturing with increased safety.

2 | CELL COLLECTIONS

2.1 | General considerations

The collection of cells for CAR T manufacturing has markedly

increased over the last 4 to 5 years. Apheresis platforms collect these

cells by targeting the cellular interface (region containing leukocytes

and platelets) through its continuous mononuclear cell collection

software which determines cells to be collected based on cell layer

densities. These modern platforms use centrifugal forces and readily

collect ≥1 � 109 CD3+ lymphocytes efficiently with improved cell

viability regardless of chemotherapeutic treatment and patient's

age.11 In the case of platforms such as the Spectra Optia, short proce-

dures run times limit the number of platelets lost to the product

unless the operator is forced to adjust collection parameters.12 Impor-

tantly, collections are mostly uneventful even in younger patients with

procedure efficiencies well over 80%.13 However, despite the short

duration of these collections, adverse events can occur but these

appear to be no different in frequency compared to those observed

during peripheral blood stem cell (PBSC) collections.

One of the most contentious topics in the field is the timing of

collection to achieve a successful yield that allows for product manu-

facture. Currently, counts are obtained using flow cytometry before

or on the day of collection to establish the length of collection based

on liters of blood to be processed. Since flow cytometric results take

time, collections are either delayed pending flow results or begin with-

out having counted to determine the likelihood of success. This has

led to the development of prediction models which take into account,

parameters such as counts, time on the machine, and volume to be

processed to establish if the procedure should be undertaken.14

Importantly, as for PBSC collections, parameters such as high hemato-

crit, higher peripheral CD3+ count and platelet count in the normal

range determine not only a procedure's efficiency but establish the

number of liters needed to be processed to achieve a cell yield.14 If

one or more of these variables are low they will need to be improved

through transfusions of red blood cells (RBCs) or platelets to optimize

collection efficiency.

Collections for transplant or manufacture represent one of the

safest apheresis procedures,15 however, rare serious adverse events

have been reported which is not uncommon from an invasive

procedure.16–18 Nevertheless, if preparation for donation is under-

taken well in advance of collection, the safety of the procedure is

increased.19 This is especially true of pediatric collections since aphe-

resis system parameters are not designed for small-weight patients,

specifically young children.20,21 This is because the extracorporeal vol-

ume (ECV) is proportionately of increasing significance the smaller the

patient, so preparation for collections needs to optimize hematocrit,

electrolytes and prepare for fluid shifts among variables to monitor in

such patient population.22 In these procedures, priming of the circuit

with a unit of blood maintains the patient's initial hematocrit minimiz-

ing ECV changes affecting young children; at the same time decreas-

ing the inlet while lowering the flow speed once you enter patient's

weight into the system will limit the blood volumes that can be

processed during a procedure run.23

2.2 | Procedure duration

Long procedures lead to significantly greater platelet losses in the

product.24 New machines collect cells with lower platelet removal

compared to older platforms due to their higher efficiency per liter of

blood processed,25,26 diminishing the need for long collections to

obtain higher cell numbers per procedure run.27 This lower platelet

removal is particularly important for patients who, because of their

disease state or therapy, have platelet counts in the low or low-normal

range at the start of collection.28,29 Despite technological advances,

machines still allow for the operator to adjust preferences to reduce

further RBC contamination or to improve when necessary collection

yield when cell counts are relatively small.30–32 This is something that

is facilitated by the platform's software management system.33 Even

though this could be seen as leading to every collection being modi-

fied by the operator, this is not the case since greater contamination

by other cell types of the product can occur in this way requiring

additional manipulation and processing of the product including

collection of additional plasma to aid in cryopreservation.28

Collections can be accomplished even when patients are as small

as 8 kg through greater systems' efficiency despite processing fewer
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liters of blood per procedure run.34,35 As mentioned above, blood

priming when prompted by a machine, intravenous calcium supple-

mentation and monitoring, and sedation, can result in uneventful pro-

cedures.36 Importantly, since collections of cells for CAR T manufacture

require a single procedure, the number of expected adverse events is

low since these tend to occur with greater frequency when multiple

days of collection are needed as seen in PBSC collections.37 As a result,

the duration of a collection is one of the most important factors

determining the occurrence of adverse events.29,38 This is particularly

apparent when comparing newer efficient machines to older platforms

that required longer procedures.30,38–40

2.3 | Vascular access

Central venous access is at times preferred to perform procedures fast

and to process a greater number of liters of blood during a collection.

The propensity of vascular collapse under the stress of negative pres-

sures generated by apheresis platforms limits the use of small veins or

veins of small patients that need to be accessed with large bore

needles required for apheresis, which may favor the placement of

central access.21 Catheter placement has inherent risks that should

be minimized whenever possible. Collection of cells for CAR T

manufacturing is performed mostly during a single procedure thus

these collections can be attempted using peripheral vascular access

and if patients can sit still for several hours. Peripheral venous cathe-

ters can also be used since their placement under ultrasound guidance

avoids difficulties associated with other forms of access.41 Very rarely

there is the placement of femoral central catheters due to their

reported higher infection rates compared to access placed in the jugu-

lar or subclavian vessels, however, these may be overstated in the lit-

erature.42,43 Importantly, when central lines are needed because of

poor vasculature of the patient, infection risks may not be applicable

since catheters remain only for the duration of collection and are

removed soon after completion of the procedure.44,45

2.4 | Calcium optimization

The apheresis system utilizes anticoagulant citrate dextrose solution,

solution A (ACD-A), a calcium chelator that can lead to hypocalcemia.

In children, this may go unnoticed due to sedation or inability to

verbalize symptoms,46,47 making calcium optimization the single most

important electrolyte to manage during collections. Development of

hypocalcemia secondary to ACD-A is of particular concern for

patients characterized by small weight and/or size due to smaller cal-

cium reserves, or those who have a preexisting condition in which low

calcium can lead to significant complications.48–50 Most hypocalcemia

symptoms are characterized by paresthesias, headaches, nausea,

vomiting, and only in the most serious situations intense spasms and

arrhythmias.51 These reactions can be resolved by decreasing the inlet

so that the amount of ACD-A is reduced and by providing oral calcium

supplementation to improve symptomatology. For patients who are

intubated, sedated, or who did not improve with oral calcium, intrave-

nous calcium can be given for symptom relief and maintained through

the collection.52 The importance of maintaining ionized calcium at or

above the normal range is indicated by the few adverse events other-

wise encountered during collections when calcium is optimized.53,54

2.5 | RBC mass

It may be counterintuitive but improving red cell mass favors better

leukocyte collection yields by apheresis. The reason for this is that red

cell mass influences the stability of cell layers formed during centrifu-

gation through the ability of RBCs to exclude water as they are

packed together by centripetal forces leading to well-defined layers.

This is readily apparent by the optimal efficiency seen in collections

with hematocrits ≥35%,55 while hematocrits <30% lead to longer

times until formation of the interface, and lower procedure efficiency

and stability of the interface.56,57 Likely, higher hematocrit is not an

option in sickle cell disease patients due to viscosity concerns and in

this population, the hematocrit should be targeted to be not greater

than 30% to minimize complications.58 Another benefit of improving

the hematocrit before collection is that blood priming would not be

needed in adult patients, and in those individuals whose lymphocyte

counts are low to borderline, the higher efficiency may represent

the best opportunity for collecting the greatest number of cells for

product manufacture.

2.6 | Adverse events and safety

The vast number of collections are performed in the outpatient set-

ting due to the overall safety of apheresis collections.15,59 In patients

or allogeneic donors who because of age (young children) require

sedation, procedures may be done in the intensive care setting to

monitor for vital signs, ionized calcium, and sedative dosing.60 In those

patients with comorbidities such as prior cardiac history, they may

need to be monitored in an inpatient setting to improve safety and

proactively prepare for complications if they were to arise. If this is

not possible, cardiac monitoring and calcium supplementation are

recommended to decrease the possibility that hypocalcemia leads

to adverse cardiac events in this patient group. Consequently,

most adverse events in collections would fall into three categories:

hypocalcemia, central access-related problems such as bleeding or

thrombosis, and those that are technical in nature.61

2.7 | CAR T production challenges

The beginning of CAR T therapies has been characterized by a lack of

standardization. Available commercial products utilize their own

systems from T-cell isolation to in vitro cell expansion that lack unifor-

mity. Apheresis collection represents the common variable and is

likely the uniform step in the manufacturing process. Lack of
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standardization is readily apparent when considering the variety of

culture systems currently used in the manufacturing process.62

Similarly, there is heterogeneity in flow cytometric and polymerase

chain reaction-based methodologies used to detect CAR T cells

post-infusion and establish how frequently they are used.63 However,

the implementation of mass production steps seeking uniformity for

therapies that are inherently examples of personalized precision

medicine will represent a continuous challenge in the field.64

3 | CONCLUSION

The dawn of CAR T therapies is the reason for optimism that hemato-

logic neoplasms will have better outcomes as cell therapy products

are improved. Without a doubt, once products are developed to

treat solid tumors a new era in the war on cancer will have begun.

Apheresis collection of cells for CAR T manufacture will likely

continue to grow and a proactive vigilant approach to collections that

prepares to minimize the occurrence of adverse events will further

improve safety as the number of products expand.
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