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Rick Rajtera, Roger H. Frenchb
aMassachusetts Institute of Technology, Cambridge, Massachusetts
bDuPont Co. Central Research, Wilmington, Delaware

Van der Waals–London dispersion interaction
framework for experimentally realistic carbon
nanotube systems

A system’s van der Waals–London dispersion interactions
are often ignored, poorly understood, or crudely approxi-
mated, despite their importance in determining the intrinsic
properties and intermolecular forces present in a given sys-
tem. There are several key barriers that contribute to this is-
sue: 1) lack of the required full spectral optical properties,
2) lack of the proper geometrical formulation to give mean-
ingful results, and 3) a perception that a full van der Waals–
London dispersion calculation is somehow unwieldy or dif-
ficult to understand conceptually. However, the physical
origin of the fundamental interactions for carbon nanotube
systems can now be readily understood due to recent devel-
opments which have filled in the missing pieces and pro-
vided a complete conceptual framework. Specifically, our
understanding is enhanced through a combination of a ro-
bust, ab-initio method to obtain optically anisotropic prop-
erties out to 30 electron Volts, proper extensions to the Lif-
shitz’s formulations to include optical anisotropy with
increasingly complex geometries, and a proper methodol-
ogy for employing optical mixing rules to address multi-
body and multi-component structures. Here we review this
new framework to help end-users understand these interac-
tions, with the goal of better system design and experimen-
tal prediction. Numerous examples are provided to show
the impact of a material’s intrinsic geometry, including op-
tical anisotropy as a function of that geometry, and the ef-
fect of the size of the nanotube core and surfactant material
present on its surface. We’ll also introduce some new ex-
amples of how known trends in optical properties as a func-
tion of [n, m] can result in van der Waals interactions as a
function of nanotube classification, radius, and other pa-
rameters. The concepts and framework presented are not
limited to the nanotube community, and can be equally ap-
plied to other nanoscale or even biological systems.

Keywords: Carbon nanotubes; van der Waals

1. Introduction

Van der Waals–London dispersion (vdW–Ld) interactions
arising from quantum electrodynamics (QED) are of consid-
erable importance to scientists and engineers across many
disciplines. First, they are influential in behaviors ranging
from colloidal interactions in solution to the fracture behav-

ior of bulk materials [1]. Second, the vdW–Ld interactions
are even influential when so-called “stronger” forces, such
as electrostatic or polar interactions, are present [2]. And fi-
nally, they are universally long range interactions that can
only be nullified by carefully designing the system to balance
the attractive and repulsive components of the overall inter-
action [3]. Thus the study of van der Waals–London disper-
sion spectra (vdW–LDS) and forces can enrich our under-
standing of particular phenomena, which is important for
scientists and engineers interested in using self-assembly
processes to create nanoscale structures and devices.

But despite being important and of interdisciplinary in-
terest, vdW–Ld interactions calculated from a first princi-
ples, QED approach (i. e., the Lifshitz formulation [4]) have
a reputation for being intractable or difficult to use and un-
derstand. Thus it is very common to use outdated pairwise
models with Lennard–Jones potentials, ignoring the funda-
mental electrodynamics and the important many-body ef-
fects. Admittedly, there are two barriers that can still pre-
vent people from getting started:
1. the lack of the full spectral optical properties of all the

components within the system, and
2. the lack of an analytically tractable solution for the sys-

tem geometry of interest. While both of these are still is-
sues today, much progress has been made on both fronts
in the past 20 years [1–3, 5].

First, the formulations have been extended to include
everything from an infinite number of layers (stacked in
the semi-infinite half-space formulation), to optically an-
isotropic solid cylinders interacting with each other in salt
solutions [6]. Recently the formulations for solid cylinders
were extended even further in order to incorporate optical
anisotropy into the solid cylinder–cylinder and cylinder–
substrate formulations at the near and far-limits. The ability
to combine all these new features is essential for metallic
single-wall carbon nanotubes (SWCNTs) due to the large
degree of optical anisotropy coupled with their large mor-
phological aspect ratios [7]. And we are by no means lim-
ited to just rods and flat planes. A recent book published
by Parsegian also contains a large array of vdW–Ld formu-
lations for different geometries [3].

Second, the advent of robust, fast, and reliable ab-initio
codes has allowed for the calculation of full spectral optical
properties for materials which are either very difficult or
impossible to quantitatively measure experimentally. Ex-
perimental methods like vacuum ultraviolet (VUV) reflec-
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tivity for bulk optical properties [8], transmission valence
electron energy loss spectroscopy (VEELS) for interfacial
optical properties [8], or reflection VEELS for surfaces [9]
are still useful for the characterization of many materials.
But for nanoscale materials like SWCNTs, techniques like
EELS result in many inherent inaccuracies in the anisotro-
pic spectral optical properties because of the difficulty in
isolating, aligning, measuring and then analyzing the mea-
sured signals off a single SWCNT. Thus ab-initio computa-
tions of full spectral optical properties eliminate this barrier
by offering a way to obtain this data for nanoscale materials
with results that are directly comparable.

With the introduction of ab-initio optical properties and
Lifshitz formulations designed for SWCNTs, it is now pos-
sible to begin calculating vdW–Ld interactions for a limited
number of systems (i. e., systems containing SWCNTs only
with no surfactant). However, a crucial piece is still needed
to address all potential system variations relevant for ex-
perimentalists (e. g., surfactant coated SWCNTs, multi-wall
CNTs, and SWCNTs having a very large core volume [17]).
For planar systems, this issue was alleviated by the intro-
duction of the “add-a-layer” approach [1] in which the
3-component solution was expanded to include an infinite
number of parallel layers of arbitrary ordering and thick-
ness. The boundary conditions of parallel planes made this
a straightforward process after the initial expansion was
generated [3]. Unfortunately, the cylindrical geometries
have no equivalent analytical form to include such layer
stacking as a function of cylinder radius. And without the
ability to address this radial spatial variation, the effects of

ssDNA (single-stranded DNA), SDS (sodium dodecyl sul-
fate), and other well known surfactants would have to be
ignored.

Fortunately there is a viable alternative to an add-a-layer
formulation. Spectral mixing to produce effective medium
spectra [10] for use at the appropriate surface-to-surface se-
paration limits can be used to create effective vdW–LDS
that results in an exact total vdW–Ld energy. In principle,
this is no different than if we took a highly spatially re-
solved optical spectra of water (clearly oxygen and hydro-
gen locations have different quantities of electrons and
wave functions) and averaged it back to the isotropic value
that has been thoroughly studied and used for decades [3,
11–14].

With the ab-initio optical properties [15], optically aniso-
tropic cylinder formulations [7, 16], and mixing formula-
tions for SWCNT systems now in place [17], a full frame-
work for calculation of the vdW–Ld interactions for
SWCNTs is now available. This is summarized in the flow
chart found in Fig. 1. To see the actual optical spectra and
vdW–Ld properties as they relate to SWCNTs through the
steps in the flow chart, see Figs. 2 and 3, which track these
properties from the chirality indices [n, m] to the angular
dependent Hamaker coefficients (the material component
of the total vdW–Ld energy) for the [6,5,s] semiconducting
and [9,3,m] metal SWCNTs. The vdW–Ld framework pre-
sented here is being implemented in Gecko Hamaker, a free
and open source software package which contains optical
properties and various geometrical formulations appropri-
ate to vdW–Ld interaction science [19].
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Fig. 1. The complete flow chart of the Lifshitz
formulation/framework that is necessary for
calculating and understanding the physical ori-
gin of the chirality-dependent Hamaker coeffi-
cients and vdW–Ld total energies of SWCNT
systems.



What follows is an end-user tutorial highlighting key fea-
tures within Fig. 1 as they relate to Figs. 2 and 3. Although
determining vdW–Ld interactions for SWCNT systems
tends to be more complicated than isotropic plane–plane
systems, the overall form of the Lifshitz calculation re-
mains common across many types of geometries of increas-
ing complexity. Numerous examples are included to de-
monstrate the major effects of varying optical properties,
Lifshitz geometry, and mixing rules in order to guide the
reader. Finally, we include some emerging results from
our upcoming data-mining analysis across 63 SWCNTs.
The optical properties as a function of radius and metallic/
semiconducting classification trend in both obvious and
surprising ways when carried through to the final Hamaker
coefficients and total energies.

2. Background

2.1. vdW–Ld Theory

A brief overview of the link from optical properties [20] to
Hamaker coefficients is useful before comparing and con-
trasting the different vdW–Ld formulations [3]. The key
source of all vdW–Ld interactions is optical contrast be-
tween each system interface. The index of refraction (an op-
tical property) serves as a useful proxy for the dispersion or
polarizability in this discussion, while the vdW–Ld interac-
tion is based more accurately on another optical property,
the London dispersion spectra, across a wider range of fre-
quencies. If there were no optical contrast in the universe,

then all materials would be equally polarizable and all elec-
tromagnetic radiation would move from phase to phase,
passing through a variety of interfaces or boundaries the
same way. Without optical contrast, there would be no pre-
ferential placement of particular objects and hence no
vdW–Ld interaction to lower the system’s free energy. But
optical contrast does exist among different materials and
over a wide range of optical frequencies. It is this contrast
that opens the door for attractive and repulsive vdW–Ld in-
teractions depending upon the many possible components
in a system.

2.1.1. Buoyancy illustration

A buoyancy illustration can be quite helpful in understanding
the many-body vdW–Ld interaction at its most primitive lev-
el. In Fig. 4, we note that the two different blocks of materials
rest on the ground in air. If we were to try and separate these
blocks along the vertical axis, gravity would pull the blocks
back down towards one another. This is similar to any two
materials in vacuum. They are each more polarizable in air
than when compared to the vacuum, and thus “fall” towards
each other in order to minimize the system’s energy.

The many-body nature of the interaction becomes appar-
ent when we add water (the medium) to a system with one
block of a higher density and one of a lower density than
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Fig. 2. Part 1 of the chirality-dependent vdW–Ld interaction analysis
for the [6,5,s] and [9,3,m]. (a) The [n, m] vector placed upon the gra-
phene sheet denotes the circumference of the SWCNT. (b) The
SWCNTs x, y, z positions in space. Note the structural difference in
the twisting. (c) The cutting lines within the Brillouin zone, varying in
quantity and angle based on the specific [n, m] magnitudes and magni-
tude ratio between them. (d) The band diagrams determined by the al-
lowable states along the cutting lines. Stages E through G are continued
in Fig. 3.

Fig. 3. Part 2 of the chirality-dependent vdW–Ld interaction analysis
for the [6,5,s] and [9,3,m]. (e) The allowable single electron transitions
determine the optical absorption part of the dielectric spectrum, e00ðxÞ,
over all real frequencies. (f) The vdW–LDS obtained via the KK trans-
form upon e00ðxÞ. Note the differences between a SWCNTs radial and
axial directions as well as the differences between the tubes. (g) Ha-
maker coefficients in a solid cylinder SWCNT–water–gold substrate
system as a function of ‘. Additional and/or later stages include an ana-
lysis of DOS/JDOS as well as total vdW–Ld energies.



the water (Fig. 4 part C). In this situation, there is a “repul-
sive” force between the two blocks as a result of one sink-
ing and one floating in the liquid medium. Other blocks
added would rise or sink depending on their own respective
buoyancies. A similar effect occurs with the vdW–Ld inter-
actions. If the medium’s optical properties (e.g., index of
refraction) is intermediate to that of the two objects, the sys-
tem will minimize its overall energy by moving those two
objects far apart. But if both materials either have lower or
higher indices of refraction than the water medium, they
will attract towards each other again. This is equivalent to
the interacting blocks both being more or less dense than
the water and driving towards one another. In either case,
attraction between A and B only occurs if the medium is
either more or less dense than each object present.

We could extend the buoyancy analogy further to describe
more complicated phenomena. For instance, we could
change the medium’s density by adding an additional com-
ponent or changing the temperature. An example of this is a
Galileo thermometer [21], where changes in temperature cre-
ate a change in the ambient liquid density. The temperature
indicators (of a relatively fixed density versus temperature)
then begin to rise/fall as this change occurs. Another exten-
sion of the buoyancy analogy is that of a multi-component
system, such as a boat. While the outer shell of an oil tanker
is far more dense than the water, the total density over the en-
tire ship is such that the boat floats. The effect is similar for
vdW–Ld forces, where the magnitude and percent volume
of the components present dictate the overall attraction to
planes of higher and lower optical density.

There are, however, a few areas where the buoyancy il-
lustration and a vdW–Ld interaction are not truly analo-
gous. The first is that vdW–Ld interactions arise from opti-
cal contrast across ALL optical frequencies as opposed to
buoyancy’s reliance on a single term (weight density).
What this means is that a vdW–Ld interaction between ob-
jects in a system can have both attractive and repulsive
parts for a given medium and materials A and B. Yet the in-
teraction at a given frequency is still identical to a snapshot
of relative buoyancy. It is therefore essential to consider all

the frequencies in the electrodynamic interaction, not to
oversimplify to one or a few interaction frequencies. This
is due to the fact that the entire frequency range contributes
to the overall Lifshitz summation, with a bulk of this contri-
bution coming from frequencies of higher energy than visi-
ble light.

The analogy is also not consistent when considering the
behavior of the system as the medium’s thickness or the se-
paration distance changes. Buoyancy does not show many-
body effects which vary as a function of separation dis-
tances. But the vdW–Ld interaction has a fundamental scal-
ing of the separation distance and the optical penetration
depth (sampling depth), or the interaction volume of the
two bodies which determines what parts of the two bodies
are dominating the interaction at a given separation. For ex-
ample in the near limit, where the separation of the two
bodies is much smaller than their size, then the surface of
the two bodies is controlling, while at long separation dis-
tances the average properties of the whole bodies is impor-
tant. This is mainly a result of the inverse power-law scal-
ing of the total vdW–Ld interaction energy. Understanding
how the different components of each body contribute as a
function of the surface-to-surface separation is an important
departure from the buoyancy analogy, which is equivalent
to the far-limit.

Despite its shortcomings, the buoyancy illustration is a
conceptually easy to understand model that can be useful
in understanding the quantitative and qualitative impact
of each component within the full Lifshitz framework
(Fig. 1). Upon a closer analysis of these interdependencies,
one can have a better understanding of the fundamental
workings of the interactions and thereby make smarter deci-
sions on experimental design.

3. The fundamental framework

3.1. Ab-initio optical properties

If the source of a van der Waals interaction is optical con-
trast at all system interfaces, then it is imperative to obtain
the optical spectra for all the components present in the
system to the highest accuracy possible. This typically
requires having the imaginary part of the dielectric func-
tion (e00 spectra) for each material over an interval from
0–30 electron volts (eV) to ensure complete convergence.
The way that the particular optical properties are obtained
is only relevant if there are particular caveats to consider,
such as a particular frequency/energy range where the data
tend to not be certain. Beyond that, the various experimen-
tal or ab-initio optical properties are interchangeable. For
example: some choose to view the results in Jcv(eV) form
(interband transition strength) while others prefer dielec-
tric function over real frequencies (e00(x)). The choice
really depends upon the optical property features that are
under investigation because Jcv(eV) and e00(x) weight the
peaks differently. One can convert between the two via
the following:

JcvðeVÞ ¼
m2

o

e2�h2
eV2

8p2
ðe00ðeVÞ þ {e0ðeVÞÞ ð1Þ

Where Jcv(eV) is proportional to the interband transition
probability and has units of g � cm�3. For computational
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Fig. 4. An illustration relating the similar effects of optical contrast in
a far-limit vdW–Ld interaction with that of density contrast (i. e. rela-
tive buoyancy). It is the relative contrast between all components that
determines whether there is a net attraction or repulsion between any
2 given components in the overall system. Material density is indicated
by color with white being vacuum and black or very dark colors being
the most dense.



convenience, we take the prefactor m2
oe

�2�h�2 in Eq. (1),
whose value in cgs units is 8:29 � 10�6 g � cm�3 � eV�2, as
unity [1]. For vdW–Ld calculations, the optical data needs
to be converted into vdW–LDS. Assuming e00 is properly
scaled to the correct magnitude, this is done using the fol-
lowing form of the Kramers–Kronig (KK) transformation:
[3, 15, 20].

eð{nÞ ¼ 1þ 2
p

Z 1

0

e00ðxÞ � x
x2 þ n2

dx ð2Þ

We refer to eð{nÞ, a real function over the imaginary fre-
quency domain, as the vdW–Ld spectrum (or vdW–LDS)
in order to differentiate it from the dielectric function over
real frequencies ðe00ðxÞÞ. Although the eð{nÞ form of the op-
tical spectra appear to be simple damped oscillators, they
contain the complete electronic structure and interatomic
bonding of the materials, i. e., the interband transitions that
determine the optical properties. Additionally, small differ-
ences in both the magnitude and stacking order of the vdW–
LDS in a geometrical configuration can influence both the
magnitude and the sign of the total vdW–Ld interaction en-
ergy. For our SWCNT calculations, we use the e00 proper-
ties, obtained from ab-initio orthogonal linear combination
of atomic orbital (OLCAO) computations [22–27], that
have been scaled to the solid and hollow cylinder geome-
tries [17].

One final issue should be addressed before moving on.
Some researchers may have concerns over the usage of
ab-initio optical properties for fear that they may be inac-
curate or unrealistic in comparison to experimental data.
A typically cited concern is the discrepancy that exists be-
tween experiment and theory in band gap calculations,
particularly for models that employ simplifications like
the tight binding approximation. However, vdW–Ld inter-
actions are dependent upon all the electronic transitions,
with significant transitions occurring in the deep UV
ranges up to 30 eV and higher. The full OLCAO calcula-
tion captures this correctly because it contains complete
orbital information up to the 4p and 3d shells. The results
have compared very well to experimental e00 data and Ha-
maker coefficient calculations for systems like graphite,
ZrO2, AlN, LiB2O3 and including organic materials with
hydrogen such as polysilane [23–27]. This gives us confi-
dence in using this data for systems like SWCNTs, which
we believe to be very difficult to accurately obtain experi-
mentally because of the small size and cylindrical shape of
these materials. By using an ab-initio method, we can eas-
ily and systematically calculate the optical properties for
all possible SWCNT types.

As for the actual method, the primary equation for ob-
taining e00ðxÞ from the band structure is as follows [22–26]:

e00ijðxÞ ¼
4p2e2

Xm2x2

X
knn0r

hknrjpijkn0rihkn0rjpjjknrifknð1� fkn0 Þ

dðekn0 � ekn � �hxÞ ð3Þ

Here again e00ðxÞ is the imaginary part of the dielectric
spectrum at a given frequency x, with mass m, and Bril-
louin zone volume X. The momentum operators, pi and pj,
operate on both the valence and conduction band wave
functions, where the i and j subscripts represent the direc-
tions of the tensor in three dimensional space. The Fermi
function (fkn) terms ensure that only transitions between an
occupied valence to an unoccupied conduction band transi-
tion are allowed, and the delta function ensures that only
transitions corresponding to the particular energy �hx are
considered.

This is simply the ab-initio way of obtaining the data.
There are also various experimental results which provide
excellent corroboration. As an example, Stephan et al. have
done impressive work obtaining experimental e00 data for
SWCNTs along the axial direction by applying a grazing
angle EELS measurement [28]. Despite some noise in the
data and the lack of chirality/direction identification, the e00

results corroborate many of the key features (most notably
the large e00 peaks around 15 eV) of the present authors’
ab-initio data. New results published just last year add sup-
port for these peak positions and magnitudes [29]. The en-
ergy loss function determined from EELS data, though use-
ful for qualitative corroboration, cannot itself be used for
the calculation of certain properties (e. g., a vdW–Ld inter-
action) because it is arbitrarily scaled along its y-axis and
thus lacks the necessary quantification. But having both
the experimental and ab-initio properties gives us quantita-
tive data that we can confidently use because of their agree-
ment. These fundamental optical properties can then be
used for predictive experimental design schemes for sys-
tems using dielectrophoresis (DEP) or having sensitive
vdW–Ld interactions.

Figure 5 shows the ab-initio dielectric function e00 using
Eq. (3) for both the [6,5,s] and [9,3,m] SWCNTs in their
axial and radial directions obtained previously [7]. We then
used Eq. (2) to obtain the vdW–Ld spectra as shown in
Fig. 6. The metallic [9,3,m] SWCNT has a considerable
amount of anisotropy, particularly at energies near 0 eV
when the axial direction shoots up to a value of 333.

The most notable features in Figs. 5 and 6 are the varia-
tions that exist as a function of direction and chirality. Since
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Fig. 5. The e00 spectra of the (a) [6,5,s] and (b)
[9,3,m] SWCNTs scaled to a solid cylinder
geometry. The metallic [9,3,m] SWCNT axial
direction spikes to a value of 930 at 0.04 eV.



the vdW–LDS are the very inputs to the full Lifshitz formu-
lation, one can observe a clear possibility for a chirality-de-
pendent vdW–Ld interaction. Of course, the magnitude of
such an interaction needs to be determined.

3.2. Lifshitz formulations

Once we have the vdW–Ld spectra for the materials within a
given system, the Lifshitz formulation weights their optical
contrast contributions at the required Matsubara frequencies
and determines the vdW–Ld interaction strength by a single
Hamaker coefficient A. The Hamaker coefficient (which is
approximately the volume–volume vdW–Ld interaction
density or strength between two components of a system)
is then multiplied by the proper geometrical scale factor to
determine the vdW–Ld interaction energy or force. Thus
the general form of the vdW–Ld energy is [3, 15]:

G ¼ �A � g
‘n

ð4Þ

where G is the thermodynamic free energy, g is a collection
of geometry factors (e. g. g ¼ pa2=6 per unit of cylinder
length for the far-limit, cylinder–substrate geometry where
a is the nanotube radius), and ‘n is the scaling law behavior
at a surface-to-surface separation distance ‘ for a given geo-
metry. EssentiallyA is the interaction strength as a function
of the material properties of two objects within the given
geometry, whereas g and n depend solely by the system
geometry itself. Geometry affects the magnitude of the Ha-
maker coefficient because the optical contrast functions
change as a function of geometry in the Lifshitz summation,
and cannot be decoupled into a strictly material-dependent
explanation. To demonstrate this coupling further, we shall
observe the change of the optical contrast functions as a
function of increasing geometrical complexity, ranging
from the simple isotropic plane–plane geometry to the cy-
linder–cylinder interactions relevant for SWCNT systems.

The calculation of A for the non-retarded case1 over all
three levels of complexity has a consistent general form:

ANR ¼ 3kbT
2

� 1
2p

X1
n¼0

0 Z 2p

0
DLmDRmdu ð5Þ

where n denotes the discrete Matsubara frequencies

(nn ¼
2pkbT

�h
n) ranging from 0 to 1, the values DLm and

DRm are the spectra mismatch functions comparing the
vdW–Ld spectra properties of the particular material L or
R with the neighboring medium m. The prime on the sum-
mation denotes that the first frequency n ¼ 0 is multiplied
by 0.5.

It is with this general form that we can compare all three
systems (Fig. 7). When looking at this figure, pay special
attention to how the components of spectral mismatch func-
tions (i. e. DLm and DRm) vary as a function of the geometry.
Changes in the forms of these weighting functions can have
a substantial impact in changing the sign and magnitude of
the overall interaction.

3.2.1. Optically isotropic planar system

The isotropic plane–plane system (see Fig. 7a) is the most
commonly used of all the Lifshitz formulations because it
is by far the easiest to calculate and it is the most relevant
for the interactions of large bulk materials. Its energy per
unit area is

G ¼ ANR

12p‘2
ð6Þ

Because the left and right half-spaces are both isotropic,
there is no angular dependance of the vdW–Ld interaction
for rotations about the interface normal of either half space.
Therefore the integration around angle du leads to constant

value of 2p which cancels out the
1
2p

coefficient in the gen-
eral form to leave us with

A ¼ 3kbT
2

X1
n¼0

0

DLm � DRm ð7Þ

The DLm and DRm terms are as follows

DLmð{nnÞ ¼
eLð{nnÞ � emð{nnÞ
eLð{nnÞ þ emð{nnÞ

ð8Þ
DRmð{nnÞ ¼

eRð{nnÞ � emð{nnÞ
eRð{nnÞ þ emð{nnÞ

We normally drop the explicit ð{nnÞ notation for clarity as
it is assumed that all vdW–Ld spectra are frequency de-
pendent and only calculated at each Matsubara frequency
ðnnÞ (where each n represents a change of 0.16 eV for the

case of 300 K). These mismatch terms all have an
a� b

aþ b
form, which can never exceed a value of 1 because the
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Fig. 6. The vdW–Ld spectra of the (a) [6,5,s]
and (b) [9,3,m] SWCNTs scaled to a solid cy-
linder geometry and compared to the index
matching water spectra. The [9,3,m] axial di-
rection spikes up to a value of 333 at 0 eV.

1 In the non-retardedc case, we neglect the finite speed of light travel-
ing back and forth between the interacting sides.



vdW–LDS cannot have values below unity. Thus there is a
maximum possible contribution at any given frequency in
the summation over all frequencies.

3.2.2. Optically anisotropic planar system

As we move to the next level of complexity we eliminate
the assumption of isotropic spectral optical properties and
allow the substrates to have optically uniaxial properties,
with vdW–Ld spectra for the parallel ek and perpendicular
directions to the optical axis. In our particular derivation,
we confine the formulation to only allow rotations of the
optical axis within the plane of the interface (see Fig. 7b).
This restriction leads to the appropriate geometrical formu-
lation for a SWCNT interacting with a packed array of
aligned SWCNTs [7]. In principle, one can arrange the
two substrates so ek has an arbitrary relationship to the in-
terface and leads to a component normal to the planar inter-
face.

Because of the angular dependance that arises, the over-
all vdW–Ld energy now has two componentsAð0Þ andAð2Þ.

G ¼ �Að0Þ þ Að2Þ cos2 h
12p‘2

ð9Þ

Here Að0Þ represents the Hamaker coefficient when the left
and right half-space have their optical axes (ek) 90 degrees
out of phase with respect to one another. As h, the angle be-
tween the optical axes of the left and right half spaces, goes

to 0, we get an additional energy contribution from Að2Þ.
Að0Þ can be calculated by itself, but the angular contribution
is calculated by taking the aligned case (Að0Þ þ Að2Þ) and
subtracting off Að0Þ. The form for both endpoints is created
by adding the angular dependance to the generalized form
to get:

Að0Þ ¼ 3kbT2 � 12p
X1
n¼0

0 Z 2p

0
DLmðuÞDRmðu� p=2Þ du

ð10Þ

Að0Þ þ Að2Þ ¼ 3kbT2 � 12p
X1
n¼0

0 Z 2p

0
DLmðuÞDRmðuÞ du

ð11Þ

Now we need to consider the detailed forms of DLm and
DRm and how these are calculated for this scenario. They
are as follows:

DLmðuÞ ¼
e?ðLÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cðLÞ cos2 u

p
� em

e?ðLÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cðLÞ cos2 u

p
þ em

 !
ð12Þ

DRmðuÞ ¼
e?ðRÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cðRÞ cos2 u

p
� em

e?ðRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cðRÞ cos2 u

p
þ em

 !
ð13Þ

DRmðu� p=2Þ ¼ e?ðRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cðRÞ sin2 u

p
� em

e?ðRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cðRÞ sin2 u

p
þ em

 !
ð14Þ
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Fig. 7. The 3 different systems of comparison. (a) Isotropic semi-infinite half spaces (b) Anisotropic semi-infinite half spaces (c) Anisotropic solid
cylinders. The energy G is in units of per nm2 of substrate area in a) and b) versus per nm of cylinder in c).



where c, a measure of the optical anisotropy for the left or
right half-spaces in the near limit, is of the form

c ¼
ek � e?

e?
ð15Þ

If the parallel and perpendicular epsilons are equivalent,
then c ¼ 0 and the above D terms reduce to Eq. (8).

3.2.3. Optically anisotropic solid cylinders

Things get more interesting and complex when we change
the geometry of the system from two interacting planar sub-
strates to interacting cylinder substrates. The energy is now
on a per unit length basis for two parallel aligned SWCNTs
of diameter a1 and a2

Gð‘; h ¼ 0Þ ¼ � 3ðpa21Þðpa22ÞðA
ð0Þ þ Að2ÞÞ

8p‘5
ð16Þ

or as total energy when the two SWCNTs are misaligned

Gð‘; hÞ ¼ � ðpa21Þðpa22ÞðA
ð0Þ þ Að2Þ cos2 hÞ

2p‘4 sin h
ð17Þ

Next we need a determination of A. If we move towards
solid cylinders far away from a substrate, we can use the
Pitaevskii method [3] for dilute rods in solution and deduce
the relevant DRm and DLm terms. The derivation is tedious,
but straightforward [6, 7, 44]. The result is

DLmðuÞ ¼ � D?ðLÞ þ 1
4ðDkðLÞ � 2D?ðLÞÞ cos2 u

� �
ð18Þ

DRmðuÞ ¼ � D?ðRÞ þ 1
4ðDkðRÞ � 2D?ðRÞÞ cos2 u

� �
ð19Þ

DRmðu� p=2Þ ¼ � D?ðRÞ þ 1
4ðDkðRÞ � 2D?ðRÞÞ sin2 u

� �
ð20Þ

where

Dk ¼
ek � em

em
D? ¼ e? � em

e? þ em
ð21Þ

Although these D terms are different in appearance from the
previous two formulations, the calculations are just as
straightforward from a computational standpoint. However,
it is within these newly introduced anisotropic terms Dk,
D?, and c that new and interesting phenomena arise, which
we will discuss in more detail later. A quick numerical
comparison of these different parts elucidates the impact
of these mismatch functions, particularly for highly opti-
cally anisotropic tubes like the [9,3,m]. Table 1 shows how
they impact the n = 1 (0.16 eV at room temperature) Matsu-
bara frequency for the [6,5,s] and [9,3,m] in water.

A few things to note. The only spectral mismatch terms
that exceed unity are c, Dk, and the far-limit DLm. All other
spectra mismatch functions typically do not come close to
this limit except those with a very large optical contrast
(i. e., a difference of 1+ orders of magnitude in relative opti-
cal strength). Although c itself can be large and contribute
to both the total and orientation-dependent energies, its lo-
cation under the square root signs in Eqs. (12–14) dampens
its effect. Thus even for the highly anisotropic [9,3,m], the
contribution of Að2Þ at the near limit is 1.11 zJ (typical
near-limit Hamaker coefficients of SWCNTS in water are

above 60 zJ). The Dk term, in comparison, results in a con-
tribution of 7.8 zJ for Að2Þ (see Table 1).

3.3. Spectral mixing for realism

As noted earlier, an add-a-layer solution for the cylindrical
geometries does not, at this time, appear to be analytically
tractable. Despite this limitation, experimentalists and theo-
reticians need some way to quantitatively address the ef-
fects of cylindrical multi-layered systems. To resolve this
tension, approximations need to be carefully applied in or-
der to balance the needs of the end-users without introdu-
cing unrealistic artifacts into the formulations.

Figure 8 shows several systems of interest for experi-
mentalists, ranging from a single solid cylinder to coated
SWCNTs and multi-wall carbon nanotubes (MWCNTs).
The systems can be made even more complex by using
non-uniform surfactant coverage or non-concentric
MWCNTs, but we shall stick to the simpler cases in order
to cleanly illustrate a proper strategy. The major difference
between these systems from a vdW–Ld standpoint is that
the optical properties vary spatially as a function of radius.
Understanding the radial dependence of the optical proper-
ties in the far-limit (surface-to-surface separation greater
than two cylinder diameters) is necessary to calculate the
total energy and the Hamaker coefficients, which respec-
tively depend on the interacting volume size and optical
properties contained within that volume. Ideally one would
do this via an add-a-layer approach like the one used in
plane–plane geometries, including an arbitrary quantity of
layers of materials of arbitrary thickness [1, 3, 19, 30, 31].
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Table 1. A comparison of how the various spectral mismatch
components contribute to the overall Hamaker coefficient for the
[6,5,s] and [9,3,m] SWCNTs at the first Matsubara frequency
(n = 1 or approximately 0.16 eV at room temperature).

[6,5,s] [9,3,m]

em 2.02 2.02
ek 6.96 18.27
e? 6.05 5.77
c 0.15 2.17
D? 0.50 0.48
Dk 2.45 8.05

DLm Near 0.53, 0.50 0.67, 0.48
DLm Far 0.86, 0.50 2.25, 0.48

Að0Þ;Að2Þ Near (zJ) 1.08, 0.82 1.47, 1.11
Að0Þ;Að2Þ Far (zJ) 1.83, 1.52 6.05, 7.80

Fig. 8. The many levels of interactions with a substrate. (a) A solid cy-
linder (b) a hollow cylinder (c) a hollow cylinder coated with a surfac-
tant and (d) a hollow cylinder within a cylinder.



But, at present, no such formula appears to exist or is read-
ily obtainable.

Fortunately, we can use effective spectra in each limiting
case (near/far-limits) such that the solid-cylinder formula-
tions can be used without loss of realism; the chief concern
when using this or any approximation. To use the solid-cy-
linder formulations and not sacrifice accuracy, one needs
two primary inputs: 1) The optical properties of all the con-
stituent materials (medium + SWCNT + outer surfactant +
core material). 2) A sensible spectral mixing formulation
that gives effective averaged optical spectra for the entire
object. The only remaining issue is whether such a mixing
rule is equally valid across all separation distances. It turns
out that the two limiting separation distances (what we refer
to as the near and far limits) require different treatments,
which we’ll detail next.

3.3.1. Spectral mixing considerations at the near-limit

For all geometrical arrangements at the near-limit (i. e., less
than 0.5 nm surface-to-surface separation), the vdW–Ld
properties of the surfaces on each material tend to dominate
the interaction because of the divergent behavior of the total
energy scaling, thus no mixing is required. This is well
known for plane–plane geometries [3] (see Appendix
Figs. 14 and 15 for qualitative and quantitative examples).
However, it is worth illustrating this point further because
it is critical to our assertion that while spectral mixing is
not acceptable practice at the near limit, it is viable and ne-
cessary at the far limit if no analytical formulations exist.
This demonstration is included as Appendix B.

3.3.2. Spectral mixing considerations at the far-limit

The study of vdW–Ld interactions for SWCNTs at the far
limit is particularly exciting from an optical anisotropy

standpoint because the Dk ¼
ek � em

em
term within the Ha-

maker coefficient summation can go over unity when
ek � em. Without this restriction, each Matsubara fre-
quency in the Lifshitz summation is no longer capped at
maximum contribution value and can result in Hamaker
coefficient variation as a function of chirality and orienta-
tion [3, 7]. In terms of spectral mixing considerations, we
are no longer dealing with distances approaching contact
and therefore must average the optical properties to get an
effective solid cylinder. Typically the spectral mixing of
optical properties is done via an effective medium approxi-
mation (EMA), such as Bruggeman EMA [32]. The basic
form is as follows:X
i

ui
ei � e

ei þ 2e
¼ 0 ð22Þ

Where ui is the volume fraction of each component. From
a physical standpoint, the unmodified Bruggeman EMA
lacks any predominant geometrical arrangement of material
connectivity in a particular direction. One can make a case
that the radial direction of a SWCNT also lacks a predomi-
nant geometrical arrangement. If we slice a cross-section
and discretize it into small units, some parts would behave
like a series capacitor and others (e. g., the circumferential

portions within the cylindrical shell) would behave more
like capacitors in parallel. Therefore, using either of the
endpoints (e. g., series or parallel capacitor mixing) would
not be a valid approach and the Bruggeman EMA appears
to be the best balance (see Fig. 9).

In the axial direction, the polarization can easily be split
into well defined regions of continuous connectivity.
Therefore a cross sectional area weighting (i. e., a parallel
capacitor averaging) is valid. This is particularly important
for the metallic SWCNTs, which tend to have a very large
(100+) vdW–Ld spectra peak at 0 eV. If we used the EMA
mixing rule, the axial direction spectra at 0 eV would be ar-
tificially lowered and the Dk terms would not contribute as
strongly to the overall total energy.

Figure 10 compares the effects of the parallel capacitor,
Bruggeman EMA, and series capacitor mixing formulations
for two materials with varying volume fractions. When the
optical properties of two materials at a given frequency are
very close in magnitude, the variation among the three
models is quite small. However, in the situations where
there is a large optical contrast, the parallel capacitor model
evenly weights the two spectra by volume fraction while
the Bruggeman EMA is considerably damped by the weak-
est of the two or more spectra magnitudes. The series and
parallel capacitor methods represent the limiting cases of
connectivity while the Bruggeman and other EMAs can be
thought of as intermediate arrangements of the material
connectivity in 3D space.

It should be noted that there are many other mixing for-
mulations available, such as Lorentz–Lorenz, Maxwell–
Garnett, and Rayleigh. However, Lorentz–Lorenz assumes
a vacuum host instead of any arbitrary medium or addi-
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Fig. 9. A comparison of various material configurations with the
equivalent capacitor circuits and mixing model equivalents. The radial
direction for the SWCNT system is the only arrangement that does not
have an “exact” equivalent, with the Bruggeman EMA being the best
known fit.



tional materials. This would be insufficient to create a
MWCNT out of two or more SWCNT components. Max-
well–Garnett assumes a dilute volume fraction within the
host material. While the SWCNTs can certainly be dilute
in the water medium, the mixing formulation itself is done
within the confines of the other shell layer of the SWCNT,
therefore not really dilute from that perspective. Rayleigh
mixing tends to give far too much weight to the weaker of
the two spectra, closely representing the effects of the series
capacitor, which is also not ideal for SWCNTs.

The Bruggeman EMAmixing formulation tends to be the
most appropriate for our SWCNT systems because it
doesn’t assume which material is the host (i. e. dominant
or majority material) or assume a predominant connectiv-
ity. If such a situation did arise where one needed additional
connectivity in the radial direction, but not quite reaching
the parallel limit, straightforward interpolations are avail-
able to achieve every gradation in between [32]. In short,
the Bruggeman EMA can be interpolated to all of the other
models with a simple q factor varying from 0 (zero screen-
ing parallel capacitor) to 1 (series capacitor). We use the
traditional Bruggeman EMA for the purposes of this paper,
but leave the door open for further refinements on this q
factor if it is needed in certain situations.

To quantify the impact of the mixing formulations, Ta-
ble 2 compares the effects of 6 different mixing rules on a
50–50 mixture of the [25,0,s] radial direction with vacuum.
This particular SWCNT was chosen because it does not
have a metallic 0 eV behavior and its core void space is al-
most exactly 50% of the total volume of the entire
SWCNT + core. Therefore, this tube will maximize the re-
lative magnitude variation between the mixing rules (by
being an even 50–50 ratio) and not introduce any changes
as a result of a divergent low energy wing in the vdW–
LDS. The parallel and series capacitor methods are still

the endpoints, resulting in the largest and smallest possible
magnitudes respectively. The Maxwell–Garnett model re-
sides between the EMA and parallel capacitor and the Lor-
entz–Lorenz and Raleigh models are much closer to the ser-
ies capacitor model. The variation between these different
models is quite large. Both the Hamaker coefficients and
the effective vdW–Ld spectra can vary by a factor of 3.
Therefore, it is important to choose the model carefully for
a given geometrical system, particularly for complex and
multi-component systems.

Figure 11 shows the [9,3,m] and [29,0,s] SWCNT hol-
low-cylinder spectra and the resulting mixed with H2O
spectra in the axial direction using isotropic water uni-
formly distributed and filling 100% of each SWCNTs re-
spective core. Of course the core can be filled with any per-
centage of water from 0 to 100%. In this study, we assume a
100% of filling of isotropic order to have a standard bench-
mark across all tubes. If we were using the smallest of con-
structible nanotubes (e. g. the [5,0,s]), any water filling
would not be possible as there is not enough void space to
fit the water molecules. A slightly larger diameter would al-
low for some water molecules, but they would not have all
rotational degrees of freedom and the assumption of the iso-
tropic spectra would not hold. The tubes presented in this
study are large enough that these issues should not arise.
But if they did and one could determine the proper degree
of water filling and optical anisotropy, the same analysis
would be straightforward and easily achievable.
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Fig. 10. Comparison of the parallel capacitor,
Bruggeman EMA, and series capacitor spec-
tral mixing approximations. (a) When the
magnitude of one spectrum is many times lar-
ger than the other (which is typical in the DC
or 0 eV limit of metallic SWCNTs), the differ-
ent models exhibit more variation as the con-
nectivity becomes important. (b) When the op-
tical spectra are similar in magnitude, all three
models converge to similar values for any vol-
ume fraction, and therefore the choice of
which particular mixing formulation to use is
less of an issue.

Table 2. A comparison of the effects of the different mixing for-
mulations on a 50–50 mixture of the [25,0,s] radial direction
and vacuum.

Mixing Formulation vdW–Ld
(0 eV)

vdW–Ld
(1 eV)

A121

Parallel Capacitor 5.87 3.84 82.10
Perpendicular Capacitor 1.83 1.74 29.84

Bruggeman EMA 4.21 3.02 63.90
Maxwell Garnett 5.00 3.37 53.28
Lorentz–Lorenz 2.86 2.46 70.23

Rayleigh 2.42 2.17 44.92

Fig. 11. Here we see the hollow-cylinder and the hollow-cylinder
spectra mixed w/H2O for the [9,3,m] and [29,0,s] SWCNTs in the axial
direction. Note that the [9,3,m] spectra only shift a little while the ef-
fect upon the [29,0,s] is much more dramatic because of its substan-
tially larger core volume.



Although there are many alternative water spectra from
which to choose [11–14], we use the index of refraction os-
cillator model by Parsegian because it accurately captures
the zero frequency, matches index of refraction along the
visible frequencies [3], and is easily recreated using simple
damped oscillators. The other available models do make
certain improvements (such as fulfilling the requirements
of the f-sum rule [14], etc) and are equally valid for use. In
general, the water spectrum is smaller in magnitude than
the all-SWCNT spectra for all frequencies. This has the ef-
fect of decreasing the overall magnitude of the effective,
mixed w/H2O spectra in comparison to the hollow-cylinder
spectra. The effect is clearly strong for the [29,0,s], which is
55% hollow and therefore experiences a considerable shift-
ing. (The [9,3,m], by comparison, is only 18% hollow). The
implications of this dampening show up clearly in the Ha-
maker coefficient calculations between the various chiral-
ities (Table 3). However, effects such as alignment and tor-
que forces may increase or decrease depending on the
relative positioning on the initial and final vdW–Ld spectra.
In the particular examples found in this paper, they all di-
minish.

Although not specifically included in this paper, there is
no additional conceptual, computational difficulty to in-
clude surfactants in this analysis. For example: a MWCNT
with a water core and a uniform layer of sodium dodecyl
sulfate (SDS, a typical SWCNT surfactant [33]) would sim-
ply behave as a cross-sectional area weighted by mixing of
the constituent spectra in the far-limit and of pure SDS at
the near-limit. One could then use the interpolation style
suggested previously to obtain a vdW–Ld energy at all dis-
tances [7].

The biggest limitation for including surfactant effects is,
as described earlier, the lack of optical spectra for all poten-
tial surfactant candidates over an energy range sufficient for
the Lifshitz formulations. There is work being done in par-
allel to this thesis to fill up the spectra database, but more
time and resources are needed. Until robust spectral data
are available, it is difficult to take this analysis further,
other than to describe qualitative trends that can occur. At
the near-limit, the ability to spatially resolve the optical
properties of the SDS layer (i. e. the surfactant) from the
SWCNT interior is just as important as being able to resolve
the SWCNT constituents contained within a MWCNT (as
opposed to the bulk averaged MWCNT optical properties).

Experimental methods that determine bulk spectral prop-
erties of ssDNA/SWCNT hybrids and similar nano-struc-
tures would be pertinent for the far-limit only. The near-
limit requires a spatial resolution and possibly directionally

dependent properties, both of which are either impossible or
extremely difficult to obtain experimentally for these types
of systems. Specific examples are the situations in which
the structure in water is different from the dry material
structure (e. g. DNA). If one measured a dry structure, but
later calculated an energy for a wet system, there might be
some significant shifts or alterations based on the different
electronic structure. This further underscores the utility of
ab-initio methods as a viable and powerful alternative to
obtain this information. Additionally, it underscores the
need to catalogue even the most basic of materials. Cur-
rently the only organic materials we have publicly available
(outside of the carbon based SWCNTs) are polystyrene,
polysilane, tetradecane, ethanol, and possibly a few others
[34–36]. With a larger data base of SWCNTs and surfac-
tant spectra, one can start data mining to find combinations
favorable for one type of interaction over another [18].

4. Discussion (systematic trends for SWCNTs)

There are several great overview articles to describe the in-
tricate relationships between [n, m], cutting lines, band
structure, and total density of states (DOS). (See [37–43].)
Fortunately, the e00 trends occur as a function of chirality,
potentially leading to trends in the overall Hamaker coeffi-
cients and total vdW–Ld as a function of SWNCT classifi-
cation and radius. Although a complete analysis is beyond
the scope of this paper, a few key examples will be intro-
duced to prove the point.

The armchair SWCNTs (where the [n, m] indices are
identical) are the easiest and best class on which to do this
analysis: 1) There is no change in the cutting line angle
among them. Therefore, it isolates the resulting vdW–LDS
effects to the known e00 vHS (van Hove singularity) shifts
in the 0–5 eV range. The 10–30 eV range (largely cutting
angle dependent) remains fixed and unchanged down to
the smallest diameter SWCNTs. 2) They are all metals from
a band structure standpoint and thus all the vHS will be
large and have systematic shifts relative to one another. 3)
Pragmatically it is easy to calculate/obtain a very large
number of this class of SWCNTs because of their relatively
small lattice repeat length along the axial direction in the
OLCAO supercell calculation. Of the 63 SWCNT e00 spec-
tra that we presently have, 22 are armchair tubes ranging
form the [3,3,m] to the [24,24,m]. Chiral SWCNTs, by
comparison, can require 1–3 orders of magnitude more
atoms and thereby become computationally prohibitive
with what is readily obtainable on a reasonable budget.
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Table 3. Calculated cylinder–cylinder Hamaker coefficients (Að0Þ, Að2Þ) for the [6,5,s] and [9,3,m] SWCNTs using the raw optical prop-
erties scaled to a solid cylinder, scaled to a hollow cylinder, and a hollow cylinder mixed with a water core. The solid and mixed w/H2O
spectra are equally valid at the far-limit depending on whether the core is filled with vacuum or water.

Near-limit Að0Þ;Að2Þ (zJ) Far-limit Að0Þ;Að2Þ (zJ)

n m Solid Hollow Mixed w/H2O Solid Hollow Mixed w/H2O

9 3 62.3, 0.5 91.7, 0.6 66.7, 0.5 107.0, 36.2 163.3, 56.6 113.3, 36.8
6 5 85.0, 0.1 111.8, 0.1 88.0, 0.1 105.6, 1.9 144.2, 3.3 110.5, 2.2
9 1 72.3, 0.4 95.6, 0.4 75.3, 0.3 92.8, 3.0 126.9, 4.9 97.4, 3.3
29 0 14.3, 0.0 71.8, 0.1 20.1, 0.1 18.5, 0.8 108.6, 8.6 26.2, 1.3

Validity at this limit No Yes No Yes No Yes



There are essentially three ways that manipulations in e00 ef-
fects vdW–LDS: shape, position, and area. The two compo-
nents that have the most impact are area (pulls the entire
vdW–LDS spectra up or down linearly as a function of e00 scal-
ing) and position (shifts in e00 change the vdW–LDS slope at
the high and low energy wings). With the e00 trending and peak
behavior now identified, we can analyze and understand the
fundamental reasons as to why vdW–LDS trend and behave as
they do and ultimately link from [n, m] to vdW–Ld interactions.

Note the distinct e00 trending regimes in Fig. 12. The peaks
above the invariant 4.19 eV peak are all locked in position,
shape, and magnitude. The peaks from 0–4 eV depend on
the cutting line density in the Brillouin zone and systemati-
cally shift lower with increasing radius while slightly in-
creasing the total area under the curve. This slight increase
in area makes sense in terms of balancing the fsum rule’s ef-
fective electron density [20], which scales as x � ðe00Þ2. So to
maintain the same total of electrons, any total shift of a e00

peak to a lower energy should raise its e00 value in order to
maintain a fixed quantity of valence electrons. It is yet an-
other great confirmation between optical property theory,
SWCNT trending, and the OLCAO calculations.

If we simply had the e00 spectra in Fig. 12, the following
effects would be expected: 1) The vdW–LDS for the largest

tubes would have the sharpest slope near the low energy
limit and remain lower and flatter in the higher energy limit
as the vHS shift to a lower energy. 2) The slight increase in
e00 area for the larger tubes in the 0–4 eV regime would
slightly increase the overall magnitude of the vdW–LDS
across some of the energy interval. 3) These first two ef-
fects would be additive in the low energy regime and would
combat each other in the high energy interval. A close in-
spection of Fig. 12 reveals that all of these effects are occur-
ring just as expected from Eq. (2). These trends in vdW–
LDS would therefore carry over as trends in the Lifshitz
summation and lead to the chirality-dependent Hamaker
coefficients and vdW–Ld interactions.

Before continuing, it is useful to develop a naming sys-
tem in order to identify the main peaks and describe the e00

peaks, trends, and features in a sensible way. Observing
graphene’s partial DOS (see Fig. 13), it is clear that the 0
to 5 eV transitions can only come out of the p–p interac-
tions. For transitions of 10 eV or more, a significant portion
of the transitions in the TDOS should be coming from the r
bonds (for graphene, all r bonds are assumed to be sp2 hy-
bridized with no sp3 characteristics). A major drop in avail-
able DOS in the p states below –7.5 eV in the conduction
band would support this thesis.
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Fig. 12. A comparison of the e00

and vdW–LDS trends in the radial
and axial directions for armchairs
SWCNTs ranging from the
[15,15,m] to the [24,24,m].



Combining the graphene partial DOS study with the e00

peak analysis in Fig. 12, we can make the following claims:
the 0–5 eV peaks are described entirely by the p–p bonds
while the 5–30 peaks are dominated by a combination of
p–r*, r–p*, and r–r* bonds. Of course, larger diameter
tubes have little to no curvature in the circumferential direc-
tion and thus little to no r–p overlap. Therefore it is likely
that the transitions will arise more from r–r transitions un-
til the diameters are below a critical transition radius where
the curvature becomes much stronger.

There is another piece that has been missing, and that is
the possibility for a Drude metal peak in the optical proper-
ties at 0 eV. The word “possibility” is key because simply
having a continuos DOS in a band structure does not imply
e00 activity in that same energy interval (as can be seen in
Fig. 13, which compares graphene’s partial DOS and e00

spectra). Such e00 transitions can be prohibited due to sym-
metry effects. Simply put, there is a possibility that some
“metal” SWCNTs can behave optically like a semi-conduc-
tor. However, metals that do have near 0.00 eV e00 transi-
tions can exhibit some dramatic effects because of this
large, low energy wing (e. g. vdW–Ld torques that have a
preferred alignment direction along the axial direction [7]).

In short, there are three major peak regimes: Drude, r, and
p. But more granularity is needed to describe the peaks with-
in these domains. We use “peak” to describe any location in
e00 that exhibits a rise and fall of 1 unit within a +/–0.5 eV
range of position. Although shoulders (i. e. locations in the
spectra that abruptly rise or fall to a new plateau) are equally
important features in optical property analysis, we will con-
fine ourselves to peaks for the time being because of the ease
with which we can automate identification.

There are many different ways we could label the peaks
within each regime. We could correlate to the known CNT
vHS, order them from lowest to highest, or order them by
strength, etc. Ultimately we found this scheme to be the most
beneficial: Drude, p, and r labels to represent transitions in the
energy ranges of 0.0–0.1, 0.1–10, and 10+ eV respectively.

For the Drude metal range, there are three major types
observed. There is either no low energy e00 peak present
(i. e. it is optically a 1+ eV semiconductor), or a metallic e00

wing sharply rising all the way to 0.00 eV, or a nearly me-
tallic e00 wing sharply rising to almost 0.00 eV before termi-

nating back to zero at energies around 0.02 to 0.05 eV. To
differentiate these three cases, there will be one of three de-
scriptors: null, D0 (true Drude metal down to 0.00 eV), or
D1 (spike terminates just short of 0.00 eV).

The next peaks to identify are the p bonds. Both the axial
and radial directions have special peaks that are somewhat
invariant among the largest diameter SWCNTs. They occur
at 4.21 and 4.19 eV, respectively, and are essentially
pinned. The remaining peaks vary systematically with the
cutting lines. The peak at 4.2 eV is a special peak and is
called p0 to denote its fixed nature. The next significant
peak is the optical band gap. We label the next peaks p1
through p5. Again the criterion for a peak is a 1 unit in-
crease in e00 within a range of 0.5 eV on each side.

In the axial direction, we get p1–p5 and they systemati-
cally shift as a function of 1/r. The radial direction only
has two significant peaks, p0 and p1. In both the radial and
axial direction, the position of the p0 peak among the all
chiralities remains stable for tubes above a critical radius
of approximately 0.8 nm. Below this limit, the magnitude
of p0 is no longer stable and varies considerably among
the smaller diameter tubes.

It should be noted that these p1–p5 peaks are not necessa-
rily in full agreement with the vHS band-to-band transitions
found in the DOS for SWCNTs. In the vHS convention, E11
would denote the DOS and e00 peaks arising from the closest
non-Drude metal cutting line to the K-point. E22 would de-
note the second, and so forth. The results are very clean
and symmetric, but not directly interpretable; some of these
peaks would not transition to the e00 properties. Therefore,
the labeling of the p peaks should not be construed as transi-
tions coming from a particular cutting line or band.

The last set of peaks left is the r peaks. Much like the p0
peaks, the r peaks tend to be invariant until the diameter is
very small, introducing geometrical and electronic structure
distortions. In general, three major r peaks are seen. Here
we don’t use ascending order, but overall e00 area. The r0
peak tends to be around 14.5 (changes slightly based on
geometry) with a sister r1 peak around 13 eV. Some
SWCNT geometries (e.g. armchair) have another more
rounded peak around 27 eV. Others (zigzag) do not.

Therefore, the first three r peaks represent the largest
peak in these vicinities (with r2 potentially absent). The re-
maining peaks that arise for very small diameters are not
easy to systematically name because they can be sharp and
disappear by the next chirality. If we introduced a larger re-
solution step size in the e00 calculation (e. g. 0.05 eV instead
of 0.01 eV), many of these peaks would simply disappear.
Therefore, we feel it is better to simply lump those collec-
tively as r* because their significance depends on the con-
text of the question to be answered.

With these new descriptors in place, we can adequately
and quantitatively describe the differences in the five
vdW–Ld classifications. This will be the source of exploita-
ble differences in upcoming datamining papers. Original in-
put properties, intrinsic trends as a function of [n, m], for-
mulations versus geometry, and mixing will play a role in
this more extensive analysis.

5. Conclusions

SWCNTs are a unique classification of materials where
[n, m] can have a profound impact on the Hamaker coeffi-
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Fig. 13. The total DOS of graphene compared to the partial DOS com-
ponents within the plane (sp2 hybridized bonding) and out of the plane
(p bonds).



cient and resulting total vdW–Ld energy. Properly extend-
ing the Lifshitz formulations makes it possible to explore
this rich, diverse set of interactions, which is experimen-
tally exploitable and will assist in system design. Effects
like chirality and angular dependance upon the overall
vdW–Ld interaction would be missed if one simply used
parameterized and pairwise Lennard–Jones potentials to
determine the vdW–Ld energies. The formulations and ana-
lysis presented should allow any end-user to determine the
vdW–Ld for a wide variety of nanotube systems, as well as
many other fields of interest (e. g. bio-molecules, pharma-
ceuticals, etc.)

The authors would like to acknowledge the assistance of Barbara
French in editing the manuscript. R. Rajter would also like to acknowl-
edge financial support for this work by the NSF Grant under Contract
No. CMS-0609050 (NIRT). In memoriam, Rowland M. Cannon,
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Appendix A –
end user checklist

As straightforward as an overall Lifshitz formulation is,
much of the available literature makes it seem a compli-
cated endeavor. This checklist can assist anyone in getting
up and running.

First. Obtain the e00 or vdW–LDS spectra for all materials
present in your system. The best places to look initially are
the Palik books [35], or the optical database maintained at
sourceforge [19]. If those sources don’t yield, attempt to
find it in the available literature by searching for a materi-
al’s optical properties. Ideally you need the data in either
JcV or e00 form from 0 to 30 eV. If you’re still unable to find
or obtain the information, you may need to collaborate with
an appropriate experimentalist or ab initio scientist to get
this information.

Second. Pick the analytical Lifshitz formulation that best
matches your system. The best resource here is the book by
Parsegian [3], which has over 100 pages devoted to every
possible known analytical solution for a wide variety of
geometries. If the particular geometry you are interested in
does not exist, see if you can approximate it as a series of
simpler geometries (far limit) or as a series of stacked
planes (e. g. the Derjaguin approximation at the near limit).

Third. Does your system have multiple layers of materi-
al? If so, you may need to employ spectral mixing rules in
order to adequately use a Lifshitz formulation for a given
geometry. As for which particular mixing rule, analyzing
the material connectivity in the direction of the interaction
is the best way to get started. If the layers are stacked per-
fectly along this direction, a series capacitor-like mixing
would be best. If exactly the opposite, one can either do a
series of area weighted Hamaker coefficients of smaller
pieces or apply spectral mixing with the parallel capacitor
mixing method. For all arrangements in between, some
EMA (Bruggeman or otherwise) will likely be the best se-
lection.

Finally, simply use the given optical inputs within the se-
lected Lifshitz formulation to calculate the Hamaker coeffi-
cient for the interaction. Then, multiply by the volume-vol-
ume scaling portion to get to the total vdW–Ld energy. For
those not wanting to do the coding by hand, the Gecko Ha-
maker program available at sourceforge [19] can be used
to calculate add-a-layer systems of arbitrary complexity
for the plane–plane systems. At present, the SWCNTs
equations have to be manually calculated in Mathematica
or a programming language of your choice, but this facility
will be included in an upcoming version of Gecko Ha-
maker.

Appendix B –
total vdW–Ld energy equivalence at the far-limit

Qualitatively, the near and far limit equivalent systems can
be summarized by the illustration in Fig. 14. However, a
more rigorous, quantitive analysis is shown in Fig. 15 by
comparing the total vdW–Ld energy ratios as a function of
‘=d where d is the nanotube diameter. For simplicity, we
calculated the Hamaker coefficient using fictitious vdW–
Ld input spectra by using simple damped oscillators of the
following form:

eð{nÞ ¼ 1þ s

1þ n2
ð23Þ

where s represents the magnitude or strength of the oscillator.
For Fig. 15, we chose a large value of s = 100 for the unmixed
solid material in case C3 and a value of s = 0 for the vacuum.
For the mixture material, we used the Bruggeman effective
mixing approximation (EMA) at each Matsubara frequency
(the details of the EMA mixing formulation will be described
more rigorously in the next section). The total energy and Ha-
maker coefficients were calculated using the following sim-
ple, non-retarded isotropic plane–plane equations.

Gð‘Þ ¼ A
12p‘2

ð24Þ

ALm1=Rm2
¼ 3

2

X1
n¼0

0
eL � em1

eL þ em1

� �
eR � em2

eR þ em2

� �
ð25Þ
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Fig. 14. The behavior of the overall effective optical properties on the
Hamaker coefficient as a function of separation distance ‘. (a) Original
layered system with a thickness of ‘d’. (b) At near contact (‘ � d) it is
the optical properties near the respective surfaces that dominates the
interaction. (c) At large separations (‘ > 2d), the optical properties
are a weighted average of the various components and usually domi-
nated by the materials with the larger volume fraction.

Fig. 15. Comparing total vdW–Ld interaction
energy ratios of three different systems to de-
monstrate the utility of mixing formulations
in the far-limit. (a) Case C1 uses the optically
mixed material in an infinitely thick configura-
tion. Case C2 is a finite block of the optically
mixed material. Case C3 contains the unmixed
material sandwiching a vacuum layer. (b) The
ratio of total vdW–Ld energies varies as a
function of the dimensionless scale factor ‘=d.



Case C2 and C3 required a slightly more complicated
add-a-layer form of the overall energy. We use the follow-
ing (see Ref [3]) subscript notation, i. e. ALm=Rm, so as to
eliminate confusion. Here the slash in the subscript denotes
the sides to the left and right of the medium. The first term
in each subscript couple denotes the material furthest away
from the middle/intervening separation layers. If we label
the EMA mixture material as ‘m’, the low value vacuum
as ‘v’, and the high value of the solid material as ‘h’, then
the cases C1, C2, and C3 would be solved as follows.

C1 : Gð‘Þ ¼
�Amv/mv
12pð‘Þ2

ð26Þ

C2 : Gð‘Þ ¼
�Amv/mv
12pð‘Þ2

þ
�Amv/vm

12pð‘þ d=2Þ2
ð27Þ

C3 : Gð‘Þ ¼
�Amv/hv
12pð‘Þ2

þ
�Amv/vh

12pð‘þ d=6Þ2

þ
�Amv/hv

12pð‘þ 2d=6Þ2
þ

�Amv/vh
12pð‘þ 3d=6Þ2

ð28Þ

Eq. (28) may look bulky, but there is a clear pattern that
arises when moving from C1 to C3. In short, the total en-
ergy equation for each case is merely a summation resulting
in a single term for each interface pair across the interven-
ing medium layer. The distance part in the denominator is
equivalent to the separation distance between that given
pair of interfaces. The Hamaker coefficient subscripts de-
note the optical properties of the two neighboring materials
at each of these interfaces using the ordering scheme de-
scribed above (outer most material gets listed first). Thus
each term can easily be constructed from the picture. As
an example, the last interfaces in case C3 have a Hamaker
coefficient Amv=vh at a interface–interface separation dis-
tance of ‘þ d. It is worth noting that in cases like C2, the
Hamaker coefficients are equal in magnitude but opposite
in sign simply because they include the same spectra and
just have their subscript order reversed. If we were to bring
these interfaces completely together, the two total energy
terms would cancel out as expected because the interfaces
would annihilate and disappear.

At the near-limit, it is clearly the materials closest to the
intervening medium that dominate the total vdW–Ld en-
ergy interaction, which is demonstrated by the C1/C2 ratio
converging to 1 and thus being effectively equal despite
the fact that C2 is of a finite thickness and has an additional
interface term. This effective equivalence is due to the di-
vergent, 1=‘2 behavior of the nearest interface–interface
pair dominating the total energy as ‘ goes to zero. In effect,

one can place any arbitrary number of interfaces at dis-
tances well beyond the leading term and they would have
little to no impact on the total vdW–Ld energy. Therefore
at contact, we only need to use the optical properties of the
outermost layer and need not and should not use any spec-
tral mixing.

The opposite effect occurs at the far limit. The individual
Hamaker coefficients found in all four terms of case C3 are
much larger than the Hamaker coefficients for case C2 be-
cause the spectral contrast at each interface in C3 is much
greater. One might be too quick to conclude that these lar-
ger Hamaker coefficients should lead to a larger total en-
ergy for case C3 as compared to C2. However the interfaces
in C3 begin to pack more closely and thus the overall mag-
nitudes of the 1=‘2 terms (i. e. the geometrical components)
of the neighboring interfaces get closer. These two effects
(increasing Hamaker coefficients and decreased spacing)
cancel each other out making cases C2 and C3 nearly iden-
tical in the far limit, with case C2 certainly giving us an ad-
vantage of reduced complexity.

Figure 15b illustrates these effects. Additionally it is im-
portant to note that ratio of C3/C2 converges to a fixed val-
ue when ‘ > d, where d is the thickness of the finite layers
in cases C3 and C2. This particular distance of convergence
is an encouraging result because it is the exact same dis-
tance we determined to be the far limit regime in our analy-
sis of the anisotropic solid-cylinder Lifshitz formulations.
For the purposes of stress-testing the EMA mixing rules,
we purposely chose extreme values of ‘s’ to mimic the va-
cuum (v: s = 0) and metal (h: s = 100) endpoints. Therefore
this 23% discrepancy can be thought of as the maximum er-
ror that can exist between the total vdW–Ld energies of
cases C2 and C3 in the far limit. If we were to pick values
of ‘s’ that were closer in value to each other (e. g. v: s = 50
and h: s = 100), then the difference in total energy drops to
less than 4%. And of course, if materials ‘v’ and ‘h’ have
identical spectra, the ratio of C2/C3 merges to unity at the
far limit. Therefore, one can confidently mix spectra that
are on the same order of magnitude and be sure they are get-
ting realistic results. When spectra are vastly different,
there will be some discrepancies that need to be taken into
account.

There is one final issue to note in Fig. 15. Although the
limit separation regimes are easy to characterize, there is a
transition range between the near and far limits which is
harder to define. For those cases, one might best use the in-
terpolation method described previously in order to get a
reasonable Hamaker coefficient and total vdW–Ld energy
at any separation distance. This process is beyond the scope
of this paper, which is primarily focused on the effects of
mixing on the limiting behaviors. However those wishing
to know this information within this regime can do so in a
reasonably straightforward manner [7].
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