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Degradation pathway models constructed using network structural equation
modeling (netSEM) are used to study degradation modes and pathways
active in photovoltaic (PV) system variants in exposure conditions of high
humidity and temperature. This data-driven modeling technique enables the
exploration of simultaneous pairwise and multiple regression relationships
between variables in which several degradation modes are active in specific
variants and exposure conditions. Durable and degrading variants are identified
from the netSEM degradation mechanisms and pathways, along with potential
ways to mitigate these pathways. A combination of domain knowledge and
netSEM modeling shows that corrosion is the primary cause of the power loss
in these glass/backsheet PV minimodules. We show successful implementation
of netSEM to elucidate the relationships between variables in PV systems and
predict a specific service lifetime. The results from pairwise relationships and
multiple regression show consistency. This work presents a greater opportunity
to be expanded to other materials systems.

KEYWORDS

degradation, photovoltaics, pathway modeling, network structural equation modeling,
electrical measurements, power loss, degradation modes, statistics

1 Introduction

With each passing year, the field of photovoltaics (PV) is rapidly expanding. The
field’s business value of hundreds of billions of dollars and global capacity progressing
to terrawatts present a great need for creating long-lasting PV modules to minimize the
levelized cost of electricity (LCOE) Jäger-Waldau (2022); Masson and Kaizuka (2020);
Cole et al. (2017). Minimizing LCOE involves a careful selection of polymers, cell and
module designs, and consideration of potential degradation modes that can arise through
the interactions of components under the influence of the external environment. Individual
material components in PV systems are affected by several environmental stressors (such
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as heat and moisture), that can lead to degradation events such as
corrosion Hihara et al. (2013), cracking, and discoloration which
lead to decreased system performance. Ethylene vinyl acetate
(EVA) is the most popular encapsulants in the PV industry.
There are emerging polymeric systems that are being designed
to overcome the issues with acetic acid formation in EVA in the
presence of humidity along with high temperature and/or UV
radiation Kempe et al. (2007); de Oliveira et al. (2018). Ultimately,
undesirable changes leading to thermal/oxidative/hydrolytic/photo
degradation will decrease the overall performance of the system
Odegard and Bandyopadhyay (2011); Brebu (2020).

Various models have been used to study degradation in
PV modules, as evident from prior literature Radouane et al.
(2014); Lindig et al. (2018); Escobar and Meeker (2006);
Bala Subramaniyan et al. (2018). Most of these degradation models
deal with degradation rates and/or isolated degradation modes
to interpret power loss. Studying the degradation rate alone is
insufficient in identifying the root cause of degradation. As the
models have been constructed for PV modules under specific
exposure conditions, they rely on fitting parameters and choosing
non-linear terms that would best explain the trend. Such approaches
are based on simplified assumptions, do not allow for generalization,
and do not correlate to real-world exposure conditions, in which
multiple degradation modes occur simultaneously Bruckman et al.
(2013b); Nalin Venkat (2021).

Owing to the complex nature of degradation, it is essential to
design an elaborate study protocol in which multiple degradation
modes of PV variants under exposure can be explored and
generalized models can be constructed to gain insights into the
overall system performance. In this regard, data-driven modeling
techniques are extremely useful in providing valuable insights into
degradation behavior Lindig et al. (2018).

Network structural equation modeling (netSEM) is a
generalized data-driven approach that allows for a systematic
study of linear and non-linear relationships between variables
along with the strength of the relationships between them by the
usage of stressor, mechanistic variables, and response. netSEM was
developed based on the foundational concepts of structural equation
modeling (SEM) Ullman and Bentler (2012); prior applications of
SEM have been demonstrated in psychology, sociology, and the
life sciences netSEM is primarily used to analyze systems that
are experiencing degradation of some performance characteristic
under exposure to a particular stressor which is considered as an
exogenous variable Bruckman et al. (2013b); Yang et al. (2019);
Gok et al. (2019b,a).

There are two principles governing the netSEM analysis:
Principle 1 (Markovian model) and Principle 2 (multiple regression
model). In the Markovian model, variables are exclusively
considered in a pairwise relationship and each pathway is described
using a linear or non-linear model as well as statistical metrics (not
to be confused with the netSEM model that consists of multiple
best model pathways between variables). The multiple regression
model, on the other hand, considers the multiple relationships
among variables when variables change in a simultaneous fashion
Yang et al. (2019). The resulting equations can have multiple linear
and non-linear terms among several variables (see Section 3.6).

As there are multiple variants being analyzed in this study, it
is also possible to obtain statistical insights into degradation and

durability by utilizing confidence intervals (CIs). CIs capture the
true population values within intervals Barde and Barde (2012).
95% CIs, which are based on the 1-sample t-test, can determine if
a variant is durable or degrading at the end of exposure. 83.4% CIs,
which are based on the 2-sample t-test, are indicative of difference
between twomeans Knol et al. (2011); Nalin Venkat (2021). In order
to determine if two samples behave similarly or differently (based
on degree of CI overlap) at the end of exposure, inference of eye
method by Cumming and Finch (2005) has been utilized in this
study Nalin Venkat (2021).

In this study, we show the statistical analysis using inference
by eye and application of netSEM in the context of 4-cell PV
modules (referred to as minimodules) in accelerated exposure
conditions. The purpose of this study is to compare PV
minimodules that differ in packaging strategies. The goal is to
analyze which types of PV minimodules undergo substantial
power loss at the end of the exposure cycle and also gain
insights into active degradation modes Nalin Venkat (2021).
From this study, we observe that corrosion is the primary
cause of degradation in the glass/backsheet PV minimodules.
The results from analyzing pairwise relationships and multiple
regression are consistent. To the broader research community,
netSEM can be coupled with statistical analysis methods to
gain insights into real-world degradation in different materials
systems.

2 Study protocol: Experimental and
analytical methods

An extensive study protocol, consisting of fabrication,
exposures, evaluation, and analysis, was designed to systematically
identify causes of degradation. Sixteen PV minimodules were
fabricated and exposed in two types of indoor accelerated
conditions. Stepwise electrical evaluation was performed to
monitor changes in minimodules using current-voltage (I-V) and
Suns-Voc measurements. The obtained dataset was used to compare
degradation patterns in PV minimodule variants by statistical
analysis and network structural equation models. The various
components of the study protocol are detailed in the subsequent
sections.

2.1 Fabrication of 4-cell PV minimodule
variants

Each PV minimodule was fabricated using four multicrystalline
monofacial passivated emitter and rear cells (PERC), provided by
Canadian Solar Inc. (CSI). The four cells were soldered in series
in different fabrication facilities, depending on the manufacturer.
The front and rear sides of different 4-cell minimodules are shown
in Figure 1. The minimodules differ on the basis of the module
architecture and encapsulant material, which we will refer to as
PV minimodule variants. There are two manufacturers in this
study, named A and B, but the focus will be on the minimodules
manufactured by B. Some of theminimodule variantsmanufactured
by B show greater power loss, and this can help us identify the
potential cause of degradation.
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FIGURE 1
Front and rear sides of 4-cell PV minimodules. (A) Front side of GB
minimodule. (B) Rear side of DG minimodule with 5 junction boxes.

The two types of module architectures used were double
glass (DG) and glass/backsheet (GB). In each DG minimodule,
2.5 mm heat-strengthened front and rear glass were utilized. In each
GB minimodule, 3.2 mm tempered front glass was used and the
backsheet was KPf, which is composed of polyvinylidene fluoride
(PVDF)/polyethylene terephthalate (PET)/fluoropolymer layers.

The encapsulants were ethylene vinyl acetate (EVA) and
polyolefin elastomer (POE). In each minimodule, transparent
encapsulant was the front encapsulant layer and the rear encapsulant
was of the UV-cutoff type. The encapsulant and backsheet materials
were supplied by Cybrid Technologies Inc. At the end of fabrication
of minimodules, five junction boxes were fixed on each minimodule
to enable cell-level measurements and module-level measurements
Nalin Venkat (2021). In this work, cell-level measurements were
used for statistical and netSEM analysis.

In total, four minimodule variants (DG/GB, EVA/POE) were
fabricated in which each variant had two minimodules (4 × 2 =
8 minimodules of all variants). There are two indoor accelerated
conditions, namely,modified dampheat (mDH) andmodified damp
heat with full spectrum light (mDH + FSL). Eight minimodules

were exposed in mDH and eight minimodules were exposed in
mDH + FSL. In total, sixteen minimodules are considered in
this study. The specifications of minimodules are summarized in
Table 1. The details of exposure conditions are highlighted in
Section 2.2.

2.2 Indoor accelerated exposure
conditions

Damp heat (DH) is frequently used as a standard accelerated
test in which the minimodules are exposed to 85°C at 85% relative
humidity. Accelerated tests are frequently used as opposed to
outdoor exposure as it takes about 20–25 years for natural aging to
occur and degradation to manifest in PV modules A Omazic et al.
(2019). DH is also a qualification test (pass/fail) on PV modules;
however, it does not provide additional insights into the module
service lifetime nor their long-term durability Koehl et al. (2017);
Wohlgemuth and Kempe (2014).

DH exposure can induce hydrolytic degradation in the PET
core layer, which is a crucial component in KPf backsheets. At
temperatures above the glass transition temperature (Tg) of PET
(Tg = 85°C), there is an increased mobility of the polymer chain
backbone which enhances the rate of hydrolysis and leads to
loss of properties in PET. At exposure conditions below Tg , the
hydrolytic degradation was found to be minor despite humidity as
high as 95% Kanuga (2012); Omazic et al. (2019). Hence, taking
these concepts into account, the exposure temperature was reduced
by 5°C in this study (i.e., the temperature used in the study was
80°C).

The two types of indoor accelerated exposures are modified
damp heat (mDH) and modified damp heat with full spectrum
light (mDH + FSL). Eight minimodules were exposed in mDH
exposure (which is 80°C and 85% relative humidity) and the other
Eight minimodules were exposed in mDH + FSL (of intensity
420 Wm−2) as per Table 1. The environmental chamber used in the
study was a Cincinnati Sub-Zero SPHS-100. The full spectrum light
was generated usingClass C solar simulator high-intensity discharge
(HID) lamps from Iwasaki Electric (Eye Lighting).

Both the exposures had a total duration of 2520 h (about
3.5 months) and were divided into five exposure steps of 504 h
(equivalent to 21 days) each. This enabled us to perform stepwise
evaluation on minimodules (discussed in Section 2.3). While the
minimodules in mDH conditions had 504 h at each exposure step,
the ones in mDH + FSL had 336 h (14 days) of mDH exposure,
subsequently followed by 168 h (7 days) of full spectrum light.

2.3 Stepwise electrical evaluation

At the end of every exposure step, stepwise cell-level electrical
measurements (current-voltage (I-V) and Suns-Voc) were collected
for theminimodules in both exposure conditions. Spi-Sun Simulator
4600SLP was used for taking I-V measurements. The Suns-Voc
instrument used in the study was manufactured by Sinton
Instruments.

I-V curves are useful in understanding the current and voltage
at which the PV modules can be operated at fixed irradiance
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TABLE 1 Quantity and specifications (encapsulant type andmodule architecture) of minimodules bymanufacturer B in exposure conditions.

mDH mDH + FSL Encapsulant Architecture Total

  Manufacturer B Type Front Rear

  2 2 EVA Transparent UV-cutoff GB 8

  2 2 DG 8

  2 2 POE GB 8

  2 2 DG 8

and temperature. The electrical features generated from I-V
measurements provide information about losses and degradation
modes in PV modules Ma et al. (2019); van Dyk Meyer (2004);
van Dyk et al. (2005). Suns-Voc is a technique in which the
open-circuit voltage varies with changing illumination. It gives
information about recombination losses and the presence of shunts
Hossain et al. (2019).

The electrical evaluations were performed every 504 h (21 days)
for stepwise measurements. Baseline measurements were taken for
all the minimodules before the start of exposure.

2.4 Data processing

ddiv R package (version 0.1.1) Huang et al. (2021) was used
to extract the electrical features from I-V and Suns-Voc data.
Because of the inconsistent quality of the junction boxes, not all
the cell-level measurements could be obtained. To avoid bias in the
analysis, missing observations were handled by mean imputation
Jakobsen et al. (2017). Mean imputation involves substituting the
mean of the cell measurements in place of the missing data point.
When the imputed values were found to be identical for twomissing
cell measurements, normally distributed values by using mean and
standard deviation were obtained using the qnorm() function
in R Nalin Venkat (2021). Due to the control in manufacturing
and consistency of input materials in PERC cell fabrication, we
assume that there is no major distinction among as-fabricated solar
cells.

Once the values were imputed, the electrical features used in
the study were normalized (i.e., cell-level electrical measurements
were divided by their respective baseline values at exposure step
0) in order to reduce the noise in the data. The variables were
chosen based on domain knowledge and involves selecting electrical
features that track possible degradation modes. A detailed overview
of variable selection is included in Section 3.1. After variable
selection, netSEM R package (version 0.7.0) was used to construct
models and obtain equations for pairwise relations Huang et al.
(2018).

2.5 Network structural equation modeling
(netSEM)

netSEM is a statistical approach to perform pathway
network analysis in a system composed of continuous variables
Bruckman et al. (2013b). Prior applications of netSEM have been
successfully demonstrated in polymer studies Bruckman et al.

TABLE 2 The seven functional forms and the correspondingmathematical
equations used in netSEM.

Functional form Equation

Simple linear (SL) y = β1x + β0 + ϵ

Simple quadratic (SQuad) y = β2x
2 + β0 + ϵ

Quadratic (Quad) y = β2x
2 + β1x + β0 + ϵ

Change point (CP) y = β2(x− c) + β1x + β0 + ϵ

Exponential (Exp) y = β3e
x + β0 + ϵ

Logarithmic (Log) y = β4logx + β0 + ϵ

Non-linearizable exponential (nls) y = β5(1 ± exp(β6(x - β7))) + ϵ

(2013a); Yang et al. (2019). In this work, netSEM is applied to PV
minimodules.

netSEM allows the incorporation of non-linear relationships
between the variables, as opposed to SEM, which allows only
linear relationships. Seven functions are available in the netSEM
package: simple linear, quadratic, simple quadratic, change point,
exponential, logarithmic and non-linearizable exponential (shown
in Table 2) Nalin Venkat (2021).

In this study, the steps involved in obtaining netSEM results
are illustrated in Figure 2. Feature selection (or commonly referred
to as variable selection) is performed by using concepts from
domain knowledge; even before collecting the data, knowledge of
the variables obtained from various measurement techniques is
crucial. This is discussed in Section 3.1. The data are acquired from
two electrical measurement techniques, namely, I-V and Suns-Voc,
as discussed in Section 2.3. After that, mean imputation is done to
handle missing observations (highlighted in Section 2.4). Once the
data is processed, the netSEM R package is used to obtain pairwise
relationships and multiple regression equations.

In netSEM, the selection of the best models and the statistical
significance of relationships can be retrieved using p-values and
R2
adj. Statistical testing is performed in netSEM, and p-values are

calculated and compared against the selected significance level
(α = 0.05) to validate the null hypothesis.

In netSEM, Markovian model and multiple regression model
are utilized for variable selection and to rank their contribution
to the response. The Markovian model Faraway (2004), considers
only a pair of variables while the others are kept constant. The
multiple regression model utilizes multiple regression to consider
the simultaneous impact of variables on each other. Bruckman et al.
(2013b). Both of the models are used to obtain results (refer to
Section 3).
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FIGURE 2
Flowchart showing the steps involved in obtaining netSEM results.

3 Results

This section presents an overview of the netSEM results for
the minimodule variants used in this work. Before obtaining
netSEM results, variable selection was done (Section 3.1), followed
by the construction of 83.4 and 95% confidence intervals
using data from the end of the exposure cycle (shown in
Section 3.2). The selected stressor (S), mechanistic variables
(Mi), and response (R) from the variable selection process were
used in building netSEM <Stressor|Mechanism|Response> as
well as pairwise <Stressor|Response>, <Stressor|Mechanism| and
|Mechanism|Response> models using Markovian model. This is
covered in Section 3.3 and Section 3.4. The factors contributing
to power loss were inspected; one of the minimodule variants was
chosen as an example for demonstration (Section 3.5). Using the
multiple regression model, the <Stressor|Mechanism|Response>
models were constructed and service lifetime prediction
comparison for a minimodule variant fabricated by two
different manufacturers was done. As an example, one of the
<Stressor|Mechanism|Response> models obtained using the
multiple regression model is shown in the article. In addition,
the power loss due to mechanistic variables is demonstrated
(Section 3.6).

3.1 Variable selection

Before constructing the netSEM models, variable selection was
performed based on domain knowledge of PV module degradation.
Exposure time was converted into decimal year and used as the
stressor (S); here, decimal year means that the numerical value is
not an integer but rather has a decimal value (for instance, 0.2 is a
decimal year).

The mechanistic variables were selected in a way that they
can track degradation mechanisms occurring in the minimodules.
From prior studies, a decrease in short circuit current (Isc) from
I-V measurements has been attributed to changes in optical
transmittance of encapsulants/glass, p-n junction degradation,

and/or soiling Ahmad et al. (2019); Luo et al. (2019). Since there
is no possibility of soiling/accumulation of dust in environmental
chambers and because all the cells from the same batch were
made at the same time, it is assumed that the decrease in Isc is
most likely related to optical transmission loss. An increase in
series resistance (Rs) from I-V measurements has been known
for negatively impacting solder joints, interconnects, resistance in
junction box connections and emitter/base regions of the cell, and/or
cell metallization, causing increased corrosion van Dyk et al. (2005);
van Dyk and Meyer (2004); Meyer and van Dyk (2004). Suns-Voc
features provide information about the recombination losses and
presence of shunts Kerr et al. (2001); Hossain et al. (2019). For this
reason, voltage at maximum power (Vmp) obtained from Suns-Voc
has been considered to track both recombination and shunting in
minimodules.

In this work, the mechanistic variables and response have been
normalized to reduce noise. The normalized mechanistic variables
(Mi) are

nIsc,IV (short-circuit current), nRs,IV (series resistance), and
nVmp,PIV (voltage at maximum power). Maximum power from I-V
measurements (nPmp,IV ) is used as the response (R). The superscript
“n” denotes normalized values for the variable and the subscripts,
“IV” and “PIV”, refer to whether the variable is extracted from I-V
or Suns-Voc, respectively.

3.2 Confidence intervals at the end of
exposure cycle

Confidence intervals of 83.4% and 95% were obtained for
minimodule variants by manufacturer B at the end of exposure
cycle (i.e., at exposure step 5). The minimodule variants underwent
exposure for 2520 h in either mDH or mDH + FSL, marking the
end of exposure cycle. For constructing each of the CIs, 8 cell
measurements from two minimodules for each variant were used;
this reduces the standard error by a factor of √8 and improves the
statistical significance of the results.

Figure 2 shows the confidence intervals at the end of
exposure for GB minimodules fabricated by manufacturer B.
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The CIs are categorized on the basis of architecture (GB/DG)
and exposure type (mDH/mDH + FSL) for easier comparison.
A normalized value of one means that there is no change. As
per inference by eye conditions, overlapping CIs indicate that the
variants behave similarly without significant differences Cumming
and Finch (2005). From Section 1, 83.4% CIs help identify if
two minimodule variants are similar/different in behavior and
95% CIs are useful in determining if a minimodule variant is
durable/degrading.

From Figure 3A with nPmp,IV at the end of exposure, it can
be seen that there is no significant impact of encapsulant type
(i.e., 83.4% CIs overlap in each of the architecture/exposure type
categories). However, between categories, it can be seen that EVA-
based minimodules (GB in mDH and mDH + FSL exposures) are
significantly different from DG in mDH + FSL exposure. In the
case of other minimodule categories, they seem to be similar to
each other due to overlapping 83.4% CIs. In the case of 95% CIs,
GB minimodules are seen to be experiencing greater power loss.
This observation is made, based on their interquartile ranges and
estimated means. The estimated means for the GB minimodules
indicate that the power loss is, on average, about 5%–6%. DG
minimodules in mDH exposure seem to be exhibiting different
trends with encapsulant type, as the ones with EVA have more
power loss than those with the POE type. However, the CIs for DG
minimodules in mDH exposure are relatively wider, making it less
certain to quantify degradation.

Figure 3B shows an increase in the nRs,IV and an increase from
the baseline normalized value of 1 at the end of exposure cycle. From
83.4% CIs, there is significant overlap between different encapsulant
types in each exposure. However, from 95% CIs, we see that most
GB-based minimodules have increased nRs,IV (with the exception
of GB with POE in mDH + FSL exposure). Most DG minimodules
seem to be experiencing lesser corrosion in comparison to the
GB counterparts (with the exception of DG with EVA in mDH
exposure). Please note that the exceptions are highlighted to indicate
that there are relatively wider CIs that affect certainty of the results.

We have inspected other mechanistic variables, namely,
nIsc,IV and nVmp,PIV . Since these normalized variables vary
within a small range of 0.98–1, we think that they do not
contribute to power loss as much as nRs,IV does. The results of
other mechanistic variables are included in the supplementary
information.

3.3 <Stressor|Mechanism|Response>
modeling of PV minimodule variants using
markovian model

Figure 4 andFigure 5 show the<Stressor|Mechanism|Response>
(<S|M|R>) models generated by considering pairwise relationships
between variables. These two specific cases were chosen to represent
a variant that experiences degradation and another variant, that
is, relatively stable. Each variable is color-coded: stressor (dark
blue), mechanistic variables (yellow), and response (purple). The
corresponding short-hand descriptions of degradation modes
tracked by mechanistic variables are included in the light blue
boxes. Each pairwise relationship (referred to as <S|M| and |M|R>)
between variables is described by the ‘best model’ that fits two

FIGURE 3
Confidence intervals of 83.4% (orange) and 95% (blue) at the end of
exposure for minimodules fabricated by manufacturer B. The hollow
black circles represent the estimated means. Each CI for each
minimodule variant makes use of 8 cell-level measurements to
improve the statistical signficance of the results. (A) nPmp,IV. (B)

nRs,IV.

variables and the corresponding R2
adj. In netSEM, the best model

refers to the functional form between two variables that has the
highestR2

adj.The figure shows that both linearmodels as well as non-
linear best models are present. A higher R2

adj signifies that there is
a strong correlation between two variables and the model describes
the trend well. In addition, the p-values obtained for the best models
from netSEM pairwise relationships were significantly smaller than
the significance level of 0.05, indicating that the relationships are
statistically significant.

Figure 4 shows the <S|M|R>model for GB with EVA fabricated
by manufacturer B in mDH exposure. Between dy and nPmp,IV ,
the best model is SQuad with an R2

adj of 0.37. The <S|M| paths
connecting dy and nIsc,IV , nRs,IV , and nVmp,PIV show that the R2

adj
(and corresponding best models) are 0.47 (SL), 0.40 (SQuad)
and 0.36 (Quad). There is moderate dependence of the response
and mechanistic variables on dy from |M|R> paths connecting
nIsc,IV , nRs,IV , and nVmp,PIV to nPmp,IV indicate that the R2

adj (and
corresponding best models) are 0.31 (Log), 0.96 (CP) and 0.2
(SQuad). This shows that the change in nPmp,IV is strongly impacted
by nRs,IV , which is explained by change point (CP). nVmp,PIV does
not impact nPmp,IV as much as the R2

adj, the lowest among the three
mechanistic variables.
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FIGURE 4
<S|M|R>model constructed using Markovian model for the variant GB with EVA encapsulation made by manufacturer B and exposed in mDH
condition. dy is exposure time (stressor), nPmp,IV is maximum power, which is the response. nIsc,IV indicates short-circuit current, nRs,IV indicates series
resistance and nVmp,PIV indicates voltage at maximum power (IV means that the measurement is from current-voltage data whereas PIV means it is a
Suns-Voc measurement). The blue boxes indicate the degradation mode that the variable tracks: nIsc,IV tracks optical transmission loss, nRs,IV monitors
corrosion and nVmp,PIV tracks recombination and shunting.

FIGURE 5
<S|M|R>model constructed using Markovian model for the variant DG with POE encapsulation made by manufacturer B and exposed in mDH + FSL
conditions. dy is exposure time (stressor), nPmp,IV is maximum power, which is the response. nIsc,IV indicates short-circuit current, nRs,IV indicates series
resistance and nVmp,PIV indicates voltage at maximum power (IV means that the measurement is from current-voltage data whereas PIV means it is a
Suns-Voc measurement). The blue boxes indicate the degradation mode that the variable tracks: nIsc,IV tracks optical transmission loss, nRs,IV monitors
corrosion and nVmp,PIV tracks recombination and shunting.
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FIGURE 6
Variation of nPmp,IV with dy manufactured by B. The best model equation line and name in text, data points and 83.4% CIs (orange) at the end of
exposure cycle are shown.

Figure 5 shows the <Stressor|Mechanism|Response>model for
DG with POE by manufacturer B in mDH + FSL exposure. In
the <S|R> pathway, the R2

adj is very low (SQuad: 0.036), which
means that there is no significant impact of dy on nPmp,IV . This
means that power is not affected by exposure time, indicating
stability of the minimodule variant. The <S|M| paths connecting
dy and nIsc,IV , nRs,IV , and nVmp,PIV show that the R2

adj (and
best models) are 0.07 (Quad), 0.04 (SQuad) and 0.7 (Quad). In
<Stressor|Mechanism|Response> models, we look at the direct
pathway (connecting dy and nPmp,IV ) and note the R2

adj. Then,
we look at the remaining paths and see if two variables are
strongly/weakly correlated to each other for a particular best model
(based on R2

adj) and compare with the direct path. nVmp,PIV is highly
correlated to dy. Only nRs,IV has a direct impact on nPmp,IV with SL
as the best model and R2

adj of 0.92. The rest of the variables have an
R2
adj value of < 0.03. With the exception of nVmp,PIV , the rest of the

mechanistic variables are weakly correlated with dy.
Between these two <S|M|R>models, it is apparent that GB with

EVA in mDH shows a stronger correlation in the <S|R> pathway
compared to DG with POE in mDH + FSL. There is a strong
dependence between nRs,IV and nPmp,IV in both the cases. It is to
be noted that the power is affected due to a particular mechanistic
variable if the R2

adj is significant in <S|M| and |M|R>. Keeping this
point in mind, GB with EVA in mDH is affected by nRs,IV and
hence, experiences substantial power loss. Each of these individual
pathways can be studied in further detail to understand how the
variables are related to each other.

3.4 <Stressor|Response>,
<Stressor|Mechanism| and
|Mechanism|Response>models using
markovian model

The pairwise relations showing best fitting models from
<S|M|R> models in Figure 4 and Figure 5 are mathematical
equations.Thedifferent variants and exposure types are shown in the
form of a facet plot wherein individual panels represent a particular
subset of data (divided in terms ofmodule architecture, encapsulant,
and exposure type). In each of the facet plot grids, there are data
points, along with the best model equation line and name, 83.4%
CI at the end of exposure cycle and the corresponding estimated
mean. Using facet plots, we can further investigate<S|R>,<S|M| and
|M|R> in greater detail and gain a stronger quantitative perspective
beyond <S|M|R>models.

Figure 6 shows the <S|R> best model equation line, data points,
83.4% CIs at the last exposure step, and the name of the best model
that fits the data in the best possible manner in text. It can be
observed that the GB minimodules experience a power loss of about
5%–6% on average, as highlighted in Section 3.2 (each minimodule
can generate a power of about 16 W). The best model equation also
shows a considerable drop in power for GB minimodule variants in
both the exposure types.Most DGminimodule variants seem stable,
the exception being DG with EVA in mDH exposure. DG with EVA
in mDH + FSL is the most stable as there is no best model equation
that exists between nPmp,IV and dy due to R2

adj being less than 0.01. In
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FIGURE 7
<S|M| and |M|R> (where mechanistic variable is nRs,IV) results for minimodules manufactured by B. (A) Variation of nRs,IV with dy. The best model
equation line and name in text, data points and 83.4% CIs (orange) at the end of exposure cycle are shown. (B) Variation of nPmp,IV with nRs,IV. The best
model equation line and name in text and data points are shown.
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FIGURE 8
Power loss due to mechanisms: GB with EVA by manufacturer B in mDH. Each of the lines correspond to the power loss caused by each mechanistic
variable compared to the total power loss. The equations were obtained using Markovian model.

the netSEM package, any pathway with R2
adj less than 0.01 does not

have a best model.
The causes of power loss in GB minimodules can be better

understood by investigating <S|M| and |M|R> results. Considering
corrosion as the mechanism, tracked by nRs,IV , it can be seen
that there is a substantial increase in nRs,IV with increasing dy in
all the GB variants from Figure 7A. It can also be observed that
there is high scatter in the data points; this is because, before
normalization, series resistance values are small and prone to
variations Nalin Venkat (2021). With increasing nRs,IV , there is a
strong decrease in nPmp,IV , as shown in Figure 7B. For nRs,IV to
cause time-dependent power loss, there needs to be a significant
relationship between dy and nRs,IV as well as nRs,IV and nPmp,IV ,
which is highlighted in Section 3.3. Even though DG minimodules
have a strong |M|R> trend (where themechanistic variable is nRs,IV ),
the <S|M| trend is not as strong compared to the GB variants. From
Figure 7 and results from other mechanistic variables (included in
the supplementary information), power loss in GB minimodules is
seen to be driven primarily by corrosion.

3.5 Power loss due to mechanisms using
markovian model

In the netSEM package, it is possible to obtain mathematical
equations of the best model fit between two variables (bestModel)
as well as other statistical measures such as R2

adj and p-values using
netSEMp1() function. From this section onwards (excluding
<S|M|R> model generated using multiple regression), we use the

inverse of nRs,IV called nCs,IV (series conductance) to ensure that the
range is from 0–1 (instead of 1-∞, as in the case of nRs,IV ). Using
nCs,IV also makes it convenient for comparing between mechanisms
that potentially cause power loss. We have primarily used nRs,IV , as
it is the variable that has been used for tracking corrosion in prior
literature; having an understanding of originalmechanistic variables
will aid in understanding degradation.

Considering the minimodule variant GB with EVA in mDH
exposure fabricated by manufacturer B, we get the following set of
equations by substituting <S|M| in |M|R>; the list of equations are
included in Eq. 1. Note that the mechanistic variables include both
nIsc,IV and nVmp,PIV , along with nCs,IV .

nPtotmp,IV = 1− 0.78dy
2 (1a)

nPIscmp,IV = 0.1+ 8.72log (1− 0.02dy) (1b)

nPCs
mp,IV = 1− 0.86dy

2 (dy < 0.99)

= 0.77− 0.44dy2 (dy > 0.99)
(1c)

nP
Vmp

mp,IV = 1− 0.24dy+ 0.25dy
2 − 0.05dy3 + 0.05dy4 (1d)

Here, nPtotmp,IV refers to the total power whereas nPMi
mp,IV refers

to power loss due to individual mechanistic variables (Mi is the
normalized mechanistic variable and subscripts IV and PIV have
been dropped off for convenience).
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FIGURE 9
<S|M|R>model of GB with EVA by manufacturer B exposed in mDH conditions generated using multiple regression model. dy is exposure time
(stressor), nPmp,IV is maximum power, which is the response. nIsc,IV indicates short-circuit current, nRs,IV indicates series resistance and nVmp,PIV indicates
voltage at maximum power (IV means that the measurement is from current-voltage data whereas PIV means it is a Suns-Voc measurement). The blue
boxes indicate the degradation mode that the variable tracks: nIsc,IV tracks optical transmission loss, nRs,IV monitors corrosion and nVmp,PIV tracks
recombination and shunting.

FIGURE 10
Service lifetime prediction plot comparing GB with EVA in mDH manufactured by A and B.

Figure 8 shows the power loss due to individual mechanistic
variables (i.e., <S|Mi|R>) and total power (i.e., <S|R>).
<S|nCs,IV |R> curvature matches with that of <S|R> in the
exposure time range of 0–0.3 decimal year. Both <S|nIsc,IV |R>
and <S|nVmp,PIV |R> are unable to achieve the curvature of
<S|R>. The decrease of <S|nIsc,IV |R> is linear and <S|nVmp,PIV |R>
has curvature which stabilizes after about 0.2 decimal
year.

3.6 Multiple regression results

We have been able to explore the trends between variables
in a pairwise manner while keeping the rest of the variables
constant in the previous sections. This approach, however, does
not capture the complexity of degradation. In the real world, PV
module degradation is a phenomenon in which multiple stressors
and degradation modes act simultaneously. The multiple regression
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FIGURE 11
Contributions of mechanistic variables compared against total power loss with year (dy) for GB with EVA in mDH by manufacturer B using multiple
regression model.

TABLE 3 Equations obtained frommultiple regressionmodel for GB with EVA inmDH for manufacturers A and B.

Manufacturer Change point η γdy,1 γdy,2 δIsc δVmp
δRs

B dy ≤ 0.067 0.28 0 0 1.05 0 −0.33

dy > 0.067 0.19 0 0 1.05 0 −0.26

A dy ≤ 0.31 −0.74 0.07 −0.19 2.79 −0.87 −0.18

dy > 0.31 −0.45 0.07 −0.19 2.79 −0.87 −0.48

model has the ability to performmultiple regressions by considering
several predictors. Each variable is regressed on the remaining
variables except the response, and using stepAIC(), the most
parsimonious model equation is selected on the basis of Principle 1
bestmodelsHuang et al. (2018). For example, thismeans that dy and
Mi simultaneously impact nPmp,IV .

Figure 9 shows the<S|M|R>model obtained. For the variantGB
with EVA by manufacturer B exposed in mDH conditions, nPmp,IV
is a function of dy, nIsc,IV , and nRs,IV . There is no direct relationship
between nPmp,IV and nVmp,PIV . The equation with nPmp,IV as the
dependent variable obtained using a netSEM function, namely,
netSEMp2(), is given by Eq. 2.

nPmp,IV = 1.26+ 0.11dy
2 + 1.68log(nIsc,IV) − 0.26

nRs,IV

− 0.11(nRs,IV − 1)c (2)

TheR2
adj of themodel is 0.97, which ismuch higher than pairwise

relationships from Markovian model. The subscript “c” indicates
a change-point/segmented term. A change-point/segmented term
is simply the breaking point between two linear equations of
differing slopes. Furthermore, we can use multiple regression

to predict how response and mechanic variables change over
time.

The importance ofmultiple regressionmodel lies in its capability
of service lifetime prediction (SLP) by considering the influence
of multiple mechanistic variables and stressor. Using multiple
regression, we obtain equations including nPmp,IV as a function
of Mi and dy, as well as equations for each Mi as a function of
the rest of Mi and dy. Most often those multivariable equations
are implicit and we use Newton/Broyden’s method to find the
numerical solutions, determining how nPmp,IV and Mis change
over dy. In this part, we have performed the SLP for a single
variant fabricated by two different manufacturers: A and B. From
Figure 10, we see the service lifetime prediction plot in which the
minimodule variant, GB with EVA, in mDH is compared on the
basis of manufacturer (A versus B). We are able to see that the
variant by manufacturer B undergoes greater power loss than that
of manufacturer A. In addition, we are able to see that the highest
contribution is from nCs,IV , as it closely follows the nPmp,IV plot from
Figure 11.

Eq. 3 provides the general form of multiple regression for
degradation in GB with EVA in mDH fabricated by both
manufacturers A and B. Table 3 shows the corresponding change
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points and coefficient values. By comparing each coefficient between
the minimodules by two different manufacturers, we can quantify
differences in the degradation behavior using the value in Eq. 3,
as shown in Table 3. The γdy,1, γdy,2, and δVmp

of minimodules by
manufacturer B are all zeros. It indicates that the major degradation
mechanisms for manufacture B are corrosion and optical loss,
corresponding to nonzero δIsc and δRs

, respectively. The degradation
of minimodules by manufacturer A is more complicated as
there is additional recombination loss and other unknown time-
dependent losses. Moreover, the change points indicate different
degradation patterns in the same minimodule variant fabricated by
manufacturers A and B.

nPmp,IV = η+ γdy,1dy+ γdy,2dy
2 + δIsc (

nIsc,IV)

+ δRs
(nRs,IV) + δVmp

(nVmp,PIV) (3)

4 Discussion

This section highlights the advantages of netSEM as a
generalized data-driven analysis tool and its importance in
developing a study protocol. Observations from this study are also
comparedwith that of prior literature. In addition,Markovianmodel
andmultiple regressionmodel results are compared for concurrence
and the role of corrosion in minimodule degradation is briefly
discussed.

4.1 Comparison of this work with other
degradation models

With an extensive study protocol, statistical analysis using
CIs coupled with data-driven netSEM modeling gives insights
into the degradation behavior of minimodule variants. This
is a novel approach to thoroughly explore the pairwise
relationships between variables using Markovian model as well
as the simultaneous impact of multiple variables at the same
time.

Degradation of PV modules reported in prior literature has
assumed a degradation rate model, that is, defined based on
specific module or exposure conditions. For instance, in the study
by Theristis et al. (2022) degradation rates for fielded modules
were defined on the basis of nameplate ratings and from post-
stabilization flash test. In other cases, degradation rate models have
been proposed for specific degradation mechanisms or processes in
which model parameters are variable Lindig et al. (2018). In either
of these cases, the proposed degradation rate models are applicable
only for particular cases and are restricted by the assumptions. PV
reliability models have been constructed to understand the trend
of power degradation; it has been commonly observed that power
loss is non-linear. To capture the non-linearity of power loss, many
regression-based models have been proposed; however, they are
only applicable to specific sample types and external conditions,
and cannot be generalized Kaaya et al. (2021); Lindig et al.
(2018).

netSEMovercomes issues that are present in these contemporary
models. No inherent assumptions are made in netSEM data-driven

modeling allowing it to be applicable to any system with a well-
defined stressor, mechanistic variables, and response framework.
Another advantage of netSEM is that we can compare parallel and/or
competing degradation pathways as well as their impact on power
loss, which is yet to be demonstrated by traditional PV modeling
techniques. By coupling netSEM with statistical analysis using CIs,
the results are not just observations but are statistically significant at
the 5% level.

4.2 Current findings and relation to prior
literature

A subtle but important observation emerges from the results
discussed in Section 3; the encapsulants do not seem to experience
drastic degradation in either mDH or mDH + FSL, indicating that
there is no over-acceleration of degradation modes Nalin Venkat
(2021).

Many studies in literature implement DH as the predominant
indoor exposure condition. In a study by Park et al. (2021) DH test
(for 5500 h) was performed on p-PERC GB modules with EVA;
an increase in fill factor and series resistance was observed due
to corrosion of metal electrodes by moisture ingress. In the same
study, DH with temperature cycling (DH5000/TC600) revealed that
POE showed better durability than EVA. In both the cases, the
power loss followed a change point trend and the series resistance
increased faster for EVA module than the POE one Park et al.
(2021). In another work by Oreski et al. (2020) upon 3000 h of DH
exposure, only EVA-based modules were seen to have corrosion
at the silver grid as well as above the ribbons; modules with POE
displayed no corrosive effects. DH exposure has been debated as an
aggressive exposure condition in other studies; ranging from over-
acceleration of PET layer to 2x higher degradation level in outdoor
conditions Kanuga (2012); Yang et al. (2019); Hülsmann and Weiss
(2015); Kempe and Wohlgemuth (2013). Using mDH with/without
FSL does not lead to extreme degradation as evidenced in our
study. Cross-correlation of degradation in minimodules exposed
in indoor accelerated conditions (mDH with/without FSL) and
outdoor conditions will be part of our future work.

The differences in degradation among minimodule variants
is primarily due to the module architecture. Although module
architectures do not play an active role in power generation, they
can lead to issues in long-term performance Aghaei et al. (2022).

In this study, on average, GB minimodules undergo greater
power loss in comparison to DG minimodules. GB minimodules
were observed to experience a greater power loss primarly due to
corrosion. Most of the DG variants were observed to be stable in
both mDH and mDH + FSL exposures. In a study by Karas et al.
(2020) involving packaged silicon heterojunction cells, corrosion
in GB modules with EVA encapsulation was found to be higher
than DG counterparts in DH exposure due to higher moisture
penetration; GB modules with POE were found to undergo lower
degradation in comparison Sinha et al. (2021). Even though our
study does not consider packaged c-Si cells in particular, moisture
ingress could be a possible explanation to why GB minimodules
experience more power loss in our study. Moisture ingress is known
to be initiated from edges of modules Poulek et al. (2021); Park et al.
(2021). In another independent study by Kumar et al. (2022) GB
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minimodules with EVAwere seen to have increased series resistance
at high humidity levels. In a netSEM analysis done for EVA-based
minimodules under DH conditions, hydrolysis of EVA was seen
to be a dominant degradation pathway Wheeler (2017); Yang et al.
(2019). Further investigation needs to be performed to validate the
aforementioned claim in our study. In the scientific community,
there is an ongoing discourse about which module architecture is
better Aghaei et al. (2022); therefore, we cannot make a generalized
claim that DG is better than GB. Furthermore, since POE is a
relatively new material in the PV industry, its performance in long-
term exposure has not been explored yet especially in real-world
conditions. Considering the conditions, duration of the exposure,
and the obtained results, we cannot make firm conclusions that
one type of module architecture/encapsulant is better than the
other.

4.3 Comparison between results from
markovian model and multiple regression
model

The results from Markovian model and multiple regression
model are observed to be fairly consistent. Higher power loss in GB
minimodules due to corrosion are supported by both Markovian
model and multiple regression model results. We considered series
conductance for ease of comparison between different mechanistic
variables).

From multiple regression analysis, we observed that the
degradation is heavily impacted by the difference in manufacturer
for the same minimodule variant, highlighting the importance
of quality control in the experimental and fabrication process.
Lamination process plays an important role in the quality, reliability,
and longevity of PV modules as validated from previous studies
Davis et al. (2016); Schneller et al. (2016); Aghaei et al. (2022). In
order to increase the lifetime and the overall performance of
PV modules, it is of utmost necessity to control the fabrication
process (including but not limited to soldering and lamination) to
manufacture PV modules of high quality.

5 Conclusion

In this work, the application of netSEM R package and
statistical analysis have been demonstrated by using stepwise
measurement data of indoor-exposed minimodule variants. A
comprehensive overview of the study protocol comprising of
fabrication, exposure types, and characterization techniques,
as well as the steps involved in obtaining data to eventually
use the netSEM R package has been provided. Using domain
knowledge regarding PV module degradation and statistics, CIs
and netSEM models were constructed. By utilizing Markovian
model and multiple regression, durable/degrading variants were
identified.

As part of our future work, we are developing an automated
analysis pipeline for analyzing minimodule variants using multiple
regression and rank-ordering them on the basis of their degradation
behavior.
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