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Urinary Protein Profiles in a Rat Model for
Diabetic Complications*□S

Daniela M. Schlatzer‡, Jean-Eudes Dazard‡, Moyez Dharsee§, Rob M. Ewing‡§,
Serguei Ilchenko‡, Ian Stewart§, George Christ¶, and Mark R. Chance‡�

Diabetes mellitus is estimated to affect �24 million people
in the United States and more than 150 million people
worldwide. There are numerous end organ complications
of diabetes, the onset of which can be delayed by early
diagnosis and treatment. Although assays for diabetes
are well founded, tests for its complications lack sufficient
specificity and sensitivity to adequately guide these treat-
ment options. In our study, we employed a streptozoto-
cin-induced rat model of diabetes to determine changes
in urinary protein profiles that occur during the initial
response to the attendant hyperglycemia (e.g. the first
two months) with the goal of developing a reliable and
reproducible method of analyzing multiple urine samples
as well as providing clues to early markers of disease
progression. After filtration and buffer exchange, urinary
proteins were digested with a specific protease, and the
relative amounts of several thousand peptides were com-
pared across rat urine samples representing various
times after administration of drug or sham control. Exten-
sive data analysis, including imputation of missing values
and normalization of all data was followed by ANOVA
analysis to discover peptides that were significantly
changing as a function of time, treatment and interaction
of the two variables. The data demonstrated significant
differences in protein abundance in urine before observ-
able pathophysiological changes occur in this animal
model and as function of the measured variables. These
included decreases in relative abundance of major uri-
nary protein precursor and increases in pro-alpha col-
lagen, the expression of which is known to be regulated
by circulating levels of insulin and/or glucose. Peptides
from these proteins represent potential biomarkers,
which can be used to stage urogenital complications
from diabetes. The expression changes of a pro-alpha 1
collagen peptide was also confirmed via selected reac-
tion monitoring. Molecular & Cellular Proteomics 8:
2145–2158, 2009.

Diabetic nephropathy (DNP)1 accounts for �44% of new
cases of end stage renal disease (ESRD) (1). This high mor-
bidity is the result of the impact of a growing population and
longer life expectancy. With an increase in the prevalence of
DM and a corresponding reduction in the mortality associated
with both type 1 and type 2 DM, patients are living longer and
are therefore at higher risk to develop complications such as
nephropathy (2). Moreover, Type 1 DM patients who progress
to ESRD have a substantial risk of mortality with estimated
annual health care costs in the United States to be approxi-
mately $1.9 billion (3, 4). Two key therapies for the prevention
and management of ESRD are aggressive glycemic control
and blood pressure regulation (5, 6). Early intervention is
essential in reducing the severity and course of this compli-
cation (6), and changes in urine biomarkers have historically
been used to diagnose and monitor disease progression. In
addition, urine represents a desirable matrix in which to detect
biomarkers of nephropathy as urinary protein excretion pro-
files are reflective of functional changes within the kidney,
such as glomerular filtration rate. Clinical determinations of
urinary total protein and urinary albumin excretion are com-
monly used measurements to monitor and/or determine the
onset of diabetic nephropathy. Unfortunately, these measure-
ments often lead to improper diagnoses for at risk DM pa-
tients (7, 8). Therefore, new prognostic indicators are required
to accurately target these patients for therapeutic intervention
earlier in the course of the disease as well as identify patients
who are unlikely to progress, as therapy may be of little or no
benefit to them.
Utilizing experimental models to study the pathophysiolog-

ical changes that occur as function of disease progression
has provided an approach for biomarker discovery. In diabe-
tes, animal models have been widely used in the investigation
of the progression of diabetes complications such as ne-
phropathy. Research conducted on the association between
hyperglycemia and microvascular disease in diabetes as well
as the study of the effect of extracellular matrix protein ex-
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pression on changes in morphology in the diabetic kidney are
two such examples (9). In addition, these models have as-
sisted in developing appropriate clinical trials for the preven-
tion and treatment of these complications. One such example
is the use of anti-hypertensive treatment regimes in geneti-
cally hypertensive rats; these have examined whether early
intervention may be renoprotective and therefore delay or
prevent the onset of diabetic nephropathy (10–12).
STZ-induced hyperglycemia in rodents is the most exten-

sively studied model of diabetic nephropathy and associated
complications (9, 13). Hyperglycemia occurs in this model
because of the toxin’s destruction of pancreatic Beta-islet
cells, which are essential to the production of insulin. STZ-
induced hyperglycemia is associated with reliable and con-
sistent structural and functional deficits in specific urogenital
organ function (i.e. kidney and bladder). Increased glomerular
filtration and hypertrophy, as well as increased urgency and
morphology changes, are structural and functional abnormal-
ities that have been observed in the kidney and bladder,
respectively, in both in humans and the STZ rat model
(14–19).
Currently, there are two primary methods used to monitor

disease progression in diabetes. The measurement of urinary
albumin excretion rates and total protein concentration are
routinely used to monitor disease progression as they reflect
structural and functional changes in the kidney. Measure-
ments of albumin by immunochemical assays and size exclu-
sion high performance liquid chromatography are routinely
employed (7). However, urine consists of a multitude of pro-
teins, many of which are also reflective of pathophysiological
changes because of DM urogenital complications (20–23).
Proteomics provides a powerful approach for the detection of
urinary protein changes as a result of disease, and multiple
proteomic techniques are available in large scale protein pro-
filing to discover new biomarkers (24–26). To date, proteomic
strategies for biomarker discovery in urine have primarily in-
cluded top-down approaches, for example two-dimensional
gel electrophoresis coupled with mass spectrometry and/or
surface enhanced laser desorption/ionization time of flight
mass spectrometry (SELDI-TOF-MS) analyses (27–30). In ad-
dition a number of studies using capillary electrophoresis
mass spectrometry, which have a number of advantages for
analysis of urine, have been successfully carried out (31–33).
While these approaches can easily detect and quantify a
variety of proteinaceous species including isoforms, post-
translational modifications, or degradation products, other
methods could be used to expand the number of proteins that
are both quantified and identified providing an expanded set
of biological targets to understand the complications of dis-
ease and its progression. Recent advances in both chroma-
tography and mass spectrometry have enabled bottom-up
approaches that identify and quantify at the peptide level
(34–36). One advantage of bottom-up proteomics is in-
creased overall proteome coverage. Moreover, most bot-

tom-up methods provide both qualitative and quantitative
data in a single run, and quantifying at the peptide level leads
directly into a bottom-up confirmation/validation analysis
thereby avoiding the peptide selection step in this procedure.
Approaches to bottom-up proteomics include specific pep-
tide labeling or label-free analysis. Specific labeling ap-
proaches such as isobaric tag for relative and absolute quan-
tification (iTRAQ) and 18O employ differential stable isotope
labeling strategies that create specific mass tags for different
samples, which are mixed and then identified and quantified
using mass spectrometry (37). The utility of these techniques
is that they accommodate a wide range of pre-fractionation
strategies thereby improving proteome coverage.
The label-free approach capitalizes on the highly reproduc-

ible chromatography and high mass accuracy available in
current LC/MS systems. This method observes all detectable
peptides and if interrogated by MS/MS their corresponding
fragment ions. This approach quantifies a peptide by its in-
tensity and groups each peptide across individual samples
based on its accurate mass and retention time (38, 39). These
intensities associated with specific mass and retention time
values are organized into peptide array tables that may be
further processed using statistical techniques that accommo-
date high-dimensional data. As with other bottom-up ap-
proaches, this method is also amenable to pre-fractionation
strategies, but unlike labeled approaches, the removal of
chemical or metabolic labeling steps simplifies the overall
approach.
Here we use a comparative label-free LC/MS/MS ap-

proach to identify and rank candidate biomarkers of uro-
genital complications from an STZ rat model of diabetes.
We describe further technical validation of our approach by
confirming the changes observed with the putative biomar-
ker, pro-alpha (2) with an alternative method: selected re-
action monitoring (SRM).

EXPERIMENTAL PROCEDURES

STZ-induced Hyperglycemia

Hyperglycemia was induced in male F-344 rats by a single intra-
peritoneal injection of STZ (35 mg/kg). All procedures were ap-
proved by the Animal Institute Care and Use Committee at Wake
Forest University. STZ was dissolved in citrate buffer (1:1 mixture of
0.1 M citric acid and 0.2 M Na2HPO4). Rats were fasted for a period
of 24 h prior to STZ injection and presented with a 10% dextrose
solution for a 24-hour period immediately following injection. The
rat becomes hyperglycemic and glycosuric within 24 h. The extent
of diabetes was confirmed via serum glucose evaluation from tail
vein puncture. Blood was withdrawn from the tail vein whereas the
animal was placed in a custom made restraining device to expose
the tail. Blood glucose levels were determined with a glucometer
(Ascensia Elite XL by Bayer system). Blood glucose levels were
subsequently measured once a week for the first month and in the
absence of signs of distress, monthly thereafter. Biochemical and
electrophysiological deficits associated with the induced hypergly-
cemia are well characterized and generally occur early (within
weeks of the onset of glucose elevation) (13, 40). Control and DM
urine was collected at 3 day, 1 month, and 2 months time points. To
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collect urine, rats were placed in a metabolic cage and urine was
collected over a 6 h time period. The samples were then frozen in
a �80 °C freezer until proteomic analysis.

Experimental Design

Factorial Arrangement—The categorical factors under study con-
sist of a treatment factor (two levels) crossed with a time factor (three
levels). The two levels of the treatment group were the drug-induced
disease group (T), while the control group (C) was the one that
received a sham injection. The three levels of the time factor were the
time points of 3 days, 1 month, and 2 months (3 d, 1 m, 2 m) from the
start of the treatment (day 0). The experimental groups consisted of
the 2 � 3 possible combinations of levels of the factors, further
denoted ‘C.3d�, ‘T.3d�, ‘C.1m’, ‘T.1m’, ‘C.2m’, ‘T.2m’. This is a two-
way factorial arrangement, which allows evaluation of the two main
effects of the factors and their interactions.

Design Layout, Experimental Units, Pairing, Replications, and Pool-
ing—Supplemental data Table I highlights the experimental units
under study (n � 16). Experimental units were 6 and 10 rats, respec-
tively, in control and treated groups at all time points; and of 4, 6, and
6 rats at 3 days, 1 month, and 2 months to both control and treated.
As rats were sacrificed at all time points, all experimental groups were
independent (unpaired). In addition, treatments were assigned com-
pletely at random to independent experimental units. Therefore, this is
an arrangement of treatments within an unbalanced and complete
randomized design. Technical replicates were not performed, sam-
ples were not pooled, and no common reference sample was used.

Urine Sample Preparation

Four hundred microliters of each rat urine sample was concen-
trated to 100 �l using a Microcon 3,000 molecular weight cut off filter
(Millipore, Bedford, MA). Each sample is subsequently buffer-ex-
changed three times using 300 �l of 50 mM Tris buffer to a final
volume of �100 �l, and protein concentrations were determined by
2D Quant kit as described by the manufacturer (GE Healthcare).
Twenty micrograms of each sample was run on a one-dimensional
SDS gel for quality control. Subsequent to one-dimensional SDS gel
analysis, aliquots of each sample were adjusted to 40 �g in 57 �l in
50 mM Tris. Twenty microliters of 0.2% Rapigest (Waters, Milford,
MA) and dithiothreitol to a final concentration of 5 mM were added.
The samples were reduced at 80 °C for 15 min, cooled to room
temperature, and alkylated with iodoacetamide at a final concentra-
tion of 10 mM for 30 minutes. Proteolytic digestion was performed
with Lys-C (Wako Chemicals, Richmond, VA) with final enzyme to
protein ratio of 1:6 (w/w), and the final digestion volume was adjusted
to 200 �l with 13 �l 1.5 M Tris. The samples were then incubated for
18 h at 37 °C. A primary stock solution of MassPREPTM Digestion
Standard Mix (Waters) peptides containing yeast enolase was pre-
pared to a concentration of 1 pmol/�l each. The standard peptide
mixture was added such that the final concentration was 0.4 pmol/�l
(final volume of 150 �l).

Label-free Expression

Liquid Chromatography and Mass Spectrometry—Sixty nano-
grams of each sample were analyzed by LC/MS/MS and the order of
sample injections randomized over all samples. Separation of pep-
tides via capillary liquid chromatography was performed using a
Dionex Ultimate 3000 capillary LC system (Dionex Sunnyvale, CA).
Mobile phase A (aqueous) contained 0.1% formic acid in 5% aceto-
nitrile, and mobile phase B (organic) contained 0.1% formic acid in
85% acetonitrile. Samples were trapped and desalted on-line in mo-
bile phase A at 10 �l/min for 10 min using a Dionex PepMap 100, (300

�m x 5 mm). The sample was subsequently loaded onto a Dionex C18
PepMap (75 �m x 15 cm) reversed phase column with 5% mobile
phase B. Separation was obtained by employing a gradient of 6% to
28% mobile B at 0.300 �l/min over 100 min. The column was washed
at 99% mobile phase B for 10 min, followed by a re-equilibration at
100% mobile phase A for 17 min. Mass spectrometry analyses of
samples were performed using a hybrid linear ion trap Fourier-trans-
formation cyclotron resonance mass spectrometer (FT-LTQ; Thermo,
Waltham, MA). Positive mode electrospray was conducted using a
nanospray source, and the mass spectrometer(s) was operated at a
resolution of 25,000. Quantitative and qualitative data were acquired
using alternating full MS scan and MS/MS scans in normal mode.
Survey data were acquired from m/z of 400–1600 and up to three
precursors, based on intensity, were interrogated by MS/MS per
switch. Two micro scans were acquired for every precursor interro-
gated, and MS/MS was acquired as centroid data. The FT and LTQ
were mass calibrated immediately before the analysis using the in-
strument protocol. Raw LC/MS/MS data was processed via Proteo-
marker software (Infochromics, Toronto, Canada).

Data Processing–Qualitative—The raw data for each run were first
extracted to provide MS/MS peak lists for identification and intensity-
based profile peak lists for quantification. The MS/MS peak lists were
subsequently searched by Mascot version 2.2.0 (Matrix Science,
London, UK). The database used was a compilation of both the rat
and mouse International Protein Index (IPI) (July 2007; 97811) plus the
sequence for a dietary protein from rat chow, GY5 which was soy-
bean protein we expected to be recovered in urine. Search settings
were as follows: no enzyme specificity, mass accuracy window for
precursor ion, 10 ppm; mass accuracy window for fragment ions, 0.8
Daltons; variable modification, including only carbamidomethylation
of cysteines and oxidation of methionine. The criteria for peptide
identification were a mass accuracy of �10 ppm and an expectation
value of p � 0.05. Proteins that had more than two peptides matching
the above criteria were considered confirmed assignments whereas
proteins identified with one peptide regardless of the Mascot score
were highlighted as tentative assignments.

Data Processing–Quantitative—Automated differential quantifica-
tion of peptides in a set of samples was accomplished with Proteo-
marker. For each profile MS spectrum of an LC/MS/MS run, isotopic
envelopes were resolved, charge states determined, and monoiso-
topic masses assigned to generate a monoisotopic peak list. This
peak list was further consolidated by grouping masses observed at
different charge states and appearing in contiguous elution time
points, resulting in a set of chromatographic peaks that corresponded
to distinct putative peptides. Mascot protein identity data were inte-
grated at this point by matching peptide sequences to chromato-
graphic peaks on the basis of mass and retention time. Chromato-
graphic peaks were aligned across samples using the attributes of
monoisotopic mass, retention time, charge state distribution, and
peptide sequence (when available). To effectively align peptides, Pro-
teomarker corrects for retention time drift by warping elution times
across samples using endogenous peaks. Alignment between sample
datasets resulted in a peptide abundance matrix in which each row (or
differential set) represented a putative peptide with sample-specific
attributes such as observed mass, starting and ending chromato-
graphic retention times, peptide sequence (if assigned), and calcu-
lated chromatographic area used as a measure of intensity for the
given peptide.

Data Quality Control–Prefiltering—Subsequent to raw data acqui-
sition and processing, data QC and statistical analysis were per-
formed. Fig. 1 describes the protocol for data QC and statistical
analysis that was conducted for this study. Two major peptide
pre-filtering steps were performed to remove very poor quality pep-
tide identifications as well as those differential sets (diffset) in the
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abundance matrix that did not receive a qualitative identification. A
diffset for analysis was rejected if (i) a peptide sequence was not
assigned or (ii) the consensus peptide sequence score was below the
81st percentile (�9.96), which represents the lowest mode of distri-
bution of Mascot scores. To further reduce the dimensionality of the
data, we carried out peptide specific intensity summaries for diffsets
that contained peptides of identical sequence. When several diffsets
could be summarized, the diffset with the least number of missing
values was retained with all its annotations including retention time,
m/z ratio, sequence, score, protein annotation; intensity values
from other filtered diffsets were transferred into the retained diffset.
A filtering step was added to retain those diffsets; (i) for which the
number of missing intensity values by experimental group (3 day, 1
month, or 2 months) was less than 50% in at least one experimental
group, and (ii) for which a certain threshold of missing intensity
values per diffset was not exceeded. Given these criteria, the
number of missing events per diffset was bounded to 15 as the
control 3 day experimental group contained only one sample (see
under “Results”).

Data Quality Control–Probability Model for Missing Value Imputa-
tion—Missing values in LC/MS data arise because of imperfect de-
tection and alignment of peak intensities or by true absence of ex-
pression. The probability model and iterative algorithm described in
Wang et al. (41) was used to account for the missingness mechanism
at play and its extent for these data. This model substitutes a missing

measurement of intensity with its expected value of the true intensity
given that it is unobservable. Estimation of the imputation parameters
was done in a simulation type of study in order to minimize the
percentage of remaining missing values.

Data Quality Control–Normalization, Variance Stabilization, and
Normality—The purpose of normalization is to identify and remove
sources of systematic variation because of experimental artifacts in
the measured intensities. In addition, it is important to ensure that the
imputed intensities are corrected for variance stabilization and nor-
mality. Various transformations were applied on the data features to
ensure that the above assumptions were met. We used a common
normalization method known as natural cubic smoothing splines as
described in Workman et al. (42). This normalization procedure uses
sample quantiles from the data features to fit natural cubic smoothing
B-splines. The splines are then used as signal-dependent normaliza-
tion functions on the original data.

Statistical Analysis–Grouping Effect, Linear Model, and Empirical
Bayes Estimators for Statistical Inference—Potential groups and out-
liers among the samples were checked by a Principal Component
Analysis (PCA) (43). Subsequent to PCA, we fitted the same statistical
model individually to each univariate response variable (single peptide
expression). A standard analysis method in modeling of high dimen-
sional data is to fit the same statistical model (usually linear) individ-
ually to each outcome variable (diffset or peptide) and test for the
contrast or effect of interest using the hypothesis testing framework.

Process Raw Data
Intensities vs. Samples
Peak list generation (Mass)

Chromatographic Peaks 
Peptide sequence assignment

Data QC
Filter poor quality diff sets
Replace missing values

Normalization

Statistical Analysis
ANOVA

PCA
FDR

Raw Imputed

Normalized
Diffset N

(… = Mass, Time, 
Intensity and 
Sequence)

…SN…S1

Diffset 1

FIG. 1. Workflow for quality control and statistical analysis of label-free expression data.
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A drawback of this univariate approach is that the correlation struc-
ture or dependence between the variables is ignored. However, some
compensating possibilities exist by borrowing information across
similar variables, resulting in more stable variance estimates, which in
turn assist in inference about each variable individually. Thanks to the
parallel nature of the high-throughput data, this can easily be done by
application of empirical Bayes methods and estimators derived from
them, resulting in greater statistical power (moderated F-, t-, and B
statistics) (44–48). The B statistic is the empirical Bayes log2 of the
posterior odds that the peptide is differentially expressed and repre-
sents a measure of statistical significance. In addition, a number of
authors have noted in gene expression studies that such approach of
“borrowing strength” across variables is more reliable and does not
reduce the power available to detect changes in expression for indi-
vidual variables (49). In addition, the posterior odds statistics have
proven to be a useful means of ranking variables in terms of evidence
for differential expression, especially when the sample size are small,
as is the case here (44–53).

One common application of this approach is in the linear model
setting (48). When multiple sources of variation and correlation are at
play, a linear mixed effects model of analysis of variance is usually an
appropriate and powerful approach. To fit a mixed effects model,
where LC/MS runs or subjects random effects would enter into the
model would usually require having technical replicates, which we do
not have. Nevertheless, because in the present study the biological
samples were all independent, and the LC/MS runs were randomized,
we technically could ignore the corresponding random effect terms
and use a simple fixed effects model of analysis of variance (two-way
ANOVA). The fixed effects to be estimated are the treatment effect
(Tl), the time effect (Dk), and an interaction effect (DTkl). Letting y be
the intensity signal on the original scale for the j-th peptide, and letting
zjkl � t(yjkl) be the outcome on the transformed scale, where t(yjkl) is the
appropriate transformation described above (54), a linear fixed
ANOVA model for each individual peptide j is fitted as follows:

zjkl � t�yjkl� � �j � Djk � Tjl � DTjkl � �jkl (Eq. 1)

where �j represents the average signal intensity for that peptide
across all factors and observations, and the error term �jkl � N(0, �)
is assumed to be normally distributed with mean 0 and some (un-
known) variance component.

In this experimental design, contrasts were built for each of the
fixed effects of interest, coefficients were estimated, and variables
were ranked in order of evidence of differential expression. Corre-
sponding p values were adjusted for multiple testing using a recent
extension of the standard Benjamini-Hochberg procedure, which
controls the expected False Discovery Rate (FDR) under the usual
assumption of general variable dependence (55). This error rate,
called the positive FDR (denoted pFDR) (56–58), results in a proce-
dure much less conservative than the FDR and therefore typically
more powerful and more appropriate for large datasets. In our study,
the threshold was set arbitrarily to pFDR � 0.05. Whenever available,
implementations and algorithms of our methods were from the freely
available consortium CRAN (Comprehensive R Archive Network). All
other R codes written in our group can be provided upon request. For
image analysis, exploratory data analysis, normalization procedures,
and quality assessment, we used the packages “vsn” (59), “affy” (42,
60), “PreprocessCore” (61). In addition, for linear modeling and su-
pervised inferences, we used the package “limma” (48). Finally, for
the control of the positive FDR, we used the package “qvalue” (53).

Confirmation of Peptide GEPGSVGAQGPPGPSGEEGK Selected
Reaction Monitoring Mass Spectrometry—The pro-alpha (2) 1 colla-
gen peptide GEPGSVGAQGPPGPSGEEGK was synthesized (Sigma-
Aldrich, St. Louis, MO) and stock solutions were prepared in 10%
acetonitrile at 1 nmol/�l. A 1 pmol/�l stock was infused into the mass

spectrometer to determine ideal analysis conditions for the peptide as
well as to select the best fragment ion which to monitor in selected
reaction monitoring. Based on the MS/MS of this peptide, the y18

fragment was chosen as it was both the most stable and intense
fragment in the spectrum (see under “Results”). The stock solution
was diluted in 10% acentonitrile/0.1% formic acid to various concen-
trations between 50 amol/�l and 25 fmol/�l. Digested samples were
prepared such that their total concentration was 5 ng/�l. Separation
of target peptide via capillary liquid chromatography was performed
using a Dionex Ultimate 3000 nanoscale LC system. Mobile phase A
(aqueous) contained 0.1% formic acid in 5% acetonitrile, and mobile
phase B (organic) contained 0.1% formic acid in 85% acetonitrile.
Samples were trapped and desalted on-line in mobile phase A at 10
�l/min for 10 min using a Dionex PepMap 100 (300 �m � 5 mm)
column. Twenty microliters of standard as well as individual urine
samples were subsequently loaded onto a Dionex C18 PepMap 75
�m � 15 cm reversed phase column with 5% mobile phase B.
Separation was obtained by employing a gradient of 6% to 28%
mobile B at 0.300 �l/min over 30 min. The column was washed at
99% mobile phase B for 10 min, followed by a re-equilibration at
100% A for 10 min. Mass spectrometry analyses of samples were
performed using an LTQ mass spectrometer (Thermo). Positive mode
electrospray was conducted using a nanoflow sprayer, and quantita-
tive data were acquired via selected reaction monitoring mode. The
transition that was monitored was a normal scan of 897.40 m/z to
804.60 m/z, which corresponded to the 2	 charge state of the intact
peptide and its y18 fragment. On the LTQ, the product ion was
isolated at 1.6 m/z width, the ion injection time was limited to 150 ms
per microscan with one microscan, an AGC setting for the MS/MS of
1 � 104, and the data were acquired in centroid mode. Raw chro-
matograms were subsequently processed and analyzed using Xcali-
bur Quan View software version 2.0.5 (Thermo). Masses correspond-
ing to the transition state of 897.40–804.60 m/z, the retention time of
which fell within a window 
 2.5 min of the target retention time, were
extracted, and the peak are was integrated by Quan View. The peak
areas generated by the software were also manually inspected to
ensure proper integration and adjusted when necessary. Following
peak area integration, the software generated concentration curves
for the standard samples via linear regression and the endogenous
peptide from rat urine sample were plotted against this curve to
determine concentration per 100 ng of total protein.

RESULTS

Label-free Expression Analysis—The sample preparation
protocol provided sufficient protein concentrations from 400
�l of urine for label-free comparative analysis. These concen-
trations ranged from 1 �g/�l to 9.5 �g/�l. These variations are
attributed to the wide range of sample collection volumes
(1–15 ml). Reproducible protein patterns via one-dimensional
SDS-PAGE were observed across time and treatment points
(data not shown). These samples were subsequently analyzed
by LC/MS/MS. The optimized LC/MS/MS analysis described
under the “Experimental Procedures” section provided excel-
lent chromatographic reproducibility across injections. Fig. 2
highlights this reproducibility with retention times on average
deviating on the order of 
 1 min.
Data Quality Control–Prefiltering—As described under the

“Experimental Procedures” section, quality control filters were
applied to the dataset before statistical analysis. The first filter
removed diffsets for which a sequence was not obtained in
the label-free LC/MS/MS analysis. A second qualitative filter

Urinary Protein Profiles in a Rat Model for Diabetic Complications

Molecular & Cellular Proteomics 8.9 2149



was applied using the peptide identification probability score.
These filters conserved those diffsets that were assigned a
peptide sequence and a Mascot score with a good likelihood
of validation in an independent assay. Fig. 3 highlights the

threshold for Mascot score that was chosen. This threshold
separates the lower mode in the distribution of scores from
the higher mode. Peptides with scores that fell below this
cutoff were removed from the dataset. The prefiltering steps
conserved 1931 diffsets, and these were progressed to addi-
tional quality control and summarization measures. We then
summarized and collapsed those diffsets for which the same
peptide sequence was identified. One hundred and forty eight
diffsets, sharing identical sequences but separately clustered,
were summarized. This left 1783 diffsets with unique and
reliable peptide annotations and adjusted intensities that were
carried forward for further analysis. At this stage, we removed
diffsets that had more than 15 missing intensity values reduc-
ing the total number of diffsets to 1429.
Data Quality Control–Missing Values and Imputation—De-

spite these QC filtering steps, a significant number of missing
values remained in the data. Analysis of this dataset showed
that the frequency of a missing value was not dependent on
sequence length or composition as no observable correlation
was discovered when analyzing these variables (data not
shown). On the other hand, Fig. 4 highlights an inverse cor-
relation of the average peptide intensity to the number of
missing values for a peptide. A consistent trend is observed in

FIG. 2. Base peak chromatograms for label-free expression analysis. Groups presented are 2 months Control (A) and 2 months STZ-DM
(B). Excellent chromatographic reproducibility is observed (
2 min). Consistent peptide profiles in terms of relative intensities are also observed
for both groups.

FIG. 3. Scoring distribution plot for filtering of peptide scores.
Mascot peptide score (Peptide Score) versus frequency of score
(Density) is plotted. The 81 percentile cutoff, which was used to filter
peptides is highlighted by dotted line.
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which an increase in average peptide intensity yields fewer
missing data events. This was anticipated as low intensity
peptides ions are closer to the limit of detection and are
difficult to quantify from background noise. This type of miss-
ingness is referred to as Missing Not At Random (MNAR). The
total number of missing values for the 1429 diffsets was
42.3%. The imputation model described in the ”Experimental
Procedures“ section reduced the missing data to 31.6%
(�25% reduction). Because the remaining missing values typ-
ically represent undetectable true absent expression levels,
these were substituted by the minimum of the imputed values.
Subsequent to imputation, we carried out normalization proce-
dure that was applied to the intensities of the entire dataset
across all the samples, where each sample represented an
independent LC/MS/MS run. Among a variety of transformation
methods tested, the cubic smoothing splines normalization pro-

cedure achieved the best combination of normalization, vari-
ance stabilization, and normality across all samples (Fig. 5). The
normalized data were then subjected to statistical analysis.
Principal Component Analysis, Statistical Inferences, and

FDR Corrections—Potential groups and outliers among the
samples were evaluated by a PCA. Based on the PCA, three
groups stand out: the control and treatment group at 3 days
(C.3d�, ‘T.3d� ’); the two treatment groups at 1 and 2 months
(‘T.1m’, ‘T.2m’); the two control groups at 1 and 2 months
(‘C.1m’, ‘C.2m’). The treatment groups behave similarly at 1
month and 2 months with little overlap with the other control
groups (Fig. 6). This indicates that there is probably no treat-
ment effect at 3 days but there is a clear treatment effect with
a potential interaction effect at 1 and 2 months time points. No
outliers were observed.
Statistical inference of the dataset was performed using a

fixed two-way ANOVA model. Diffsets were ranked by p
value. Corrected p values, adjusted for multiple comparisons
were reported with a positive pFDRmax threshold of up to 5%.
In this design, treatment and time main effects as well as their
interaction effect can be evaluated. supplemental Tables 2, 3,
and 4 highlight the peptides that were determined as having a
significant change, including 434 peptides up- or down-reg-
ulated across all treatment comparisons, 82 up- or down-
regulated in all time comparisons and 54 up- or down-regu-
lated in all interaction comparisons. Note that a cutoff FDR
correction of 5% was applied, meaning that no more than 21,
4, and 2 of these selected peptides, respectively, are ex-
pected false positives. Overall, the majority of significant pep-
tides observed across comparisons changed with treatment.
These represent peptides/proteins the expression of which is
sensitive to STZ-induced hypoglycemia and/or drug treat-
ment. Moreover, the 2 months treatment comparison yielded
the largest number of significant changes within the treatment
groups. The volcano plots in Fig. 7 highlight the 326 peptides
observed as significant at 2 months post-STZ treatment in
comparison to 19 at 1 month (see also supplemental Tables 5,

FIG. 4. Number of missing events versus intensity for the diffset
matrix.

FIG. 5. Box plot of raw sample inten-
sities in log scale before and after cu-
bic smoothing splines normalization
by group. The summary consists of the
median, the upper and lower quartiles,
the range, and individual extreme values.
The central box in the plot represents the
inter-quartile range, which is defined as
the difference between the 75th percen-
tile and 25th percentile, i.e. the upper
and lower quartiles (the two “hinges”).
The line in the middle of the box repre-
sents the median; a measure of central
location of the data.
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6, and 7). In addition, Table I highlights the proteins that were
significant across all treatment comparisons, which met our
criteria for confirmation of protein identification as described
previously in the ”Experimental Procedures“ section. A total of
22 proteins were given a confirmed assignment with 5 of
those up-regulated and 17 down-regulated across the treat-
ment comparisons. Smaller numbers of peptides were signif-
icant with time and/or interaction in comparison to treatment.
The 82 peptides that changed with time were related to age in
this model as these rats were 12-weeks-old at the time of the
study, and we anticipated differences in some protein levels
because of maturation. The relative abundance of a few of
these proteins also changed as a function of treatment and
therefore they are identified as significant in the interaction
analysis. The interaction comparison was consistent with ob-
servations made in the treatment effect as the majority of
peptides identified as significant in the interaction effect were
found at the 2 months comparison.
SRM of Pro-Alpha (2) 1 Collagen—A single peptide of rat

pro-alpha (2) 1 collagen GEPGSVGAQGPPGPSGEEGK was
identified in the label-free expression analysis. It was ob-
served as a lower abundant peptide in the matrix with a
tentative sequence assignment and had an average retention

time of 14.5 min. Because of the biological interest and as-
sociation with disease progression as well the existence of a
homologous protein in humans, pro-alpha (2) 1 collagen was
progressed to validation in the samples via SRM analysis. The
peptide was synthetically generated and used for validation of
the identification previously made as well as development of
the SRM method. The synthetic peptide was infused into an
LTQ mass spectrometer and MS/MS conditions optimized.
The synthetic peptide fragmentation pattern was an exact
match to the endogenous peptide MS/MS acquired in the
label-free analysis thereby confirming the previous sequence
assignment. In addition, a transition of 897.40 m/z to 804.60
m/z was chosen which corresponded to the 	2 charge state
of the y18 fragment of GEPGSVGAQGPPGPSGEEGK (Fig. 8).
This transition was selected for SRM as it was the most
reproducible and intense fragment ion, comprising most of
the ion signal for the MS/MS. The synthetic peptide was
spiked into 0.1% formic acid at various concentrations (50
amol/�l, 125 amol/�l, 250 amol/�l, 500 amol/�l, 1 fmol/�l,
and 2.5 fmol/�l) to estimate limit of detection. The limit of
detection was defined as 125 amol/�l because below this
level the data was not reliable. The curve was linear for this
peptide over the concentration range selected with an r
squared value of 0.996. Potential matrix suppression issues
were evaluated by spiking the synthetic peptide standard into
rat urine at a concentration of 1 fmol/�l and comparing the
intensity response for this concentration to the intensity re-
sponse of this peptide in standard matrix (0.1% formic). After
determining limit of detection and concentration range, the
samples were subsequently analyzed. Two curves bracketed
the samples with three quality control standards consisting of
a pooled 3 day DM sample interspersed in the analysis to
ensure instrument reproducibility. The raw data was pro-
cessed, and concentrations of target peptide were calculated
for each sample per 100 �g of total urine protein. The targeted
SRM for this peptide confirmed the increase in abundance
observed in label-free analysis at the 2 months DM time point.
In addition, Fig. 9 shows the targeted assay highlighted
changes at the 1 month DM time point that were previously
undetected. This is attributed to the low intensity level for this
peptide in the label-free analysis, which may have appeared
below the signal-to-noise threshold of the peak detection
software.
Estimated Log -Fold Change for Label-free Expression

Analysis—Supplemental Tables 2–9 contain the estimated
log2-fold change (M log-ratios) for individual peptides across
effect or contrast of interest. The M log-ratios (M � log2 E1/E2)
represent a log2-FC between two or more experimental
conditions in the case of a main effect and to a difference in
log2-FC in the case of an interaction effect. For example, the
range of log2-fold change observed for significant peptides
in the 2 months treatment comparison were from 4.94 to
�9.00. These -fold changes are to be considered an ap-
proximation of the true abundance because of the data

FIG. 6. PCA plot for all samples analyzed in label-free analysis.
Variables (diffsets) contributing very little to the principle components
have small loading values and are plotted around the center of the
plot. Variables, which contribute most to distinguishing the sample
groups, are plotted around the borders of the plot. Distinct separa-
tions were observed for the control and treatment groups at 3 days
(C.3d�, ‘T.3d�); the two treatment groups at 1 and 2 months (‘T.1m,
‘T.2m’); and the 2 control groups at 1 and 2 months (‘C.1m’, ‘C.2m’).
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processing required prior to statistical analysis. Pro-alpha
(2) 1 collagen is one such example. The estimated average
log2-fold change at the 2 months comparison for this pep-
tide is 1.82, which corresponds to a 3.31-fold change; how-
ever an average increase of 3.07 was observed in the ab-
solute quantification for these animals at the same time
point.

DISCUSSION

Diabetes nephropathy accounts for the majority of cases of
ESRD diagnosed each year. Diabetic patients who progress
to ESRD have high risk of mortality and therefore early inter-
vention is important in the prevention of this disease. Unfor-
tunately, treatment is initiated only after DNP is observed
clinically with consistent protein urea in diabetic patients.
Thus, new biomarkers for diabetic nephropathy that detect
molecular and cellular changes within the kidney prior to the
onset of nephropathy could significantly impact the manage-

ment of this disease. To evaluate the utility of label-free com-
parative analysis as a proteomic tool for biomarker discovery
in DNP, we analyzed urine from the STZ experimental model
of diabetes. The expected pathophysiology for altered end
organ function because of diabetic complications in this
model typically begins post 2 months STZ treatment (63, 64).
Interestingly, we observed large expression changes at 2
months post-drug treatment as well some changes at 1
month post-drug treatment suggesting this methodology is a
sensitive technique for early detection of DNP.
As mentioned above, of the 1429 peptides that progressed

to statistical analysis, 633 had adjusted p values of 0.05 for
the treatment and/or interaction (treatment 	 time) compari-
son at one or two months post-STZ treatment. Of these, 285
down-regulated peptides were observed. The hypoinsuline-
mic state of the STZ rat may also contribute to decrease in
peptide/protein abundance observed in our study because
insulin regulates gene expression for many proteins (65). One

FIG. 7. Volcano plots of treatment effect at 1 month and 2 months. The t test volcano plots arrange peptides by statistical significance.
For each diffset, the horizontal axis represents the estimated log -fold change, and the vertical axis represents the log odds of differential
expression (B). Significant peptides are those that have the largest absolute log-fold change and the highest log odds score. Among them, the
most significant peptides are those found by ANOVA (highlighted in red (up) and green (down)) and distributed in the top right or left of the plots.
Left panel, treatment effect at 1 month. Right panel, treatment effect at 2 months.
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FIG. 8. MS/MS of infused GEPGSVGAQGPPGPSGEEGK pro-alpha (2) type 1 peptide. The x axis is m/z, and the y is relative abundance.
y(18)		 denotes the 	2 charge state of the y18 fragment at a m/z value of 804.50. This fragment corresponds to PGSVGAQGPPGPSGEEGK.

TABLE I
Significant proteins that were assigned as a confirmed identification in treatment comparisons

Adjusted p value was determined using pFDR as described in methods section. * denotes that alpha-2u globulin is the same protein as MUP
but named differently for mouse. The peptides identified for �-2u globulin are unique to that protein and represent a variant of MUP in the rat;
therefore, we have included the a2U identification in the protein list.

Protein Identification Protein description
Number of
peptides

Adju P value
range (pFDR)

Direction
of change

IPI00191711.1* Major urinary protein precursor * 23 2.07E-05-4.91E-02 DOWN
gi 736002 emb CAA55977.1 Gy 5 10 5.56E-05-4.72E-02 UP
IPI00206823.1* Alpha-2u globulin* 8 8.94E-05-1.60E-02 DOWN
IPI00188967.1 Ig kappa chain C region, A allele 3 2.35E-04-4.06E-02 UP
IPI00198021.3 Uromodulin precursor 2 6.43E-04-7.77E-03 DOWN
IPI00208410.1 Isoform 1 of Probasin precursor 3 6.78E-04-2.87E-02 DOWN
IPI00191773.1 Psbpc2 prostatic steroid-binding protein C2 precursor 4 7.67E-04-3.02E-02 DOWN
IPI00191771.1 Scgb2a2 secretoglobin family 2A member 2 precursor 2 1.23E-02-2.42E-02 DOWN
IPI00191774.1 Scgb1d2 prostatic steroid-binding protein C1 precursor 3 9.94E-03-1.22E-02 DOWN
IPI00201262.1 Mug2 Alpha-1-inhibitor 3 precursor 2 3.49E-03-9.08E-03 DOWN
IPI00205208.1 Andpro cystatin-related protein 1 precursor 6 1.66E-03-1.34E-02 DOWN
IPI00205210.1 Cystatin-related protein 2 precursor 2 4.40E-03-2.42E-02 DOWN
IPI00205275.1 Urinary protein 2 precursor 18 2.67E-03-4.56E-02 DOWN
IPI00213958.1 Prostatic spermine-binding protein precursor 2 3.95E-02-4.92E-02 DOWN
IPI00231193.3 Nerve growth factor, gamma 2 1.10E-02-1.55E-02 DOWN
IPI00392216.1 Liver regeneration protein 3 2.36E-02-3.79E-02 DOWN
IPI00779821.1 Serpin A1 3 2.32E-02-3.37E-02 UP
IPI00781465.1 Klk7_predicted 29 kDa protein 2 1.50E-02-4.87E-02 DOWN
IPI00782222.1 Pregnancy zone protein 2 1.41E-02-2.28E-02 UP
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example is major urinary protein precursor, which was one of
the most significant proteins observed in both the interaction
and treatment analyses, with 23 peptides identified and an
average adjusted p value of 3.68�03. Major urinary protein in
mature male rats accounts for 30–50% of total protein ex-
creted. The primary synthesis site for this protein is the liver,
and it is secreted into the blood. The protein is absorbed in the
kidney from plasma. It has been shown to bind a number
different hydrophobic small molecules, and its physiological
role is believed to be pheromone transport in urine (66). Insulin
deficiency in diabetic rats has been observed to trigger a

reduction of urinary output for this protein. The primary cause
of this reduction is because of the regulatory role of insulin in
major urinary protein expression (67, 68). In addition, our
urinary results are consistent with Northern blot analysis of
mRNA for this protein, which showed a significant decrease in
expression at the mRNA level. In this study, the rate of tran-
scription was decreased 10-fold with complete recovery after
treatment of insulin in the streptozotocin rat (69).
Just as decreased insulin concentrations can regulate gene

expression and corresponding protein abundance, the result-
ing high levels of circulating glucose because of hypoinsu-
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FIG. 9. Box plots of illustrating abun-
dance of pro-alpha (2) 1 collagen pep-
tide GEPGSVGAQGPPGPSGEEGK in
targeted SRM analysis (A) and label free
expression analysis (B). Maximum value
with a treatment group is represented by
blue box, median value for a treatment
group by red box, and minimum value for
a treatment group by green box. This
peptide was not detected in C 3 day, DM
3 day, or C 1 month time points in label-
free analysis therefore; red box for these
time points represents baseline imputa-
tion values. The mean and standard de-
viations (STDEV) for the SRM analysis
were the following: C 3 day (n � 1) mean
NA STDEV NA, DM 3 day (n � 3)
mean 2.5, STDEV 1.9, C 1 month (n � 2)
mean 3.1, STDEV 1.0, DM 1 month (n �
4) mean 6.2, STDEV 3.6, C 2 months
(n � 3) mean 5.8, STDEV 0.96 and DM 2
months (n � 3) mean 17.8, STDEV 11.9.
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linema can also effect gene expression and protein abun-
dance. Pro-alpha (2) 1 collagen is one such example. Its
protein abundance was increased at the 2 months time point
and was highlighted as significant in this comparison with an
adjusted p value of 0.047. In addition, SRM analysis of the
samples analyzed by label-free analysis easily detected this
peptide across all samples and confirmed the expression at 2
months post-STZ treatment as well as a potential expression
change at one month post-STZ treatment. Pro-alpha (2) 1
collagen is a precursor to type 1 collagen, which is an extra-
cellular matrix protein. It is of particular biological interest in
diabetes as expansion of the glomerular mesangial matrix
results in diffuse intercapillary sclerosis, which is the most
important structural lesion in DNP (15, 16, 70). Studies utiliz-
ing animal models suggest that increased synthesis of extra-
cellular matrix components occurs early in the progression of
the disease where high levels of glucose stimulate gene ex-
pression of these proteins (71–74). Interestingly, another pro-
tein which was observed to have increased abundance at 2
months post-STZ treatment was Ig kappa light chain. Six
peptides to this protein were identified as significant at this
time point with an average adjusted p value of 0.0058. These
results are consistent with observations made from a recent
plasma proteomic study of STZ-treated rats in which a 7.5-
fold decrease of this protein in plasma was observed in STZ-
treated rat (75). Moreover, increased urinary excretion of this
protein in patients with DM has been observed (76). Increased
levels of Ig kappa light chain in plasma and its subsequent
increase in urine may be of significant importance in the
accumulation of extracellular matrix protein in DNP. Studies of
other glomerular-associated diseases suggest a pathophysi-
ological role of immunoglobulins in DNP. One example is
myeloma-mediated monoclonal Ig deposition disease (MIDD).
Myeloma results in increased plasma levels of Ig kappa, which
subsequently is lodged in the kidney and leads to MIDD (77).
MIDD is a disease in which kidney deposition of Ig subunits
induces an accumulation of extracellular matrix protein result-
ing in structural lesions that are similar to those found in DNP
(78). The similarity of glomerular lesions associated with DNP
and those derived from myeloma MIDD suggest a common
pathophysiological role of immunoglobulins in the develop-
ment of DNP.
In this study, we have utilized label-free protein expression

to study protein changes in urine in the streptozotocin model
of diabetes. To the best of our knowledge, this work repre-
sents the first application of label-free expression to detect
urinary protein changes from diabetic complications. We have
successfully identified a number of protein changes specific
to STZ treatment that occur early in the development of DNP.
These represent potential markers of DNP that may assist in
the diagnosis, treatment, and prevention of this complication.
It should be noted that there are limitations of the STZ-rat
model of experimental diabetes as no single experimental
preparation is an ideal animal model for diabetes in humans.

In addition, some of the proteins identified in this study may
not have human orthologs and therefore will not be suitable
human targets. However, this analysis can be used to direct
additional discovery efforts in human samples to confirm pro-
tein observations made in this study as well as identify novel
human biomarker candidates as the techniques developed
here can be easily translated to a human analysis.
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