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A dynamical systems model of
progesterone receptor interactions with
inflammation in human parturition
Douglas Brubaker1, Alethea Barbaro2, Mark R. Chance1 and Sam Mesiano3*

Abstract

Background: Progesterone promotes uterine relaxation and is essential for the maintenance of pregnancy.
Withdrawal of progesterone activity and increased inflammation within the uterine tissues are key triggers for
parturition. Progesterone actions in myometrial cells are mediated by two progesterone receptor (PR) isoforms, PR-A
and PR-B, that function as ligand-activated transcription factors. PR-B mediates relaxatory actions of progesterone, in
part, by decreasing myometrial cell responsiveness to pro-inflammatory stimuli. These same pro-inflammatory stimuli
promote the expression of PR-A which inhibits the anti-inflammatory activity of PR-B. Competitive interaction
between the progesterone receptors then augments myometrial responsiveness to pro-inflammatory stimuli. The
interaction between PR-B transcriptional activity and inflammation in the pregnancy myometrium is examined using
a dynamical systems model in which quiescence and labor are represented as phase-space equilibrium points. Our
model shows that PR-B transcriptional activity and the inflammatory load determine the stability of the quiescent and
laboring phenotypes. The model is tested using published transcriptome datasets describing the mRNA abundances
in the myometrium before and after the onset of labor at term. Surrogate transcripts were selected to reflect PR-B
transcriptional activity and inflammation status.

Results: The model coupling PR-B activity and inflammation predicts contractile status (i.e., laboring or quiescent)
with high precision and recall and outperforms uncoupled single and two-gene classifiers. Linear stability analysis
shows that phase space bifurcations exist in our model that may reflect the phenotypic states of the pregnancy uterus.
The model describes a possible tipping point for the transition of the quiescent to the contractile laboring phenotype.

Conclusions: Our model describes the functional interaction between the PR-A:PR-B hypothesis and tissue level
inflammation in the pregnancy uterus and is a first step in more sophisticated dynamical systems modeling of human
partition. The model explains observed biochemical dynamics and as such will be useful for the development of a
range of systems-based models using emerging data to predict preterm birth and identify strategies for its prevention.

Keywords: Myometrium, Progesterone receptor, Inflammation, Parturition, Dynamical systems

Background
Preterm birth (PTB) causes the majority of neonatal mor-
tality and morbidity and is a major public health and
socioeconomic problemworldwide [1, 2]. To prevent PTB,
a clear understanding is needed of the hormonal inter-
actions and signaling pathways that control the uterine
contractile state. For most of pregnancy the myometrium
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(uterine muscle) is maintained in a relaxed and quiescent
state to accommodate the growing conceptus. Parturi-
tion is initiated by a dramatic phenotypic transforma-
tion of the myometrium to the laboring state wherein it
becomes the rhythmically contracting engine for birth. It
is generally considered that the contractile state of the
myometrium is controlled by the balance between the
relaxatory influences of the steroid hormone progesterone
and pro-labor stimuli, especially tissue-level inflammatory
stimuli within the myometrium [6]. Progesterone is essen-
tial for the establishment and maintenance of pregnancy
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and its withdrawal is the principle trigger for parturition
[3–7]. Multiple studies support the concept that parturi-
tion is associated with increased tissue-level inflammation
within the myometrium, decidua, and cervix [8–10].
Actions of progesterone in myometrial cells are medi-

ated by two progesterone receptor (PR) isoforms, desig-
nated PR-A and PR-B, that function as ligand activated
transcription factors with PR-B exhibiting stronger tran-
scriptional activity than PR-A. In vitro studies show that
PR-A acts as a repressor of progesterone responsiveness
by inhibiting the transcriptional activity of PR-B at certain
promoters [11–13]. In most species progesterone with-
drawal occurs by a decrease in circulating progesterone
levels [14–18]. Human parturition occurs without sys-
temic progesterone withdrawal, and instead is thought
to involve decreased responsiveness of the myometrial
cell to PR mediated progesterone actions resulting in a
functional progesterone withdrawal [8, 19].
Previous studies have shown that most of human

pregnancy, progesterone via PR-B promotes uterine qui-
escence, in part by inhibiting the responsiveness of
myometrial cells to pro-inflammatory stimuli and pre-
venting tissue level inflammation, and that functional pro-
gesterone withdrawal at parturition is caused by increased
PR-A-mediated trans-repression of PR-B [8, 19, 20]. As
pregnancy advances, the capacity for PR-B to mediate
relaxatory and anti-inflammatory actions of progesterone
on the pregnancymyometrium decreases due to increased
repression by PR-A [20]. Interestingly, the amount and
transrepressive activity of PR-A in myometrial cells is
increased by pro-inflammatory stimuli suggesting a causal
link between inflammation and PR-A-mediated func-
tional progesterone withdrawal [21]. Thus, our working
model for functional progesterone withdrawal in the con-
trol of human parturition posits that PR-B-mediated pro-
gesterone actions in the myometrium gradually decreases
with advancing gestation in response to gradual increases
in PR-A in response to increased inflammatory load. This
mechanism is referred to as the PR-A:PR-B hypothesis for
functional progesterone withdrawal [8, 20, 22].
Dynamical systems modeling uses fixed rules to

describe the behavior of a system as its interacting compo-
nents change with time. This framework has been used to
examine the temporal activity of multiple biological sys-
tems including epidemics [23], predator-prey population
interactions [24], chemical kinetics, protein phosphory-
lation, and cell signaling pathways [25, 26]. When the
mechanism underlying the dynamics of a system is not
well understood, a dynamical systems model can be use-
ful for determining whether a particular a particular set of
hypotheses that underly the model constitute a plausible
mechanism by examining if the predictions of that model
are borne out by the data. For all these reasons, dynam-
ical systems are well suited for modeling the process of

parturition where the myometrium undergoes a dramatic
phenotypic bifurcation as it changes from the quiescent
to laboring phenotype and the precise mechanism for this
transformation is not yet known.
Herein we present a dynamical systems model consis-

tent with the PR-A:PR-B hypothesis that links PR-B activ-
ity and inflammatory status in the myometrium at term.
PR-B and inflammation were each modeled with a differ-
ential equation describing their activation and generation
rates, their limiting behavior, and how they interact in
association with the onset of labor. The model was robust
when tested using published transcriptome datasets from
quiescent and laboring myometrium and predicted con-
tractile status (i.e, laboring or quiescent) with high pre-
cision using a novel classifier developed from the model.
This simple model is a first step in producing patient spe-
cific pregnancy trajectories to predict the onset of labor
and provides a framework to clinically assess women at
risk of preterm birth.

Methods
Model definition
Ahost of experimental data has been collected which links
PR-A, PR-B, and inflammatory drivers in the pregnancy
uterus [7, 8, 20–22, 27, 32]. We translated the principles of
the PR-A:PR-B hypothesis into equations which could be
used to mathematically explore the dynamics and consis-
tency of the biological hypothesis of how the progesterone
receptors interact with inflammation during pregnancy.
In essence, the PR-A:PR-B hypothesis describes a stan-
dard competitive interaction between the pro-pregnancy
actions of PR-B and the pro-labor actions of PR-A where
the activity of PR-A is related to the level of inflammation
in the myometrium. As such, we chose to consider only
PR-B and inflammation and incorporated the effects of
PR-A into the inflammatory terms of the model (Fig. 1a).
Two coupled differential equations were used to model

the change in transcriptionally active PR-B over time, dB̂
dt ,

and the change of inflammation over time, dÎ
dt , as a func-

tion of the growth and depletion of each parameter and
interactions between parameters. The equations we pro-
pose to model the transcriptional activity of PR-B and
inflammation status are

dB̂
dt

= b̂B̂
(
1 − B̂

Bc

)
− k1B̂Î,

dÎ
dt

= îÎ
(
1 − Î

Ic

)
− k2B̂Î. (1)

The growth of PR-B and inflammation is modeled by the
terms b̂B̂(1 − B̂

Bc ) and îÎ(1 − Î
Ic ) respectively. These terms

imply that the levels of PR-B and inflammation increase
in the presence of PR-B, B̂, and inflammation, Î, at rates b̂
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Fig. 1Model Definition and Properties. a Setup of the competitive interaction model between PR-B and inflammation where each variable has a
growth term and acts to inhibit and deplete the other. b A setting of the phase space when k > i and b = 0.5 where probability of labor is equal to
0.5 indicated by the shaded region, the basin of attraction, about the laboring equilibrium point. c A setting of the phase space when k = i where
regardless of the value of b the probability of labor is equal to 1. The blue and orange lines are the null clines and correspond to the lines produced
when we set dB

dτ = 0 and dI
dτ =0. d The dependence of the probability of labor upon the parameter values b and i for a k fixed at 1 and the model

used to make predictions

and î respectively. The terms (1− B̂
Bc ) and (1− Î

Ic ), impose
a maximum or critical value on the level of PR-B and
inflammation. At any given time, there is a finite level of
PR-B induced activation of the transcriptional machinery.
This critical level of PR-B is represented by the parameter
Bc. Analogously, there is some saturable level of inflamma-
tory drivers active in a myometrial cell, represented by the
parameter Ic. The growth terms b̂B̂ and îÎ in the equations
for PR-B and inflammation will themselves increase in size
as the amount of PR-B and inflammation increase, but in
a way that is limited by the critical values for PR-B and
inflammation. If B̂ = Bc or Î = Ic, the limiting terms in
parenthesis equal zero which causes the growth term to
equal zero.

The depletion of PR-B and inflammation is modeled by
the terms after the negative sign, namely k1B̂Î and k2B̂Î.
Qualitatively, this means that the rate of depletion of PR-B
is the product of B̂, Î, and a rate constant k1. The deple-
tion of inflammation follows the same behavior with a
different rate constant k2. The value of k1 accounts for
the relative amount of PR-B to repress inflammation and
k2 accounts for the relative impact of inflammation on
PR-B activity. While we know that the phenomenon of
PR-B repression of inflammation occurs, the exact mecha-
nism for this repressive activity is not well understood. By
allowing for k1 and k2 to take on different values relative
to one another, we are able to explore multiple possible
models for PR-B repression of inflammation.
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Model nondimensionalization and simplification
Nondimentionalization is a tool for simplifying our model
whereby the six parameters in our model, k1, k2,Bc, Ic, î,
and b̂, are replaced with three dimensionless con-
stants (For full derivation of the dimensionless model
see Appendix). While this can make it difficult to pinpoint
the influence of individual parameters on the system’s
behavior, since we only have six parameters in our model,
unpacking the influence of particular dimensionless con-
stants is straightforward. The units for Î, B̂, Bc, and Ic are
the amount of PR-B or inflammation present, similar to a
concentration. Time t is given in weeks. The rate constants
î and b̂ are in units 1

weeks while the rate constants k1 and k2
are in units 1

concentration∗weeks . We define three dimension-
less variables for our model, B = B̂

Bc , I = Î
Ic , and τ = tk1Ic.

Substituting these for B̂, Î, and t yields the model,

dB
dτ

= bB(1 − B) − BI,
dI
dτ

= iI(1 − I) − kBI, (2)

where b = b̂
Ick1 , i = î

Ick1 , and k = Bck2
Ick1 .

Determining parameter values from transcriptome data
We obtained data from two published studies which
examined transcriptional changes in the myometrium
(obtained at the time of cesarean section delivery) of
women who were not in labor (NIL: closed and rigid
cervix and no indication of uterine contractions) and in
labor (IL: cervix dilated > 4 cm and rhythmic contrac-
tions). One study [28] in which transcriptome analysis was
performed by microarray technology (henceforth referred
to as the microarray dataset or microarray data) com-
prised 3 myometrial samples from NIL women at term
(>37 weeks gestation), 3 samples from IL women at term,
and 3 samples from IL women undergoing preterm (<37
weeks gestation) cesarean section delivery. Some confu-
sion has emerged since publication about whether one of
the term IL samples was truly in labor. We excluded this
sample for our analysis of this dataset and combined the
preterm and term IL samples into one IL group. The other
study [29] used RNA sequencing (henceforth referred to
as the RNAseq dataset or RNAseq data) of myometrium
from 5NIL women and 5 IL women at term. Both datasets
collected independent, non-paired samples, comprising a
total cohort of 18 unique samples (10 IL, 8 NIL).
We infer the activity of PR-B and pro-inflammatory

drivers with two PR-B responsive genes to serve as surro-
gates for PR-B, FOXO1A and FKBP5 [20, 30], and three
pro-inflammatory genes to serve as surrogates for inflam-
mation, IL-1β , IL-6 and IL-8 [31]. Although there may
be more genes associated with PR-B and inflammatory
response in the myometrium, a fully curated gene set
does not exist for inferring the full set of transcriptome
changes induced by PR-B and inflammation. Therefore,

we focussed on a targeted set of well studied myometrium
specific genes for inferring the activity of PR-B and inflam-
mation in the model. The normalized values of the data
for these genes Nj, are calculated using the equation,Nj =
Gj−m
M−m , where Gj is the value of the gene for patient j, M
is the maximum expression value for that gene across
patients in the dataset, and m is the minimum value of
that gene across patients in the dataset. One consequence
of this normalization procedure is that the transcriptome
data has been nondimensionalized enabling integration
of the dimensionless trascriptome data with the dimen-
sionless constants. In this formulation the values of the
surrogate genes parameterize the dimensionless model for
each patient.
The normalization equation bounds the values for the

PR-B and inflammation surrogates from 0 to 1 and makes
the natural choice of values for critical levels of PR-B and
inflammation Bc = Ic = 1. We then assign the values
of b and i using the normalized dimensionless values for
the PR-B and inflammatory surrogate genes respectively
and the value of k corresponds to the strength of PR-
B’s anti-inflammatory actions. The values of b and i are
determined by the normalized intensity of one of the PR-
B and one of the inflammatory surrogate genes from the
mRNA expression studies [28, 29] and there are six pos-
sible combinations of values for b and i depending upon
which inflammatory and PR-B surrogate genes are cho-
sen. Thus, for a particular patient, the values of b and i are
determined by the normalized expression intensity from
the RNA-seq or microarray study for one pair PR-B and
inflammatory surrogate genes.

Calculating the probability of labor for each patient
Next, we quantify the behavior of k in order to apply our
model to patient data. To do this, we have to derive the
steady state solutions for our model. These solutions are
the values of B and I which cause dB

dτ
= dI

dτ
= 0 and cor-

respond to a state where the system undergoes no change.
There are four steady states, also known as equilibrium
points. These occur when the ordered pair for PR-B and
inflammation, (B∗, I∗), is equal to, (0, 0), (1, 0), (0, 1),
and

(
i(1−b)
k−ib , b(k−i)

k−ib

)
=

(
i2b(1−k)−ik(1−b)

k(bi−k) , kb(i−1)
bi−k

)
. Of these,

(0,0) is the trivial equilibrium point where neither PR-B
nor inflammation is present, (1,0) is the quiescent equilib-
rium where PR-B is maximal and there is no inflamma-
tion, and (0,1) is the laboring equilibriumwhere there is no
PR-B and inflammation is maximal. The quiescent equi-
librium correspond to a PR-B dominant state and laboring
equilibrium corresponds to an inflammatory dominant
state. The fourth equilibrium point, the intermediate equi-
librium, exists only for certain values of b and i between
the quiescent and laboring equilibrium (For full derivation
of equilibrium points see Appendix).
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Since the values of b and i are determined by PR-B and
inflammatory surrogate genes scaled from 0 to 1, these
terms are bounded to that interval. Furthermore, since B
and I are bounded by Bc = 1 and Ic = 1, B∗ and I∗ are
bounded to the square domain with vertices (0, 0), (0, 1),
(1, 1), and (1, 0) and area 1. So, the intermediate equilib-
rium point, in both forms, should satisfy the constraints
0 ≤ B∗ ≤ 1 and 0 ≤ I∗ ≤ 1. By considering how this
constraint impacts both forms of the intermediate equi-
librium we can derive a set of constraints for the values of
k. In order to allow for the full range of values of i, we find
that i and k satisfy 0 ≤ i < k ≤ 1.
In the limit in the case where i = k, the intermediate

equilibrium point equals the quiescent equilibrium point
(1, 0). If we visualize this state in phase space (Fig. 1b) we
see that all the vectors point away from the quiescent equi-
librium point toward the laboring equilibrium. In phase
space, these vectors define trajectories that indicate how
the system would evolve in time given a certain starting
point. The set of vectors pointing toward the laboring
equilibrium point is known as the basin of attraction for
the laboring equilibrium point.
We compute a probability of labor equal to the area of

the laboring equilibrium point’s basin of attraction divided
by the area of the domain, which in our case is 1. The area
of the basin changes as k, i, and b change. This probabilis-
tic interpretation of a phase space is reasonable under the
assumptions that all possible pairs of values of B and I in
the domain occur with equal likelihood. While it is clear
that in a physiological context there are values of B and I
that are more likely at different time points in pregnancy,
since this information is not readily available our assump-
tion of uniformity enables us to compute the probabilities
in the most agnostic way possible. Given more informa-
tion about the distribution of B and I over the course of
pregnancy, it could be possible to get a more precise esti-
mate of the probability of labor, but such an extension is
not possible at this t.
For example, in the case where k = i and b is fixed at 0.5,

the probability of labor is equal to 1, the entire domain is
the basin of attraction for the laboring equilibrium, which
means that quiescence is impossible (Fig. 1c). In order to
ensure that quiescence is a possibility, we set k = 1 so that
only one value of i, i = 1, results in a probability of labor
equal to 1, enabling us to explore the full range of values
for b and i. With k fixed, we can plot the dependence of the
probability of labor upon the values of b and i in a surface
upon which all patients must fall given a value for PR-B
and inflammatory activity. Thus, the model we apply to
patient data is

dB
dτ

= bB(1 − B) − BI,
dI
dτ

= iI(1 − I) − BI. (3)

Each patient in the microarray and RNA-seq datasets
has an expression value for each of the surrogate genes,
FOXO1A, FKBP5, IL-1β , IL-6 and IL-8. In the absence
of proteomic data precisely quantifying the protein level
activity of these genes in vivo the mRNA expression levels
can be combined with the framework of our mathemati-
cal model to approximate the functional activity of these
genes at the time of labor, i.e. using FOXO1A or FKBP5
for PR-B and IL-1β , IL-6, or IL-8 for inflammation. We
calculated a probability of labor for each patient in each
dataset using all six possible combinations of surrogate
genes (FOXO1A, IL-1β), (FKBP5, IL-1β), (FOXO1A, IL-
6), (FKBP5, IL-6), (FOXO1A, IL-8), and (FKBP5, IL-8)
where each surrogate was used to set the parameters b and
i in ourmodel.Wewill hereafter refer to a pair of surrogate
genes as a predictor. A probability of labor was computed
for each patient which corresponds to the size of the basin
of attraction for the laboring equilibrium point given a
predictor pair of surrogate genes for b and i.

Classifier construction and assessment
After normalization within platform cohort, half of the
IL and NIL samples from the total cohort of 18 were
randomly selected as a training dataset to construct a clas-
sifier from five IL and four NIL samples. Probabilities of
labor were calculated for each of the samples using a pair
of predictor genes, one PR-B responsive and one inflam-
matory responsive, to value the parameters b and i in
the model. Two nonparametric 95 % confidence intervals
were computed for the the probabilities of labor for the
NIL and IL samples. These intervals about the medians of
the NIL and IL samples constituted the NIL and IL clas-
sifiers. If the intervals did not separate, then we discarded
that classifier.
We assessed performance of successful classifiers by

computing the probabilities of labor for the remaining
nine samples using the same predictor genes. The nine
samples in this test set of data were classified as IL, NIL,
or a no-call depending on whether a sample’s probability
fell into the training set confidence interval for IL, NIL, or
somewhere in between. Precision and recall metrics were
used to assess the classifier defined as

precision = correctly classified samples
total classified samples

recall = classified samples
total samples

. (4)

This procedure of creating classifiers with training sam-
ples and predicting phenotypes for test samples was
repeated for all 17,640 possible combinations of sam-
ples from the microarray and RNA-seq datasets. For
each combination, classifier performance was assessed for
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probabilities of labor calculated from each of all six combi-
nations of PR-B (FOXO1A, FKBP5) and inflammatory (IL-
1β , IL-6, and IL-8) responsive genes. Precision and recall
metrics for each classifier were aggregated into an average
F-score and the proportion of successful classifiers out of
17,640 possible classifiers were computed. These metrics
assessed how the selection of samples for the training set
influenced i) classifier performance sensitivity and ii) clas-
sifier construction sensitivity. The equations for F-score
and classifier success rate (CSR) are

F-score = 2 ∗ precision ∗ recall
precision + recall

CSR = constructed classifiers
17, 640

. (5)

These 105,840 model classifiers (17,640 training set
combinations× 6 combinations of model predictor genes)
were compared to two types of null classifiers. We con-
structed single and two-gene null classifiers for each of
the 17,640 combinations of samples using the normalized
expression values of the raw datasets. The single gene null
classifiers were built by constructing 95 % nonparametric
confidence intervals for the IL and NIL training samples
on the normalized expression values for the individual
genes. The two-gene null classifiers were constructed by
defining a two dimensional confidence region for the two
predictor genes for the NIL and IL training samples. Preci-
sion, recall, F-score, and CSR metrics were calculated for
all 264,600 null classifiers (17,640 training set combina-
tions x 15 one or two-gene null classifiers) and compared
to the model classifiers to assess i) the relative perfor-
mance of the single and two-gene null classifiers and ii)
the performance of our model’s two-gene classifier to the
null two-gene classifiers. A full workflow of this approach
can be found in Fig. 2.

Results and discussion
Model results
The model has four equilibrium solutions, i.e. values for
(B, I) pairs such that dB

dτ
= dI

dτ
= 0. At these values ofB and

I, namely (0, 0), (1, 0), (0, 1), and
(
i(1−b)
k−ib , b(k−i)

k−ib

)
, the levels

of PR-B and inflammation will remain constant. Each of
these solutions corresponds to a physiological condition
in the myometrium and the solutions can be stable, where
the trajectories in the phase space in the neighborhood
of the equilibrium point toward it, or unstable, where the
trajectories in the neighborhood of the equilibrium point
away from it.
The values of the parameters in the model influence

the size of the basin of attraction for the labor equilib-
rium point and alter the stability of the equilibrium points.
A tipping point exists in our model, where the quies-
cent equilibrium point transitions from stable to unstable

and the phase space becomes completely biased toward
the laboring equilibrium point. This change in stability is
called a bifurcation and linear stability analysis allows us
to compute the exact parameter values which will cause
the stability to change. The end result of this analysis is
a quantitative prediction for the tipping point of labor,
the conditions under which the myometrial cell is per-
manently in the laboring phenotype leading to uterine
emptying.
The point (0, 0) corresponds to a myometrial cell that

is not expressing any PR-B and has no inflammation. The
solution (1,0) is the quiescent equilibrium corresponding
to a physiological state where PR-B is at its maximal level
with no inflammation. The solution (0, 1) is the labor-
ing equilibrium where inflammation is maximized and no
PR-B is present. The last solution corresponds to an inter-
mediate point between quiescent and laboring where the
myometrial cell can pass into either phenotype.
In order to characterize the stability of these equilib-

rium solutions, we need to solve for the eigenvalues, λ1
and λ2 , of themodel at each equilibrium point. The sign of
the eigenvalues, positive or negative, determines the sta-
bility and the formula for each eigenvalue tells us whether
the eigenvalues can ever change sign. The eigenvalues are
found by solving the characteristic polynomial equation of
the Jacobianmatrix,J . By applying the quadratic formula,
we can obtain an expression for both λ1 and λ2

λ1 =
−β +

√(
β2 − 4γ

)
2

λ2 =
−β −

√(
β2 − 4γ

)
2

(6)

where β = 2(bB∗ + iI∗) + kB∗ + I∗ − (i + b) and
γ = ib(1 − 2I∗ − 2B∗ + 4B∗I∗) + bB∗(−k + 2kB∗) + iI∗
(2I∗ − 1) + I∗B∗(k − 1). More details on the derivation of
the eigenvalues can be found in the Appendix.
The sign of λ1 and λ2 determine the type and stability

of each equilibrium point (Table 1). The trivial equilib-
rium, (0,0), has two positive, real eigenvalues for all values
of b and i, indicating it is always unstable and can be
classified as a source node. Physiologically, a myometrial
cell in this state is not exposed to inflammatory stimuli
and is not expressing PR-B. This state cannot endure long
and like the equilibrium point is unstable. The quiescent
and laboring equilibria have two real, negative eigenvalues
each and are thus stable sink nodes. Both of these are sta-
ble so long as both b < 1 and i < 1. The intermediate
equilibrium point allows us to identify the tipping point
as i and b change. This equilibrium has two real eigenval-
ues, one positive and one negative, thus the intermediate
equilibrium is a semi-stable saddle node.
The formula for the eigenvalues of the intermediate

equilibrium indicates that three bifurcations are possible
as i and b change. Firstly, if i = 1 and b ≤ 1 or if k ≤ i,
then the quiescent equilibrium has one negative and one
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Fig. 2 Classifier Construction and Assessment Workflow. A training set of half the IL and NIL samples was randomly sampled from our cohort of 18
myometrium samples. Probabilities of labor were computed for six combinations of predictor genes. 21 total classifiers were constructed for a
particular combination of patients including five single gene null classifiers, 10 two-gene null classifiers, and six model classifiers. Performance of all
classifiers was assessed by precision and recall metrics. All possible combinations of patient samples were assessed for classifier construction and
overall performance metrics of the 21 classifiers were aggregated into average F-scores and classifier success rate (CSR)

Table 1 Equilibrium solution stability conditions

Equilibrium Trivial: (0, 0) Quiescent: (1, 0) Laboring: (0, 1) Intermediate:
(
i(1−b)
k−ib , b(k−i)

k−ib

)
Eigenvalues (λ1, λ2) (b, i) (i − k,−b) (b − 1,−i)

(
−β+

√
(β2−4γ )

2 , −β−
√

(β2−4γ )

2

)
Stability Unstable Stable Stable Unstable

Condition b > 0 and i > 0 (i < k, b > 0) (b < 1, i > 0) b > 0 and i > 0
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zero eigenvalue. In this case, the intermediate equilibrium
point has moved through the phase space to collide with
the quiescent equilibrium (Fig. 3). When these two equi-
librium points combine, the quiescent equilibrium point
changes from stable, where all temporal trajectories in
the neighborhood of the equilibrium pointing toward it,
to unstable with all the trajectories pointing away from
the equilibrium point. This first bifurcation, the colli-
sion of the intermediate equilibrium with the quiescent
equilibrium, corresponds to the physiological condition
when the myometrium moves from quiescent to laboring.
This condition corresponds to a probability of labor equal
to one.
The converse of this is the second bifurcation that

occurs when the intermediate equilibrium point collides
with the laboring equilibrium point and the probability
of labor is zero. This occurs when b = 1 and i ≤ 1,
and results in a bifurcation where the laboring equilib-
rium point changes from stable to unstable. Physiologi-
cally this could correspond to a therapeutic intervention
that preserves quiescence and prevents labor. Simulat-
ing therapeutic modulation of biomarkers that deter-
mine b and i could provide insight into what genes to
modulate and what effect size is required to preserve
quiescence.
When k = bi, the intermediate equilibrium becomes a

singularity and is non-physiological. The third bifurcation
occurs when b and i are both zero and the intermediate

equilibrium collides with the trivial equilibrium point
(Fig. 3). This third bifurcation may have physiological
significance in the transition of the myometrial cell from
non-pregnant to pregnant as inflammation and PR-B
transition from inactive to active in the pregnancy uterus.
However, since our model is based upon the activity of
PR-B and inflammatory drivers during pregnancy, this
bifurcation, though interesting, is beyond the scope of the
present investigation.
The dynamical systems model was designed to explore

the functional interaction between the anti-inflammatory
actions of progesterone mediated by PR-B and the effect
of inflammatory load on the contractile state of the human
pregnancy uterus. In addition we sought to identify the
conditions that induce a bifurcation in the model sim-
ilar to the one that occurs when the uterus transitions
to the laboring state. The dimensionless version of our
model simplifies this task by enabling us to identify how
changes in the three dimensionless parameters, b, i, and
k, influence the trajectory of a hypothetical pregnancy
phase space. The underlying rationale was that bifurca-
tions correspond to physiologically important events in
the timeline of pregnancy representing uterine quiescence
and its transition to the laboring state. The interaction
between the dimensionless model parameters i and k
appears to be the most significant for initiating the labor
bifurcation. The meaning of this interaction is that as long
as the repressive capacity of PR-B, k, is greater than the

Fig. 3 Phase Space Bifurcation Dynamics. Simulations of the three possible bifurcations in the PR-B/inflammation model The pro-labor bifurcation
occurs as i approaches 1, or b approaches 0, or k approaches 0. The non pregnant to pregnant bifurcation occurs as b and i simultaneously
approach 0. The pro-pregnancy bifurcation occurs as i approaches 0 or b approaches 1
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activation rate of inflammation, i, quiescence will bemain-
tained. This finding supports the PR-A:PR-B hypothesis
since it recapitulates the important role of PR-B-mediated
anti-inflammatory activity and shows how interference of
this function, possibly by PR-A, destabilizes quiescence in
favor of labor. Though we fixed k in the present analy-
sis, we hypothesize that the level of k relative to i and b
may be reflective of the trans-repressive activity of PR-A
on PR-B. The phase space dynamics of modulating k seem
to support this with higher values of k producing lower
probabilities of labor and may be an interesting avenue for
further investigation.

Predictive modeling of parturition datasets
We next applied the dimensionless version of our model
with k = 1 in Eq. 3 to predict the onset of labor in a
cohort of 18 patient samples from myometrial transcrip-
tome studies. Given a value of (b, i) for a particular patient,
the model’s phase space reflects the state of the pregnancy
myometrium for that particular patient. Interpreting the
phase space as a probability means that we have a met-
ric for predicting the likelihood of the patient going into
labor. It is now possible to test the predictive power of
particular sets of biomarkers for predicting the laboring
phenotype by assigning the values of b and i based on the
values of molecular markers of PR-B activity and inflam-
mation. We can also assess the gain in robustness and
predictive power of labor classifiers by comparing the per-
formance of our model’s 105,840 possible classifiers gainst
the 264,600 possible one and two-gene null classifiers built
with the normalized gene expression data.
In the case of the single gene null classifiers, the inflam-

matory surrogates all performed very well with average
F-scores above 0.70 (Table 2). However, in the case of IL-
6 only 61 % of the combinations of training samples could
successfully build a classifier and the best performing
classifier IL-1β only had a 30 % success rate for classi-
fier construction. The two-gene null classifiers had much
higher success rates for construction classifiers, but rarely
performed better than a random chance since most F-
scores were around 0.50 (Table 2). In the case of building
classifiers from gene expression data alone, the single gene
models generally outperform the two-gene models, but
the two-gene models are more robust against choice of
training samples for building a classifier.
We see stronger classifier performance and success rates

when the gene expression data is considered in the con-
text of our dynamical systems model using the probability
of labor. All classifiers built with the inflammatory sur-
rogate genes IL-6 and IL-1β had a 100 % success rate in
classifier construction (Table 3). Further, these classifiers
all had average F-scores above 0.77 with the combina-
tion of FKBP5 and IL-1β begin the strongest. The model’s
IL-6 and IL-1β classifiers outperformed all two-gene null

Table 2 Performance of of the null classifiers

Predictor Average F-score Classifier success rate

IL-6 0.74 0.61

IL-8 0.80 0.04

IL-1β 0.89 0.30

FKBP5 0.46 0.14

FOXO1A 0.12 0.03

IL-6-IL-8 0.39 0.74

IL-6-IL-1β 0.52 0.91

IL-6-FKBP5 0.59 0.92

IL-6-FOXO1A 0.52 0.91

IL-8-IL-1β 0.36 0.58

IL-8-FKBP5 0.48 0.94

IL-8-FOXO1A 0.52 0.94

IL-1β-FKBP5 0.49 0.87

IL-1β-FOXO1A 0.51 0.91

FKBP5-FOXO1A 0.42 0.90

classifiers in both average F-score and CSR. Though the
IL-8 and IL-1β single gene null classifiers have higher
average F-scores than our model classifiers, the low pro-
portion of successful classifiers for both genes shows that
these classifiers are extremely sensitive to changes in the
training sample set. As such, the single gene classifiers are
unreliable as biomarkers for labor.
Identifying the specific inflammatory drivers that

induce labor is an important step in identifying upstream
and downstream therapeutic targets to delay the onset
of premature labor. Interestingly, each of the inflamma-
tory surrogate genes we used to construct our model’s
classifiers has a subtly different biological function in the
pregnancy uterus. IL-8 functions as a chemokine, draw-
ing neutrophils and macrophages to tissues where it is
expressed [32]. The lack of phenotypic predictability by
IL-8, even when paired with a PR-B surrogate, may suggest
that IL-8 does not play an important role in the inflam-
matory process of labor. In contrast IL-1β and IL-6 [32]
performed well as classifiers in our model when paired
with PR-B surrogates, suggesting that the inflammatory

Table 3 Performance of of the model classifiers

Predictor Average F-score Classifier success rate

IL-6-FKBP5 0.83 1.00

IL-6-FOXO1A 0.77 1.00

IL-8-FKBP5 0.63 0.14

IL-8-FOXO1A 0.68 0.27

IL-1β-FKBP5 0.84 1.00

IL-1β-FOXO1A 0.82 1.00
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processes associated with these genes are more impor-
tant for labor onset than those of IL-8. In particular, IL-6
is a cytokine that plays an important role in both the
canonical and non canonical JAK-STAT signaling pathway
[33, 34], a pathway that may integrate effects of circulating
and local myometrial cytokines. Recent work examining
IL-6 as a blood-based biomarker for labor [35] provides
further evidence that understanding and modeling this
cytokine in the myometrium could be key to elucidating
the driver pathways of labor.
The small sample sizes in the transcriptome datasets

(N = 18) cause us to exercise caution in the data analysis.
The nonparametric methods of constructing confidence
intervals and testing the separation of the NIL and IL
groups are less powerful than comparable parametric test-
ing, but were ultimately more appropriate due to their
resistance to outliers, non normality of the data, and small
sample size. Our approach of bootstrapping a distribution
of classifiers and performance metrics allowed us to over-
come the limitations of our cohort size and systematically
test 370,440 classifiers and assess the performance of our
model in a variety of contexts.
The present investigation of the predictive power of our

model was limited by the availability of in vivo temporal
data for the activity of PR-B and inflammation in the con-
text of the pregnancy myometrium. If there were blood-
borne biomarkers that could be used to infer the activity
of these quantities, then it would be possible to test the
application of our model in a clinical context modeling
and predicting the pregnancy trajectories of actual women
by measuring two biomarkers, one for PR-B and one for
inflammation. This work is the first step in that direc-
tion by using transcriptome data from the myometrium to
train a predictive model and demonstrate that our model
provides the mechanistic hypothesis and framework to
increase the predictive power of gene expression data.

Conclusions
This mathematical model of the PR-A:PR-B hypothesis of
human parturition produces qualitative dynamics which
mimic those observed in vitro and in vivo. A novel inter-
pretation of the phase space of a dynamical system as a
probability space enables predictive modeling of all pos-
sible phenotypic states of the pregnancy myometrium in
a patient specific manner. Predictive modeling of patient
datasets shows that our model makes accurate predic-
tions of the laboring phenotype in patients, performing
best when the PR-B surrogate FKBP5 and inflammatory
surrogate IL-1β are used to fit the dimensionless model.
Linear stability analysis shows three phenotypically inter-
esting phase space bifurcations exist in our model and
provides a quantitative tipping point for the myometrium
transitioning to the contractile phenotype given our
model. This dynamical systems model of progesterone

receptor interactions in the pregnancy myometrium pro-
vides a plausible explanation for the observed biochemical
dynamics in the literature and is a first step in more
sophisticated modeling of human partition with dynam-
ical systems models. Our model provides a framework
where if a woman’s PR-B and inflammatory activity can
be determined from blood-based biomarkers, then we
can produce patient specific trajectories characterizing a
woman’s likelihood of labor and the variables to modulate
to prevent PTB.

Appendix of derrivations
Model nondimensionalization and simplification
There are six parameters in our model k1, k2,Bc, Ic, î, b̂
with various units. Nondimentionalization is a tool for
simplifying our model whereby these parameters are
replaced with dimensionless constants. While nondimen-
sionalization can make it difficult to pinpoint the influ-
ence of individual parameters on the system’s behavior,
this concern is minimal since we only have six parame-
ters in our model. Unpacking the influence of particular
dimensionless constants and the parameters that consti-
tute those constants is thus straightforward for our model.
The units for Î, B̂, Bc, and Ic are the amount of PR-B or
inflammation present, similar to a concentration. Time
t is given in weeks. The rate constants î and b̂ are in
units 1

weeks while the rate constants k1 and k2 are in units
1

concentration∗weeks . We define three dimensionless variables
for our model,

B = B̂
Bc

I = Î
Ic

τ = tk1Ic (7)

Substituting these for B̂, Î, and tmakes the PR-B equation,

BcIck1
dB
dτ

= b̂BcB(1 − B) − k1BcIcBI, (8)

and the inflammation equation,

I2c k1
dI
dτ

= îIcI(1 − I) − k2BcIcBI. (9)

We simplify the equations by dividing by BcIck1 in the
equation for dB

dτ
and by I2c k1 in the equation for dI

dτ
. The

result is the dimensionless model,

dB
dτ

= b̂
k1Ic

B(1 − B) − BI,

dI
dτ

= î
k1Ic

I(1 − I) − k2Bc
k1Ic

BI. (10)
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We can now define three dimensionless constants,
R1 = b̂

k1Ic , R2 = î
k1Ic , and R3 = k2Bc

k1Ic . Substituting these
yields the final version of the dimensionless model,

dB
dτ

= R1B(1 − B) − BI,

dI
dτ

= R2I(1 − I) − R3BI. (11)

We infer the activity of PR-B and pro-inflammatory
drivers with two PR-B responsive genes to serve as sur-
rogates for PR-B, FOXO1A and FKBP5, and three pro-
inflammatory genes to serve as surrogates for inflamma-
tion, IL-1β , IL-6 and IL-8. The normalized values of the
data for these genes Nj, are calculated using the equation,

Nj = Gj − m
M − m

(12)

where Gj is the value of the gene for patient j, M is the
maximum expression value for that gene across patients
in the dataset, and m is the minimum value of that gene
across patients in the dataset. One consequence of this
normalization procedure is that the transcriptome data
has been nondimensionalized. Therefore, the dimension-
less constants and dimensionless trascriptome data can be
seamlessly combined so that the surrogate genes param-
eterize the dimensionless model for each patient. This
equation bounds the values for the PR-B and inflamma-
tion surrogates from 0 to 1 and makes the natural choice
of values for critical levels of PR-B and inflammation
Bc = Ic = 1. The dimensionless parameters then become,

R1 = b̂
k1

= b R2 = î
k1

= i R3 = k2
k1

= k. (13)

Now our model can be rewritten as,

dB
dτ

= bB(1 − B) − BI,
dI
dτ

= iI(1 − I) − kBI, (14)

where the values of b and i are determined by the nor-
malized dimensionless values for the PR-B and inflam-
matory surrogate genes respectively and the value of k
corresponds to the strength of PR-B’s anti-inflammatory
actions.

Calculating the probability of labor for each patient
Next we quantify the behavior of k in order to apply our
model to patient data. To do this, we have to derive the
steady states solutions for our model. These solutions are
the values of B and I which cause dB

dτ
= dI

dτ
= 0 and cor-

respond to a state where the system undergoes no change.
There are three steady states, equilibrium points, which
are easy to derive. These occur when the ordered pair for
PR-B and inflammation, (B, I), is equal to,

(0, 0) (1, 0) (0, 1) (15)

where (0,0) is the trivial equilibrium point where neither
PR-B nor inflammation is present, (1,0) is the quies-
cent equilibrium where PR-B is maximal and there is no
inflammation, and (0,1) is the laboring equilibrium where
there is no PR-B and inflammation is maximal. The qui-
escent equilibrium correspond to a PR-B dominant state
and laboring equilibrium corresponds to an inflammatory
dominant state. There is a fourth equilibrium point which
exists for some values of b and i between the quiescent and
laboring equilibrium which we will designate as the inter-
mediate equilibrium, (B∗, I∗). We obtain this equilibrium
point by first setting our model equations equal to zero,

dB
dτ

= 0 = bB∗(1 − B∗) − B∗I∗,

dI
dτ

= 0 = iI∗(1 − I∗) − kB∗I∗, (16)

and
dI
dτ

= 0 = iI∗(1 − I∗) − kB∗I ∗ . (17)

Simplifying this becomes,

0 = b(1 − B∗) − I∗, 0 = i(1 − I∗) − kB∗. (18)

This results in two equations, one for B∗ and one for I∗,

I∗ = b − bB∗, B∗ = i
k
(1 − I∗). (19)

Depending on how we chose to perform the substitution,
B∗ into the equation for I∗ or I∗ into the equation for
B∗, we can derive two forms of the same intermediate
equilibrium point. These are,

(B∗, I∗) =
(
i(1 − b)
k − ib

,
b(k − i)
k − ib

)
(20)

=
(
i2b(1 − k) − ik(1 − b)

k(bi − k)
,
kb(i − 1)
bi − k

)
.

Since the values of b and i are determined by PR-B and
inflammatory surrogate genes scaled from 0 to 1, these
terms are bounded to that interval. Furthermore, since B
and I are bounded by Bc = 1 and Ic = 1, B∗ and I∗ are
bounded to the square domain with vertices (0, 0), (0, 1),
(1, 1), and (1, 0) and area 1. So, the intermediate equilib-
rium point, in both forms, should satisfy the constraints
0 ≤ B∗ ≤ 1 and 0 ≤ I∗ ≤ 1. By considering how this
constraint impacts both forms of the intermediate equi-
librium we can derive a set of constraints for the values of
k. In order to allow for the full range of values of i, we find
that i and k satisfy 0 ≤ i < k ≤ 1.
In the limit in the case where i = k, the intermediate

equilibrium point equals the quiescent equilibrium point
(1, 0). If we visualize this state in phase space we see that
all the vectors point away from the quiescent equilibrium
point toward the laboring equilibrium. In phase space,



Brubaker et al. BMC Systems Biology  (2016) 10:79 Page 12 of 14

these vectors define trajectories that indicate how the sys-
tem would evolve in time given a certain starting point.
The set of vectors pointing toward the laboring equilib-
rium point is known as the basin of attraction for the
laboring equilibrium point. We compute a probability of
labor equal to the area of the laboring equilibrium point’s
basin of attraction divided by the area of the domain,
which in our case is 1. The area of the basin changes as k, i,
and b change. This probabilistic interpretation of a phase
space is reasonable under the assumptions that all possible
pairs of values of B and I in the domain occur with equal
likelihood. For example, in the case where k = i and b is
fixed at 0.5, the probability of labor is equal to 1, the entire
domain is the basin of attraction for the laboring equilib-
rium, which means that quiescence is impossible. In order
to ensure that quiescence is a possibility, we set k = 1
so that only one value of i, i = 1, results in a probabil-
ity of labor equal to 1 enabling us to explore the full range
of values for b and i. Thus, the model we apply to patient
data is

dB
dτ

= bB(1 − B) − BI,
dI
dτ

= iI(1 − I) − BI. (21)

Characterizing the stability of the quiescent and laboring
equilibria
We analyzed the dimensionless form of our model and
computed the eigenvalues for the four equilibrium points,

(0, 0) (1, 0) (0, 1)
(
i(1 − b)
k − ib

,
b(k − i)
k − ib

)
(22)

where (0, 0) corresponds to a myometrial cell that is not
expressing any PR-B and has no inflammation. The solu-
tion (1,0) corresponds to a myometrial cell that does not
express PR-B and has no inflammation. The solution (1,0)
is the quiescent equilibrium corresponding to a physio-
logical state where PR-B is at its maximal level with no
inflammation. The solution (0, 1) is the laboring equi-
librium where inflammation is maximized and no PR-B
is present. The last solution corresponds to an interme-
diate point between quiescent and laboring where the
myometrial cell can pass into either phenotype.
In order to characterize the stability of these solutions,

we need to solve for the eigenvalues of themodel λ1 and λ2
at each equilibrium point from (5). The sign of the eigen-
values, positive or negative, determines the stability and
the formula for each eigenvalue tells us whether the eigen-
values can ever change sign. This is done by solving the
characteristic polynomial equation of the Jacobianmatrix,
J . We begin by computing J for our model at a general
equilibrium point (B∗, I∗),

J =
(

dB′
dB

dB′
dI

dI′
dB

dI′
dI

)
=

(
b − 2bB∗ − I∗ −B∗

−I∗ i − 2iI∗ − kB∗
)
. (23)

The characteristic polynomial can be obtained by taking
the determinant of the matrix,

(λI−J )=
(
λ − b + 2bB∗ + I∗ −B∗

−I∗ λ − i + 2iI∗ + kB∗
)
. (24)

Setting this determinant to zero gives us the eigenval-
ues, the roots of the characteristic polynomial whose signs
determine the stability of the equilibrium solutions:

0 = λ2 + λβ + γ . (25)

where

β = 2
(
bB∗ + iI∗

) + kB∗ + I∗ − (i + b) (26)

and

γ = ib
(
1 − 2I∗ − 2B∗ + 4B∗I∗

) + bB∗ (−k + 2kB∗)
+ iI∗

(
2I∗ − 1

) + I∗B∗(k − 1)
(27)

By applying the quadratic formula, we can obtain an
expression for both λ1

λ1 = −β + √
(β2 − 4γ )

2
(28)

and λ2

λ2 = −β − √
(β2 − 4γ )

2
(29)

The sign of λ1 and λ2 determine the type and stability of
each equilibrium point. The trivial equilibrium, (0,0), has
two positive, real eigenvalues for all values of b and i indi-
cating it is always unstable and can be classified as a source
node. Physiologically, a myometrial cell in this state is not
exposed to inflammatory stimuli and is not expressing
PR-B. This state cannot endure long and like the equilib-
rium point is unstable, all trajectories are pointing away
from the equilibrium. The quiescent and laboring equilib-
ria have two real, negative eigenvalues each and are thus
stable sink nodes. Both of these are stable so long as both
b < 1 and i < 1. The intermediate equilibrium point
allows us to identify the tipping point as i and b change.
This equilibrium has two real eigenvalues, one positive
and one negative, thus the intermediate equilibrium is a
semi-stable, saddle node.
The formula for the eigenvalues of the intermediate

equilibrium indicates that three bifurcations are possible
as i and b change. Firstly, if i = 1 and b ≤ 1 or if k ≤ i,
then the quiescent equilibrium has one negative and one
zero eigenvalue. In this case, the intermediate equilibrium
point has moved through the phase space to collide with
the quiescent equilibrium. When these two equilibrium
points combine, the quiescent equilibrium point changes
stability from stable, where all temporal trajectories in
the neighborhood of the equilibrium pointing toward it,
to unstable with all the trajectories pointing away from



Brubaker et al. BMC Systems Biology  (2016) 10:79 Page 13 of 14

the equilibrium point. Similarly, if b = 1 and i ≤ 1
the intermediate equilibrium collides with the laboring
equilibrium resulting in a bifurcation where the laboring
equilibrium point changes from stable to unstable. When
k = bi the intermediate equilibrium becomes a singular-
ity and is non-physiological. The third bifurcation occurs
when b and i equal 0 and the intermediate equilibrium
collides with the trivial equilibrium point.
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