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PHYSICAL REVIEW E 87, 032302 (2013)

Electrolyte dependence of particle motion near an electrode during ac polarization

Christopher L. Wirth,* Paul J. Sides, and Dennis C. Prieve
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

(Received 18 December 2012; published 8 March 2013)

The phase angle between the imposed ac electric field and the oscillations in particle height is the key parameter
governing the sign of interparticle force during two-dimensional directed assembly. The phase angle depends on
a number of experimental parameters, including the frequency of the electric field and dispersing electrolytes.
The origin of electrolyte dependence in this phase angle has been a mystery for a decade. Electrolyte dependence
arises from polarization of the particle’s diffuse layer, which affects the dynamic electrophoretic mobility of
the particle. A full description of the magnitude and phase angle of the dynamic electrophoretic mobility was
incorporated into a nonlinear integro-differential equation of motion for a 5.7 μm diameter particle suspended
in 0.15 mM KOH, KCl, NaHCO3, NH4OH, and NaOH at frequencies between 5 and 1000 Hz. Integration of the
equation revealed that the phase angles for a particle in KOH, NH4OH, and NaOH were smaller than the phase
angles calculated for a particle in KCl and NaHCO3, which is consistent with previously published experiments.
Although the phase angles for each electrolyte are spread over only ∼1◦, the results cluster around 90◦, which
is the crucial boundary between particle aggregation (>90◦) and separation (<90◦). A family of curves of the
oscillation in particle height collapsed to a master curve when the amplitude of motion was scaled with the
product of the dynamic electrophoretic mobility and electric field strength. These results constitute the first a
priori prediction of electrolyte-dependent motion of a particle near an electrode during ac polarization.

DOI: 10.1103/PhysRevE.87.032302 PACS number(s): 82.45.−h, 47.57.jd

I. INTRODUCTION

The directed motion of colloidal particles has potential
applications in the preparation of photonic materials [1],
the separation of colloidal dispersions and emulsions [2,3],
and the high throughput evaluation of electrocatalysts [4,5].
Many investigators therefore have focused on mechanisms
underlying the synthesis of two-dimensional colloidal crystals
on a planar electrode [6–25]. Aggregation and separation of
particles occurs in both dc and ac electric fields [6–9,11,12,15,
18,20–22,24,25]. The process is reversible and controllable
because the steady structure of the assembly depends on
the strength, direction, and frequency of the electric field
[20,21]. Surprisingly, the steady structure also depends on the
dispersing electrolyte [22]. An ensemble of particles dispersed
in KCl or NaHCO3 assembled into a close-packed hexagonal
array upon application of a 100-Hz ac electric field, but
the particles of an ensemble dispersed in NH4OH or KOH
adopted equally spaced separations of several radii despite the
equivalence of all other experimental parameters [22].

Two mechanisms have been proposed to explain the aggre-
gation and separation of two-dimensional (2D) ensembles in
these circumstances. Induced charge electroosmosis (ICEO)
relies on the interaction between oscillating electric field com-
ponents and charge that accumulates on the electrode during
polarization [15,19]. The product of the sinusoidal oscillations
of electric field and charge produces a steady entraining
flow and an unsteady flow at twice the frequency. Questions
regarding the applicability of this model are unresolved. First,
the degree of voltage polarization across the diffuse layer

*Current address: Department of Chemical Engineering, Katholieke
Universiteit Leuven, B-3001 Leuven, Belgium; email address:
chris.wirth@cit.kuleuven.be

necessary to account for the particle motion is unlikely to be
achieved. Second, the ICEO force is always attractive, which
contradicts findings described in the previous paragraph.
Third, distinct motion at twice the imposed frequency has
never been found in real-time observations of particle motion
with total internal reflection microscopy (TIRM).

The other mechanism, due to Prieve and co-workers
[10,13,14,16–18], relies on a break in the antisymmetry of
particle motion normal to the electrode during the two halves
of each cycle. The break arises from the dependence of the
entrainment velocity on the distance between the particle and
the electrode. Fagan et al. [10,14], measuring the response
of a single particle to an ac electric field in the direction
normal (z axis, Fig. 1) to an electrode with TIRM, discovered
a phase angle between oscillations in particle height and the
electric field. A drift velocity model incorporating the phase
angle [17] predicted that an isolated pair of particles separated
when the phase angle was <90◦, but the same isolated pair
aggregated when the phase angle was >90◦. Hoggard et al.
[18] systematically measured the interparticle distance of an
isolated pair of particles suspended in a variety of electrolytes.
Predictions from the drift velocity model, which incorporated
the experimentally measured phase angles, were in good
quantitative agreement with experimental measurements of
the net motion of isolated particles. The discovery of Fagan
et al. [10,14] that a phase angle differing from 90◦ is required
for netmotion of particle pairs, and the confirming experiments
of Hoggard et al. [18] provided strong evidence that a com-
bination of short-range electrophoresis and electroosmosis,
with modifications due to the proximity of the particles to the
electrode, drives 2D directed assembly in ac electric fields.

Wirth et al. [24] developed a model that demonstrated
the possibility of phase angles less than or greater than
90◦. Newton’s second law, including dynamic friction,
linearized colloidal forces, particle and fluid inertia, and the
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FIG. 1. Illustration of the experimental setup. An ac potential
is applied across a parallel plate electrochemical cell filled with
electrolytes. Particles have a radius a and are separated a distance, h,
from the working electrode. The parallel plate electrodes, each with
an area of 10.24 cm2, were separated by 1.4 mm in the experiments
simulated here. An optics stack comprising an optical microscope, a
CCD camera, and a photomultiplier tube is positioned above the fluid
cell. More details on the experimental setup can be found in Ref. [18].

electrophoretic force arising from an ac electric field, was the
basis of the model. The analytical solution to this problem
predicted a phase angle that could be either <90◦ or >90◦, de-
pending on the frequency. Themodel resembled those found in
the dynamic electrophoresis literature, except for the addition
of a colloidal force field. The model demonstrated a physical
origin of the phase angle and its frequency dependence.

The present contribution refines this model [24] to more re-
alistic representations of the forces, including physicochemical
differences between electrolytes. We numerically solved the
nonlinear integro-differential equation of motion for a particle
near an electrode during ac polarization. The model comprises
an expolinear colloidal potential energy well, a wall-enhanced
dynamic drag, and dynamic electrokinetic forces. Electrolyte
dependence enters the problem through a full description
of the dynamic electrophoretic mobility of the particle and
through the conductivity of the dispersing electrolyte for a
given ionic strength. The phase angle, the crucial parameter
determining the direction of assembly, was calculated as a
function of frequency for a single particle dispersed in KOH,
KCl, NaHCO3, NH4OH, and NaOH under conditions identical
to those used in previous experiments [18].1 The phase angle
depended on the dispersing electrolyte. The phase angles
cluster around 90◦, the boundary that determines whether
particles aggregate or separate. This is the first demonstration
of the mechanism by which the choice of electrolyte affects
directed assembly. Moreover, the results show how a subtle
effect can produce binary results; a slight change of phase
angle causes particles to aggregate or separate.

1Experiments in Ref. [18] also included H2CO3 as one of the
dispersing electrolytes. Based on the pH reported by the authors,
we calculated an H2CO3 concentration to be 0.0025 mM, which
was far smaller than the concentration of all other electrolytes
used in Ref. [18] (see Table II). An electrolyte concentration of
0.0025 mM would correspond to a Debye length of 192 nm and
an equilibrium particle height of nearly 2 μm, which is outside the
range of observation with a TIRM; we decided not to include H2CO3

in the work presented here because of this inconsistency.

II. THEORY

Consider a particle of radius a and mass Mp separated
from an electrode by a distance h (see Fig. 1). An ac electric
field normal to the electrode drives the oscillatory motion of
the particle along the z axis. The equation of motion of the
particle is

Mp

d2h

dt2
= Fc + Fd + Fe, (1)

where Fc is the summation of colloidal forces, Fd is the
dynamic drag, and Fe is the sum of the electrophoretic force
Fep and the dielectrophoretic force Fdep, which arise from
interaction of the particle with the applied electric field.

A. Colloidal forces

The particle samples a potential energy well (�c) compris-
ing electrostatic repulsion arising from overlap of the diffuse
counterion clouds on the particle and electrode surfaces, van
derWaals interactions, and gravity. Typically, the particles and
electrode material have a bound negative charge; like charges
on the two surfaces prevent deposition and immobilization.
The potential energy well has an “expolinear” shape resulting
from the exponential decay of electrostatic repulsion and van
der Waals attraction with height and the linear increase of
gravitational potential with height. The colloidal force Fc

equals the negative gradient of the potential energy:

Fc(h) = −d�c

dh
= κBexp(−κh) − 6.8λkT exp(−λh) − G,

(2)

B = 64πε0εf a

(
kT

e

)2

tanh

(
eζp

4kT

)
tanh

(
eζe

4kT

)
, (3)

κ =
√

2e2C∞
ε0εf kT

, (4)

G = 4

3
πa3(ρp − ρf )g, (5)

where εf is the dielectric constant of water, ε0 is the dielectric
permittivity of a vacuum, k is Boltzmann’s constant, T is
temperature, e is the elementary charge,C∞ is the bulk number
concentration of electrolyte, κ−1 is the Debye length, λ−1 =
48 nm is a decay length characteristic of the van der Waals
attraction, ζ p and ζ e are the particle’s and electrode’s Stern
potential. The first term in Eq. (2) represents double-layer
repulsion under conditions of weak overlap of the electric
double layers (κh � 1). The Debye parameter defined by
Eq. (4) is for 1-1 electrolytes. The second term in Eq. (2) is
an empirical fit to van der Waals attraction directly measured
under very similar conditions and for h > 50 nm [13]. Under
these conditions, van der Waals attraction is severely retarded
and screened [13].

B. Dynamic drag force

The dynamic drag Fd on the particle is the sum of the
wall corrected Stokes drag, the added inertia, and the Basset
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force:

Fd = −
(

f∞
q(h)

dh

dt
+ 1

2
Mf

d2h

dt2

+ 6ηa2
√

πρf

η

∫ t

−∞

d2h(t ′)
dt ′2

dt ′√
t − t ′

)
, (6)

q (h) = 6h2 + 2ah

6h2 + 9ah + 2a2
. (7)

Here f∞ is the linear quasisteady Stokes drag coefficient
(f∞ = 6πηa), q(h) is the wall correction factor [26], and Mf

is the mass of the fluid displaced by the particle. Although
quasisteady Stokes drag is familiar, the remaining two terms
in Fd might be unfamiliar. The second term on the right-hand
side of Eq. (6) is the “added inertia” required to move fluid
from the path of the oscillating particle. The third term is the
Basset or “history” force, which accounts for the transient
development of the momentum boundary layer enveloping
the particle. The final two terms in Eq. (6) are obtained by
solving the Navier-Stokes equation on an oscillating particle
in an infinite fluid domain, retaining the linear momentum
accumulation term (dv/dt), but neglecting the nonlinear
inertial term (v · ∇v), where v is the velocity of the particle.
Relative to viscous forces, the nonlinear inertial term is on
the order of the Reynolds number (vaρf /η), which is small.
Relative to viscous forces, the linear inertial term is on the
order of the product of the Reynolds and Strouhal numbers
(NRS ≡ a2ωρf /η), which is not necessarily small.

The authors are unaware of any wall correction for the
final two terms in Eq. (6). However, a correction is likely
unnecessary because the time for diffusion of momentum
across the gap is much shorter than the period of oscillation
of the particle. Then the lubrication approximation (used to
predict the greatly enhanced viscous drag when h 	 a) will
be quasisteady. More details about dynamic drag can be found
in Kim and Karrila [27].

For use in the next section, consider purely sinusoidal
oscillations in the particle’s velocity; complex exponentials
represent their time dependence. After replacing dh/dt by
Ũ = U0e

−iωt and Fd by F̃d = Fd0e
−iωt , Eq. (6) becomes

F̃d = −f̃ Ũ , where the complex drag coefficient is given
by [27]

f̃ =
[

1

q(h)
+ (1 − i)

√
ρωa2

2η

]
6πηa − iωMf

2
. (8)

Note that q(h)= 1 inKim andKarrila [27].When q depends
on h, Eq. (6) becomes nonlinear in h, which would distort
the response Ũ from a pure sinusoid or a single complex
exponential. To obtain the approximation above, we assumed
that the amplitude of oscillations in h are small enough that
q(h) can be replaced by its average value over one cycle.

C. Electrophoretic force

We define the electrophoretic force Fep to be equal in
magnitude but opposite in direction to that forceFext(= −Fep),
which must be applied externally to a charged sphere to sup-
press any electrophoresis caused by amacroscopically uniform
electric field, E. The linearity of Stokes equations makes the

electrophoretic flow caused by the action of the electric field
on the charged particle superimposable on the Stokes flow
caused by the action of the external force. If the force Fext

were not applied, the particle would undergo electrophoresis
at speed U = μE, where μ is the electrophoretic mobility of
the particle. To suppress this movement, we apply Fext, which
(in the absence of the electric field) causes steady movement
of the particle at speed −U = Fext/f, where f is the friction
coefficient for motion of the particle through an otherwise
stagnant fluid. Eliminating U and Fext leads to the prediction
that

Fep = QE, (9)

Q = μf, (10)

where Q is defined as the proportionality constant between
E and Fep. Although it has units of coulombs and we call it
the “apparent electrokinetic charge,” Q does not represent the
true charge affixed to the particle. For κa � 1, the ratio of
Q to the true charge is O[(κa)−1] owing to nearly complete
neutralization of the true charge by the surrounding counterion
cloud [24].

The above description for a steady electric field can
be adapted to an oscillating field. If the electrophoretic
velocity and the electrophoretic force are represented by
complex exponentials (Ẽ = E0e−iωt , Ũ = U0e

−iωt = μ̃Ẽ,

and F̃ep = Fep0e
−iωt ), then the electrophoretic mobility and

drag coefficient also become complex quantities (μ̃ and f̃ ),
where their real and imaginary parts represent the in-phase and
out-of-phase components of the response. When the particle
is far from the electrode, we can eliminate colloidal and
dielectrophoretic forces from Eq. (1), leaving Fe = F̃ep and
Fd = F̃d = −f̃ Ũ . Then Eq. (1) yields F̃ep = (f̃ − iωMp)Ũ .

Substituting Ũ = μ̃Ẽ yields

F̃ep = Q̃Ẽ, (11)

Q̃ = (f̃ − iωMp)μ̃. (12)

Substituting f̃ from Eq. (8) yields

Q̃ =
{[

1

q(h)
+

(
1 − i

)√
ρωa2

2η

]
6πηa − iωM

}
μ̃, (13)

where M = Mp + (1/2)Mf is the total inertial mass of the
fluid and particle. Note that in the limit of ω→0, Eq. (13)
reduces to Eq. (10).

When colloidal forces, dielectrophoresis, and the height
dependence of various coefficients are considered, Eq. (1)
becomes nonlinear in the dependent variable h(t). Then
purely sinusoidal oscillations in E(t) produce nonsinusoidal
oscillations in h(t). In numerical solutions of Eq. (1) we
abandon the use of complex exponentials and solve the
equation using purely real quantities. In particular, we need
the real part of the electrophoretic force given by Eqs. (11) and
(13). If the electric field is represented as E (t) = E0cos (ωt) ,
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then the electrophoretic force is

Fep =
[(

1

q(h)
+

√
NRS

2

)
f∞ cos (ωt + φ)

−
(

ωM + f∞

√
NRS

2

)
sin (ωt + φ)

]
μ0E0, (14)

where μ0 and φ are the absolute magnitude and phase angle
of the complex dynamic electrophoretic mobility μ̃ = μ0e

−iφ

(DEM) of a particle in an infinite sea of fluid. Here, the
phase angle and magnitude of the DEM were calculated with
a commercially available code [28–32]. Although the code
was tailored for ensembles of particles, a sufficiently small
volume fraction (10−6) ensured that particle-particle effects
were negligible.

D. Dielectrophoretic force

Dielectrophoretic force arises from the polarization of
the charge at the particle and the subsequent interaction
between the electric field and the effective dipole. The net
dielectrophoretic force on a particle in a uniform field far
from a boundary vanishes but is nonzero when the particle
is close to a boundary, another dipole, or in an externally
controlled electric field gradient. Dietz [33] provides the
following approximation for the dielectrophoretic force when
a dielectric particle is immersed in a conductive liquid near a
planar interface:

Fdep = DẼ2, (15)

D(h) = −3πε0εf a2

1 + e−4δ
(1 + δ)−4

(
1

8

)
, (16)

where δ = h/a. The real part of the electric field in Eq. (15)
was taken to obtain Re(Ẽ) = E0cos(ωt). Squaring this result
produced a steady and oscillating term with a frequency of 2ω;
both terms were included in the numerical integration scheme.

III. NUMERICAL ALGORITHM

Equation (1) is a nonlinear integro-differential equation.
The Basset integral required temporal integration of all past
positions of the particle.A successive approximation technique
was used to overcome this problem. The algorithm was
initiated by numerically integrating Eq. (1) without the Basset
integral and with the following initial conditions:

h (0) = 1

κ
ln

(
κB

G

)
, (17)

h′ (0) = 0, (18)

where Eq. (17) is the most probable height of the particle
in the absence of an applied electric field. The result of
the initial iteration was a slow transient leading eventually
to stationary oscillations in particle height. Once stationary
oscillations in particle height were achieved, the final period
of oscillations in height were fitted with a Fourier series, which
captured any nonlinearity in the stationary oscillations of
height. The next iteration was then calculated with the Basset
force term evaluated using a Fourier series representation (see

TABLE I. Global parameters used for all calculations.

Water viscosity, η (Pa s) 0.000 890 416
Particle radius, a (m) 0.000 002 85
Elemental charge, e (C) 1.602 18E-19
Boltzmann’s Constant, k (J/K) 1.380 65E-23
Avogadro’s number, NA (#/mol) 6.022 14E+ 23
Molar gas constant, R (J/mol K) 8.314 47
Dielectric permittivity of a vacuum, ε0 (F/m) 8.854 19E-12
Dielectric constant of water, εf 78.36
Dielectric constant of the particle, εp 2.6
Temperature, T (K) 298
Faraday’s constant, F (C/mol) 96 485.339
Density of fluid, ρf (kg/m3) 1000
Density of the particle, ρp (kg/m3) 1055
Electrode ζ potential, ζe (mV)
(KOH, NaOH, NaHCO3, NH4OH) −80
Electrode ζ potential, ζe (mV)
(KCl) −30

next paragraph) and initial conditions matching those of the
final point calculated in the previous iteration. An adaptive
numerical integrator capable of calling on anAdams-Bashforth
method for nonstiff systems or a backward differential method
for stiff systems was used for the numerical integration
conducted for each iteration. Many cycles (between 25 and
1000), each of which contained 100 time steps, were computed
for each iteration to ensure that the particle reached steady
oscillations in height. The number of cycles required to
reach steady oscillations depended on the frequency of the
electric field. Lower frequencies required fewer cycles to be
simulated. Table I summarizes the global variables used in the
simulations. Figure 2 shows an example of convergence during
the successive approximation algorithm.

TheBasset integral appearing in Eq. (1) required integration
of all prior particle positions, which slowed the convergence
and is complicated by the nonsinusoidal oscillations in height

FIG. 2. Illustration of convergence of the successive approxima-
tion algorithm for a particle suspended in 0.15 mMKOH and exposed
to an electric field of 100 Hz and 1778 V m−1. One hundred cycles
and 100 time steps per cycle were calculated for each iteration. A
total of four iterations were conducted, with the initial (iteration 0),
second (iteration 2), and fourth (iteration 4) shown here. Iterations 2
and 4 are indistinguishable from each other because the calculation
has converged by the second iteration.
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experienced by the particle. We avoided these difficulties by
using a Fourier series (FS) to represent the steady oscillations
in height from the previous iteration accurately and then
computing the Basset integral without the integration step.
The FS approximation H (t) of an arbitrary periodic function
x(t) having period 2π/ω is as follows:

a0 = ω

2π

∫ π/ω

−π/ω

x (t) dt, (19)

an = ω

π

∫ π/ω

−π/ω

x (t) cos (nωt) dt, (20)

bn = ω

π

∫ π/ω

−π/ω

x (t) sin (nωt) dt, (21)

H (t) = a0 +
N∑

n=1

[ancos (nωt) + bnsin (nωt)] , (22)

where a0, an, and bn are the FS coefficients and N is the
number of terms in the truncated FS. Inserting Eq. (22) into
the Basset force integral and simplifying gives

6ηa2

√
πρf

η

∫ t

−∞

d2H

dτ 2

dτ√
t − τ

= −f∞

√
a2ρf

2η

N∑
n=1

(nω)3/2 [(an − bn) cos (nωt)

+ (an + bn) sin (nωt)] . (23)

Equation (23) avoided the numerical integration of all past
positions of the particle. The FS expression for the Basset
force term only required a single cycle of the particle’s steady
oscillations in height to compute the FS coefficients given from
Eqs. (19) to (21).

Oscillations in particle height became nonsinusoidal at
sufficiently low frequency or large electric field strength,
which caused deviations from sinusoidal behavior. Three FS
terms were sufficient to accurately approximate these steady
oscillations in particle height for all conditions. The error
between the calculated oscillations in particle height and the
FS fit was computed by subtracting those two quantities and
scaling the difference by the amplitude of oscillation. The
largest error in the FS fit was 1.00%. In addition, the FS fit was
used to find the location ofminimum in oscillations, whichwas
required to determine the phase angle between the oscillations
in height and the electric field. This definition of the phase
angle was consistent with the definition used previously [18].
Figure 3 shows the “worst case scenario” fit and the location
of the minimum in height.

IV. RESULTS

A. The dynamic electrophoretic mobility μ̃

The magnitude and phase angle of the DEMwas a required
input for the definition of Q̃ used in the numerical integration
of Eq. (1). The DEM of a particle suspended in KOH,
KCl, NaHCO3, NH4OH, and NaOH electrolyte solution was
calculated as a function of frequency under conditions chosen
to match those of published experimental work [18]. Hoggard
et al. [18] used dynamic light scattering to measure the
static electrophoretic mobility of an ensemble of particles and

FIG. 3. Worst case scenario for the Fourier series (FS) fit of
oscillations in particle height. (a) Scaled percent error of fit shown
in panel (b). The error between the calculated oscillations in particle
height and the FS fitwas computed by subtracting those two quantities
and scaling the difference by the amplitude of oscillation. The
maximumerrorwas 1.00%. (b)Comparison between the FSfit and the
motion of the particle. The largest error occurred at the bottom of the
cycle where nonlinear colloidal forces are important. The conditions
of this calculation were an electric field frequency of 5 Hz and a
strength of 848 V/m at an electrolyte concentration of 0.15 mM
NH4OH.

the ζ potential was calculated with Henry’s equation. Here,
we recalculated the ζ potential of the ensemble of particles
dispersed in each electrolyte using the algorithm of O’Brien
and White [34]. Table II summarizes these data.

Figure 4 shows results for the scaled magnitude and phase
angle of the DEM of a particle in each electrolyte. The
magnitude of the DEMwas scaled by the static electrophoretic
mobility shown in Table II. As expected, the scaled DEM
approached unity as frequency → 0 Hz. The magnitude of
the DEM increased slightly as frequency was increased for
all electrolytes. At higher frequencies that are not shown, the
magnitude of the DEM decreased because of the increased
importance of particle inertia. A similar effect was observed
on the phase angle of the DEM. The phase angle approached
0◦ at very low frequencies for all electrolytes. As frequency
increased, the phase angle for all electrolytes increased above
0◦ and reached a maximum.

B. Linear problem

The numerical algorithm presented in Sec. III was tested
by solving a linearized version of Eq. (1) published elsewhere
[24]. The linearized model assumed that the particle was far
from thewall, the solution had a thin Debye length (κa → ∞),
and the particle was restricted to a parabolic potential energy
well: φ (h) = (1/2)κG(h − hm)2. Equation (13) was used for
the apparent electrokinetic charge, but with q = 1. Figure 5
summarizes results from this test.
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TABLE II. Electrolyte data.

Concentration Conductivity ζ potentiala Electrophoretic mobility ζ potentialb

Electrolyte (mM) (μS/cm) κa pH (mV) f (κa) [μm cm/(V s)] (mV)

KOH 0.1500 40.72 114.78 9.8 −105 1.463 −7.982 −120
KCl 0.1500 22.47 114.78 5.8 −78 1.463 −5.930 −82
NaHCO3 0.1500 14.19 114.78 9.4 −96 1.463 −7.298 −108
NH4OH 0.1500 40.73 114.78 9.2 −95 1.463 −7.222 −104
NaOH 0.1500 37.21 114.78 9.7 −104 1.463 −7.906 −122

aZeta potential of particles reported by Hoggard et al. [18].
bZeta potential of particles recalculated with the algorithm of O’Brien and White [34].

At low frequency, the phase angle between the position
of the particle and the electric field approached 0◦. This
phase angle is crucial to the drift velocity model; henceforth
this parameter shall just be called the “phase angle.” The
low-frequency behavior was a consequence of the colloidal
force field that balanced the electrophoretic force in this
frequency regime. The particle can be considered to be at its
equilibrium height at every instant in the limit of frequency→
0 Hz. The phase angle approached 90◦ as frequency increased
because viscous damping (i.e., Stokes drag) balanced the
electrophoretic force at low frequency. At high frequency, the
phase angle responded to an increase in the importance of
inertia. Figure 5(b) shows the “apparent DEM,” which is not

FIG. 4. Computed dynamic electrophoretic mobility (DEM) of a
particle in a variety of electrolytes. (a) The magnitude of the DEM
scaled by its low-frequency value. (b) The phase angle of the DEM.
Both the magnitude and the phase angle of the DEMwere electrolyte
dependent.

equal to the actual DEM of the particle. The apparent DEM is
equal to the quotient of the maximum velocity and the electric
field. The apparent DEMwas heavily damped at low frequency
by the colloidal potential energy well, increased towards
the force-free mobility limit of Helmholtz-Smoluchowski at
intermediate frequencies, and then decreased slightly above
1 kHz because of the increased importance of inertia of the

FIG. 5. Test of numerical integration algorithm described in
Sec. III. (a) Particle position phase angle and (b) the “apparent scaled
mobility” as a function of frequency for the analytical and numerical
solutions. Strong quantitative agreement was found between the two
solutions for both quantities. The data plotted in (b) is called the
“apparent scaled mobility” because it is the velocity divided by
the electric field strength, not the actual dynamic electrophoretic
mobility. The apparent scaled mobility decreased as frequency
decreased because the colloidal force field damped the motion of
the particle. The broken line in (b) is the mobility limit given by
Helmholtz-Smoluchowski for κa→∞.
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fluid-particle system. These results demonstrated the validity
of the numerical integration algorithm.

C. Nonlinear problem

Equation (1) was integrated with the numerical algorithm
described in Sec. III and tested in Sec. IV B. The primary
differences between the problem solved here and the linear test
problemwere that the nonlinear problem includes (1) hydrody-
namic effects resulting from the proximate boundary [i.e., q(h)
different from unity]; (2) an expolinear potential energy well
(instead of a parabolic harmonic potential well) comprising
more realistic electrostatic interactions, gravity, and van der
Waals interactions; (3) an expression that accounted for the
dielectrophoretic attraction between the particle and boundary;
and (4) electrophoretic forcing that included a full description
of the apparent electrokinetic charge, as described by Eq. (14).

The calculations were carried out for a 5.7 μm-diameter
particle suspended in KOH, KCl, NaHCO3, NH4OH, or NaOH
at a variety of electric field frequencies. An ac voltage of
5 V peak-to-peak (2.5 V amplitude) was “applied” between
parallel plate electrodes, each with an area of 10.24 cm2 and
separated by 1.4 mm. The nominal electric field strength is
given by the quotient of the peak voltage and the electrode
separation. However, the electric field strength in solution,
which acts on the particle, is the quotient of the current
density and the electrolyte conductivity. The current density
as a function of frequency was calculated from the impedance
of a resistor and a capacitor in series. A model incorporating
a resistor (R) and capacitor (C) in series is often called an RC
circuit model. The resistance of the bulk electrolyte solution
was calculated by dividing the cell constant by the electrolyte
conductivity, where the cell constant is the distance between
the working electrode and the reference electrode divided
by the area of the electrode. The capacitance of the electric
double layer of the electrode was measured in an earlier work
to be approximately 10 μF/cm2 [24]. Solution and particle
properties are summarized in Table II.

Figure 6 summarizes results from the solution of Eq. (1).
Figure 6(a) shows that the electric field inversely depends
on the electrolyte conductivity at constant ionic strength and
frequencies below 50 Hz for which the impedance associated
with double-layer polarization is not negligible compared to
the ohmic resistance of the electrically neutral bulk solution.
Based on an RC circuit model, the reduction in the electric
field strength from its limiting value of 2.5 V divided by
1.4 mm (1786 V/m) depends solely on the frequency relative
to the characteristic frequency (RC)−1 for which in-phase and
out-of-phase components of the current are equal. Electrolytes
having higher conductivities also have higher characteristic
frequencies, which shifts the curves to the right as conductivity
increases. (The ionic strength was held constant in order
to make the Debye length consistent from electrolyte to
electrolyte in the calculations and experiments, but this
introduced an effect of electric field at low frequency.) At
frequencies above 50 Hz, the electric field approached the
limiting value for all electrolytes because the impedance of
the double-layer capacitance in the system becomes negligible.
Note that we did not report the electric field strength in Fig. 5,
although it too varies with frequency. In the linear theory, all

FIG. 6. Solution of Eq. (1) for a particle in a variety of elec-
trolytes. (a) The current density and (b) the electric field strength
for each electrolyte. The electric field strength depended on the
electrolyte conductivity at frequencies <50 Hz. When the frequency
>50 Hz, the electric field in solution reaches its nominal value,
which is the quotient of the applied potential and electrode separation
distance (i.e., 2.5 V/1.4 mm = 1786 V/m). (c) The particle
position phase angle for KOH (open circles), KCl (solid squares),
NaHCO3 (solid diamonds), NH4OH (open squares), and NaOH (open
diamonds). These data show that the phase angle was electrolyte
dependent.

the amplitudes are linear in the electric field strength and the
phase angle does not depend on it.

Figure 6(c) shows that the phase angle was less than 90◦
at low frequency, approached 90◦ as frequency increased,
and then crossed 90◦ at a sufficiently high frequency. The
low-frequency behavior was a consequence of the growing
importance of colloidal forces and the decrease in electric
field strength. Phase angles were closer to 90◦ for the entire
frequency regime than those reported in Fig. 5(a). The phase
angles were closer to 90◦ because of the greater importance of
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FIG. 7. Amplitude of oscillations in particle height for KOH
(open circles), KCl (solid squares), NaHCO3 (solid diamonds),
NH4OH (open squares), and NaOH (open diamonds). (a) The
amplitude of oscillations in height were electrolyte dependent and
typically between 10 and 1000 nm. (b) Scaling the amplitude of
oscillations by the product of the electric field strength and dynamic
electrophoretic mobility collapsed the family of curves from panel (a)
onto a master curve. The dotted line in panel (b) is the linear solution
described in Sec. V B. The dotted line was obtained by solving Eq. (1)
with Q = μsf/q(h) and q(h) evaluated at h(0).

the quasisteady Stokes drag when the effect of proximity to the
wall is included. The Stokes drag term in Eq. (8) is multiplied
by q−1 [26], which increases its value by approximately an
order of magnitude compared to Fig. 5(a) which assumes the
particle is far from the wall and q = 1. Also, for a broad
frequency range, the phase angles were separated by a few
degrees depending on the dispersing electrolyte. The phase
angles calculated for a particle in KOH, NH4OH, and NaOH
tended to have phase angles smaller than those calculated for
a particle in KCl and NaHCO3.

Figure 7 shows the amplitude of oscillations in h(t). The
amplitudewas calculated by subtracting theminimum from the
maximum height (during the final full cycle) and dividing by 2.
Just like the phase angle in Fig. 6, the amplitude was a function
of frequency and the dispersing electrolyte. The differences in
the amplitude stemmed from differences in the electrophoretic
driving force for each electrolyte. A larger driving force
produced a larger amplitude of oscillation. The magnitude of
the driving force was controlled by the electric field strength
and the dynamic electrophoretic mobility. Thus the amplitude
was scaled with the product of these two quantities. The result,
shown in Fig. 7(b), was the scaled amplitude with a dimension
of time. This scaling collapsed the curves of Fig. 7(a) to a

FIG. 8. Comparison of the linear and nonlinear models for a
particle in 0.15 mM KOH at varying electric field strengths and a
fixed frequency of 100 Hz. These two models produce similar results
for (a) the phase angle and (b) the amplitude of oscillation. However,
the nonlinear model predicts substantial displacement away from
h(0), while the linear model predicts no displacement away from
h(0).

single master curve. Figure 7(b) includes a dotted line that
represents the predictions of the linear model, except that the
wall correction q−1 for the Stokes drag was included. This
line was obtained by solving Eq. (1) with Q = μsf∞/q(h)
and q(h) evaluated at h(0). The data in Fig. 7 show only a
small difference between the amplitude calculated with the
full nonlinear model and the amplitude calculated with the
linear model over a broad frequency range.

Figure 8 compares the results obtained with the linear
(including q−1) and nonlinear models as a function of electric
field strength for a fixed frequency of 100 Hz, which is relevant
to many previously conducted experiments. Figures 8(a)–8(c)
show the phase angle, amplitude, and displacement of the
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center of oscillations from h(0), respectively, for a particle in
0.15 mM KOH. The center of oscillations was calculated by
averaging the minimum and maximum heights of the particle
(during the last full cycle). The difference between this average
and h(0) was reported as the displacement in Fig. 8(c), which
shows that the center of oscillations of a particle moved
away from the electrode with increasing electric field strength.
The linear model predicts no displacement in the center of
oscillations. Figures 8(a) and 8(b) show that the nonlinear
model produced phase angles and amplitudes nearly identical
to those produced by the linear model over the entire range of
electric field strengths.

V. DISCUSSION

A. Source of electrolyte dependence of the phase angle

The dependence of aggregation or separation of particles
on electrolytes has been a paradox to the present investigators
for many years [10,13,14,16–18,22–24]. The gross response
of particles to imposed ac polarization depends weakly on
the nature of the electrolyte. However, the result is a binary
difference, aggregation or separation. Figure 6(c) resolves this
core paradox by showing that the subtle changes of phase angle
associated with differences among electrolytes are otherwise
inconsequential except that one observes opposite behavior
on one side of 90◦ or the other. Phase angles >90◦ cause
particles to separate while phase angles <90◦ cause particles
to aggregate. This sensitivity explains the discovery that a
change of anion from Cl− to OH− changes the gross behavior
of particles from aggregation to separation [18]; indeed, the
90◦ boundary is a razor’s edge that sharply separates particle
separation and attraction.

At 500 Hz, one set of electrolytes (KCl, NaHCO3) had
a phase angle >90◦ and another set (KOH, NH4OH, and
NaOH) had a phase angle of <90◦. Based on Fagan’s drift
velocity model and the results calculated here, particles in
KCl and NaHCO3 are predicted to aggregate while those in
KOH, NH4OH, and NaOH are predicted to separate at 500 Hz.
Each of these predictions matched experimental observations.

The primary origin of electrolyte dependence was the
difference in the complexDEMof each electrolyte, specifically
the phase angle. Figure 4 shows that the DEM phase angle
was different for each electrolyte in the frequency range tested
here. An external electric field breaks the particle’s azimuthal
charge symmetry (see Fig. 9); the concentration of cations at
one pole of a negatively charged particle decreases and the
concentration of anions at the opposite pole of the particle
increases. Consequently, the particle and its diffuse cloud
acquire a net dipole moment. This dipole moment disturbs the
local electric field; a reverse component (sometimes called the
“back” electric field, Eb) restores the equilibrium structure of
the diffuse layer. Along the surface of the particle,Eb generally
acts oppositely to the direction of the applied electric field.

The DEM phase angle is a consequence of the finite time
required for the redistribution of ions in the diffuse layer in
response to a change in the applied electric field. In contrast,
the back electric field Eb responds instantaneously to the
distribution of ions around the particle. The particle responds
to the sum of the applied and back electric fields. As frequency

FIG. 9. Illustration of diffuse layer polarization. Both the external
electric field E and back electric field Eb oscillate, but are not
necessarily in phase. The phase difference between these two electric
fields causes a phase angle in the dynamic electrophoretic mobility
of the particle.

→ 0 Hz, the phase angle between the external and back
electric fields approaches 180◦; i.e., the electric fields are in
phase, but are opposite in sign. In this frequency regime, the
sum electric field produces a DEM phase angle of 0◦ [see
Fig. 4(b)] because the ions in the diffuse cloud can achieve
their equilibrium distribution at each instant of time. As the
frequency increases above 0 Hz, the redistribution of ions in
the diffuse cloud (affecting the back electric field) does not
respond instantaneously. The delayed response of the back
electric field causes the sum electric field to lead the applied
electric field, which drives the mobility phase angle to increase
above 0◦. As the frequency of the external electric field is
further increased, the inertia of both the particle and displaced
fluid increases in importance and the mobility phase angle
drops below 0◦. The balance between the dynamic transport
of ions and the particle-fluid inertia causes a maximum in the
mobility phase angle. Clearly, the ion’s diffusion coefficient
must affect this balance.

The effect of the anion’s diffusion coefficient D− on the
DEM was calculated by systematically varying the value of
the anion diffusion coefficient and fixing the cation’s diffusion
coefficient at 2.66 × 10−5 cm2/s. Figure 10 shows the DEM
phase angle for three values of D. The anion (co-ion to the
charge of the particle) had a substantial impact on the DEM
phase angle, which is important because a larger DEM phase
angle corresponds to a particle phase angle farther from 90◦.
This behavior is illustrated in Fig. 4. For electrolytes with the
same cation (KOH and KCl, NaOH and NaHCO3), the DEM
phase angle was larger for the electrolyte with an anion having
a larger diffusion coefficient. The importance of the co-ion to
the DEM phase angle might surprise some readers because the
concentration of co-ions in the diffuse layer is much smaller
than the concentration of counterions.

The secondary origin of the electrolyte dependence of the
phase angle was the previously neglected difference in bulk
electrolyte conductivity. Electrolyte solutions with a larger
conductivity had a smaller electric field at fixed frequency
below 50 Hz [see Fig. 6(a)]. An increase in electric field
strength increased the value of the phase angle [see Fig. 8(a)],
provided the electric field was>∼250V/m. Thus, electrolytes
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FIG. 10. The dynamic electrophoretic mobility (DEM) phase
angle of a particle dispersed in electrolyte with systematically
different anion diffusion coefficients.D(-) is the value of the diffusion
coefficient of the anion (co-ion to the charge of the particle) and has
units of 10−5 cm2/s. The value of the cation (counterion) diffusion
coefficient was held fixed at 2.66 × 10−5 cm2/s. These data illustrate
the importance of the diffusion coefficient of the co-ion.A larger value
of the co-ion diffusion coefficient produced a larger DEMphase angle
and, thus, a lower particle position phase angle.

with a small conductivity (and larger electric field strength at
fixed frequency) tended to have a larger phase angle at fixed
ionic strength.

B. Comparing the linear and nonlinear models

Figures 7 and 8 show that the linear and nonlinear models
produce very similar results. In particular, Figs. 8(a) and 8(b)
show that the two models produce nearly identical phase
angles and amplitudes for a wide range of electric field
strengths. The main difference between the two models is the
displacement in the center of oscillations: the linear model
predicts no shift in the center regardless of electric field
strength, but the nonlinear model predicts a significant shift
in the center away from the wall [see Fig. 8(c)]. Indeed, when
the amplitude of the oscillations in elevation exceeds h(0),
the presence of an impenetrable wall forces a shift outward.
The impenetrability of the wall is manifested in the nonlinear
model as an exponentially increasing double-layer repulsion
as the particle approaches the wall. By contrast, the colloidal
forces are modeled as a linear spring, which are symmetric
about h(0), in the linear model.

While the linearization of the colloidal forces can explain
the differences in the displacement in the center of oscillations
predicted by the two models, it does not affect the predictions
of phase angles or of the amplitude of those oscillations
because colloidal forces are not a significant factor in Eq. (1)
after the initial transient has expired and stationary oscillations
occur. Wirth et al. [24] used the linear model to investigate
the relative importance of various forces appearing in Eq. (1)
on the stationary oscillations in elevation as a function of
frequency (see Fig. 11 in Ref. [24]). At 100 Hz (the frequency
used in Figs. 7 and 8), the applied electrophoretic force was
balanced (to about 90%) by the quasisteady Stokes drag term
in Eq. (6). In the linear model of Ref. [24], the particle was
far from any wall and f∞ = 6πηa was used as the drag

coefficient. In the linear model considered here, we partially
account for the effect of the nearby wall by using a drag
coefficient of f∞/q[h (0)]. The inclusion of thewall correction
q−1 increases the drag coefficient by an order of magnitude,
which increases the range of frequencies for which the applied
electrophoretic force is balanced by the quasisteady Stokes
drag. In other words, at frequencies near 100 Hz, Eqs. (1), (9),
and (10) can be approximated by neglecting inertia, colloidal
forces, the Basset force, and the dielectrophoretic force,
leaving only quasisteady Stokes drag and the electrophoretic
force:

f∞
q [h(0)]

dh

dt
= QE (t) = f∞μ

q [h (0)]
E(t). (24)

Since the same value of the drag coefficient is used in both of
the remaining terms, it vanishes from the equation, leaving

dh

dt
= μE(t). (25)

Thus the amplitude of oscillations given by Fig. 8(b) is—to
a good approximation—just the integral of the electrophoretic
velocity of the particle in an unbounded fluid over half of
the cycle during which the electric field is pointing in the
+ h direction. The main difference between the linear and
nonlinear models in this case is that the nonlinear model
uses a drag coefficient of f∞/q[h (t)], which varies with
time, whereas the linear model uses f∞/q[h (0)], which is
constant. Although the time dependence in the drag coefficient
is substantial at high electric fields (for which the amplitude of
elevation oscillations is substantial), since the drag coefficient
cancels out in Eq. (24), the different values used in the two
models are not important, which explains the good agreement
seen in Fig. 8(b).

Equation (24) leads to a phase angle of 90◦ betweenh(t) and
E(t), which is very close to the 88.5◦ reported in Fig. 8(a) for
low electric field amplitudes for both the linear and nonlinear
models. About 1◦ of this difference (between 90◦ and 88.5◦)
can be attributed to the dynamic electrophoretic mobility [see
the KOH curve at 100 Hz in Fig. 4(b)]. The remainder arises
in either model from small contributions from other forces
neglected in the derivation of Eq. (24).

C. Limitations of the present model: Electrode effects

We have assumed that electroosmosis resulting from inter-
action of the imposed electric field with the diffuse cloud
of the electrode did not contribute to the motion of the
particle. Other investigators have shown that electroosmotic
flow might be generated along the electrode surface and
would contribute to the force experienced by the particle
normal to the electrode [14,35]. For example, Yariv [35]
investigated the O(E) force experienced by a particle because
of electroosmotic flow driven by the action of the electric field
on the diffuse charge clouds of the surface of both the particle
and the electrode. ICEO, which scales with the square of the
electric field (∼Ẽ2) [15], might contribute force in the normal
direction. Even a small effect of ICEO on the phase angle
could cause a difference between aggregation and separation
of particles because the phase angle is close to 90◦. Both of
these effects (equilibrium and induced charge electroosmosis)
probably contribute to electrolyte dependence in the value of
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the phase angle, but we are unaware of any treatment of these
effects where the diffusion coefficients of the ions in solution
are unequal.

VI. CONCLUSIONS

An a priori prediction of electrolyte-dependent particle
motion in the direction normal to an electrode undergoing
ac polarization was presented. The solution to the nonlinear
integro-differential equation of motion of a particle near an
ac electrode was obtained with a successive approximation
numerical algorithm. The algorithm was tested against a
known solution of a linearized problem. Highly accurate
results were obtained for the test problem. The full nonlinear
integro-differential equation was solved for a particle in KOH,
KCl, NaHCO3, NH4OH, or NaOH with a full description of
the dynamic electrophoretic mobility (DEM) of the particle.
The phase angle and amplitude of oscillation were found
to be electrolyte dependent. The calculated phase angles
for a particle in KOH, NH4OH, and NaOH were smaller
than the phase angles calculated for a particle in KCl and
NaHCO3, which is consistent with experimental results. All
phase angles collapsed to the 90◦ line, which is the razor’s edge

boundary between particle repulsion and attraction. Thus, the
small difference in phase angle between electrolytes (∼1◦)
was sufficient to predict separation for particles in some
electrolytes and aggregation in others. Further, the family
of curves for the amplitude of oscillation as a function
of frequency was collapsed to a master curve by scaling
the amplitude by the electric field strength and the DEM.
There were two origins of this electrolyte dependence, (1)
the complex dynamic electrophoretic mobility was electrolyte
dependent and (2) the strength of the electric field was
electrolyte dependent at frequencies <50 Hz. Future work
should determine the full effect of electroosmotic flow (either
equilibrium or induced charge) along the electrode on force
experienced by the particle.
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