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REVIEW ARTICLE

Insights into metastability of photovoltaic materials at the mesoscale
through massive I–V analytics

Timothy J. Peshek,a) Justin S. Fada, Yang Hu, Yifan Xu, and Mohamed A. Elsaeiti
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106

Erdmut Schnabel and Michael K€ohl
Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstrasse 2, 79110 Freiburg, Germany

Roger H. French
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106

(Received 3 May 2016; accepted 26 July 2016; published 12 August 2016)

The authors demonstrate the feasibility of quantifying cell-level performance heterogeneity from

module-level I–V curves by determining conditions of bypass diode turn-on. Analysis of these

curves falls outside of typical diode-based models of photovoltaic (PV) performance. The authors

show that this approach can leverage statistical and machine learning techniques for broad applica-

tion to massive datasets, and combine those insights with simulations and laboratory-based experi-

ments to provide useful information into the metastability of the interfaces of a PV cell. The

authors find good agreement between the experimentally determined curves and the simulated

curves, which guide the variable selection in the massive dataset collected from sites in Cleveland,

OH, USA, the Negev Desert, Israel, Isla Gran Canaria, Spain, and Mount Zugspitze, Germany.
VC 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
[http://dx.doi.org/10.1116/1.4960628]

I. INTRODUCTION AND BACKGROUND

The study of real materials systems undergoing real-world

operation and degradation processes is a challenging problem

in the area of mesoscale science.1–3 We focus here on the tem-

poral evolution of electrical properties and behavior of photo-

voltaic energy materials, particularly crystalline silicon solar

cells, which include dynamics on timescales from minority

carrier lifetimes in milliseconds to degradation-related device

lifetimes in gigaseconds (30 years).4 Connection across this

broad expanse of time-scales is essential for a physics-based

understanding of slow and rare events associated with degra-

dation and performance over lifetime. We provide a review

of literature relating to the topics of modeling the current–

voltage characteristics (I–V curves) of solar cells and modules

and the challenges of connecting those performance models

to both large scale deployment of photovoltaics and action-

able insights into the microscopic performance mechanisms.

With the rapid deployment of large scale global photovol-

taics, there exist massive time-series datastreams on perfor-

mance that can be aggregated and mined for signatures of

climate-dependent degradation. In this sense, a statistically

or data-driven approach to modeling the performance can

detect subtle population differences and indicate the impact

of real-world dynamics on the system metastability and per-

formance. The laboratory and its analytical tools remains the

arena where macroscopic performance can be linked to

mesoscopic behavior; yet correlating any “engineered

damage” to the solar cells to real-world performance remains

a high barrier. This barrier is greatly reduced through

acquiring and mining complete current–voltage (I–V) and

maximum power point (Pmp) characteristics as time-series

datastreams on cells in these two arenas and by acquiring

massive data on the real-world environment using distributed

sensors and newer forms of satellite-based imagery for

weather and insolation data. Degradation-induced failures

have been an ongoing characteristic of new and promising

PV cells5 and other energy materials even as producers con-

tinue to offer 25 year warranties.

We will first discuss the dominant physics-based diode

models that have been used to extract useful parametric

information on photovoltaic cell performance. Next we dis-

cuss the realistic electrically active interfaces in typical crys-

talline silicon cells, and how these encompass a more

complex device architecture than a simple diode model

approach. Various methods are then presented for extracting

useful information from I � V;Pmp time-series, comparing

and contrasting the physics-based approaches with different

data-driven statistical and machine learning approaches.

This I � V;Pmp time-series analysis approach is then demon-

strated by developing lab-based hypotheses and experiments

that are compared quantitatively with observed real-world

data, and generating a data-driven hypothesis-testing processa)Electronic mail: tjp3@case.edu
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model, so as to illustrate some of the opportunities of this

approach.

A. Physics-based diode models for photovoltaic cells

To model the I–V curve of an arbitrary solar cell a macro-

scopic physics-based model consisting of a current source,

single pn diode, and two resistors is typically utilized.6

Often, researchers may also add a parallel second diode, or

“recombination diode” that describes an internal carrier

recombination process that is nonlinear.7,8 In this “two-

diode” model solving parallel Shockley equations becomes

intractable and many assumptions are required to simplify

and specify the system.9 For simplicity, many researchers

study performance within the paradigm of the single diode

model. This model has had good success reproducing the

shape of the curve for single cells, but its coarse grain struc-

ture yields few insights into mesoscopic behavior. To illus-

trate this issue, we describe a typical approach to obtain the

series resistance of a solar cell, which typically represents

the behavior of the front and back cell contacts.

Applying Kirchoff’s laws and the Shockley equation

yields the relationship between current (I) and voltage (V)

for a solar cell in this single-diode model

I V; Tð Þ ¼ IL � I0 exp
V þ IRS

NsnVth Tð Þ � 1

� �
� V þ IRS

Rsh
; (1)

where IL is the light induced current from photon absorption,

I0 is the reverse saturation current, Ns is the number of cells

in the module, n is the diode ideality factor, Rs is the cell

series resistance, Rsh is the cell shunt resistance, and Vth is

the thermal voltage equal to q/kT, where q is the elementary

charge of an electron and k is Boltzmann’s constant.

Because of the transcendental nature of Eq. (1), it is not pos-

sible to solve in terms of I(V) explicitly, except by means of

the Lambert-W function.10 Typically, these data may be

used simply to estimate Isc; Voc, maximum power point

(Pmp), fill factor (FF).

Many techniques for I–V curve parameter extraction

exist, ranging from simple to complex.11–20 All of these

techniques are based upon analyzing the transcendental

equation in certain regimes, i.e., near short circuit, open

circuit or maximum power, and drawing upon several

assumptions that typically hold for efficient solar cells. We

consider only methods that invoke the diode equation of

Eq. (1) and do not simplify it by, for example, ignoring the

shunt resistance contribution,20 and provide an example

analysis.15 We intend to determine the series resistance,

shunt resistance, and ideality factor variation in time. One

common and straightforward manner for estimating the

series and shunt resistance of the PV module is by simply

calculating the pointwise resistance curve for an I–V curve,

given by R(V)¼�1/(dI/dV), where Rs¼R(V¼Voc) and

Rsh ¼ RðV ¼ 0Þ.12

Analytical solutions to the transcendental equation exist

based upon the Lambert-W function,10,21 that Ghani et al.22

used to estimate the series, shunt resistances, and diode ide-

ality factor. This analytical solution for I(V, T) is given by

I V;Tð Þ ¼ IL � I0ð Þ �NsV=Rsh

1þRs=Rsh
� nVth

Rs
�W F V;Tð Þ½ �; (2)

where W[F(V, T)] is Lambert’s W function, with F(V, T), the

functional, equaling

F V;Tð Þ ¼ I0Rs

nVth RsþRshð Þ

� exp
NsV

nVth
1� Rs

RsþRsh

� �
þ IL � I0ð ÞRs

nVth RsþRshð Þ

� �
:

(3)

This unwieldy analytical solution is straightforward to sim-

plify by invoking that generally Rsh � Rs and IL � I0; how-

ever, there is often more utility in solving for voltage, which

we will utilize later in Sec. III B:

V I; Tð Þ ¼ IL þ I0ð ÞRsh � I Rs þ Rshð Þ

�nVthW
I0Rsh

nVth
exp

IL þ I0 � Ið ÞRsh

nVth

� �� �
: (4)

Petrone et al.23 found the analytical solution useful to pre-

dict behavior of a nonuniformly illuminated field of PV

modules, and researchers in the area of PV-related power

electronics have used the analytical solutions for maximum-

power-point-tracking algorithm development. However,

these methods are ultimately based upon the simplistic diode

equivalent circuit model that may not capture all of the

behavior of complex systems.

Although problems arise when using this technique, since

realistic values of Rs are only found when Rs is rather high,

compared to Rs of many real modules, and therefore, Rs

losses dominate the I–V curve as V approaches Voc. This

method for estimating Rsh is commonly used in many param-

eter extraction techniques15 although Hansen14 has ques-

tioned its validity and developed a novel iterative integral

approach to solving Eq. (1).

Khan15 found the slope of the I–V curve (m ¼ dI=dV),

and find moc and msc, which is dI=dV at V¼Voc and V¼ 0,

respectively,

msc ¼
1=Rsh þ

I0Vth

n
exp

IscRs

Vthn

� �� �

1þ Rs 1=Rsh þ
I0Vth

n
exp

IscRs

Vthn

� �� � ; (5)

and

moc ¼
1=Rsh þ

I0Vth

n
exp

Voc

Vthn

� �� �

1þ Rs 1=Rsh þ
I0Vth

n
exp

Voc

Vthn

� �� � : (6)

Under the assumptions

Rs � Rsh; (7)

Voc � IscRs; (8)
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which lead to the following inequality:

I0

Vthn
exp

IscRs

Vthn

� �
� 1

Rsh
� I0

Vthn
exp

Voc

Vthn

� �
: (9)

Relation (9) allows for simplification of Eqs. (5) and (6), and

applying the substitution

I0 exp
Voc

Vthn

� �
� Isc �

Voc

Rsh
(10)

results in

m�1
sc ¼ Rsh; (11)

m�1
oc ¼ Rs þ nVth

1

Isc � Voc=Rsh

� �
: (12)

Therefore, for a collection of I–V curves, the inverted slope

at open circuit has a linear dependence on 1=ðIsc � Voc=RshÞ,
where the y-intercept is equal to Rs and the ideality factor

n can be obtained from the slope. This relation was tested

using massive real-world data,24 and we found that the

assumptions listed above held for typical PV modules.

Further we tested the model using nonuniformly illuminated

I–V curves, under mirror augmentation to seek signatures of

degradation and no significant change in the Rs was found

over 6 months. However, this analysis exhibited a bimodal

distribution in the estimation of Rs and overall indicated that

the method is not sensitive enough to track small changes in

the modules over this period of time. In addition, the assump-

tion that a 60-cell module is fully described by a single diode

model and particularly that a nonuniformly illuminated mod-

ule is described by a single shunt resistance is unreasonable.

In explorations beyond simplistic diode models, Sellner

et al.25,26 described a novel “loss factors model” that describes

six parameters that describe the system power losses and can

be more easily extracted from I–V curves. In the study of deg-

radation in performance, a loss factors model is a potentially

useful description of system performance; yet, this model is

largely derived from the diode model as well.27 As such,

the loss factors model cannot model and estimate or predict

behavior of I–V curves with bypass diodes.

II. MESOSCALE DESCRIPTION OF SOLAR CELL
INTERFACES AND CONTACTS

Here, we focus on conventional Al back surface field

(BSF) solar cells which contain a series of distinct and criti-

cally important interfaces which play an essential role in the

performance and degradation of PV modules over their life-

time. It is common that engineering solutions to performance

issues are developed and commercialized without a complete

understanding of the behavioral mechanisms at the micro-

scale, let alone the lifetime limiting mechanisms towards

gigasecond time scales. These interfaces include the screen-

printed silver (SP-Ag) metallization grid, the front-surface

passivation, the pn junction itself, and the back-surface field

that limits recombination in the aluminum back-surface con-

tact. For example, the screen-printed silver metallization

grid on the front of the solar cells, which is applied as a paste

consisting of silver nanoparticles, glass frit, various organic

binders and subsequently fired, can be susceptible to corro-

sion from acetic acid produced in the ethylene-vinyl acetate

(EVA) encapsulant in front of the c-Si cell.

SP-Ag conductive lines are used in commercial silicon

photovoltaic (PV) cells as a front-side electrical contact to

the emitter. Formulation of the SP-Ag pastes includes

micron-scale silver particles (1–10 lm), glass, and organic

surfactants that facilitate printing and agglomeration upon

firing.28 The screen-printed precursor undergoes a firing pro-

cess that reaches up to 850 �C, where the glass frit etches the

SiNx antireflection coating allowing for contact formation to

the emitter. The final conductive lines are composed of

flocced silver particles and glass matrix.29,30 The geometry,

morphology, and components of the conductive lines have

been studied to minimize shading of the cells while main-

taining good conductance.31–33 Research on the conductive

lines has typically focused on the conductor line microstruc-

ture throughout the firing process34 and the interface

between the screen-printed conductive lines and the emitter

as a function of precursor constituents to optimize the initial

electrical performance.30,34–38 The microscopic mechanisms

that result in the formation of the low resistance contact

between the silver conductive lines and the solar cell are still

being uncovered,28 but two prevailing models are generally

accepted. One hypothesis suggests that the Ag becomes dis-

solved within the molten glass frit, and upon cooling down,

the supersaturated solution allows large grain growth at the

Si interface causing a Schottky-barrierlike boundary that

acts more Ohmic as the emitter doping concentration is

increased to nþþ levels. Another hypothesis is that Ag nano-

particles precipitate and are held in a colloidal suspension in

an interfacial glass film contacting the emitter, with conduc-

tion enabled through quantum mechanical tunneling through

the insulator regions. Cooper et al.28 investigated these mod-

els finding evidence for both models prevailing in various

regimes of firing temperature and emitter doping concentra-

tion; due to this dependency, one can expect that deployed

systems are widely varying and their response to climatic

conditions and degradation in performance is highly variable

and heterogeneous. We expect to see great variability in the

real-world lifetime performance of c-Si BSF SP-Ag cells.

These characterization schemes can be illuminating but

quantitative and predictive relationships to the real operation

of gigawatts of photovoltaic cells is tenuous. Similarly,

modeling the underlying performance and performance deg-

radation of screen printed silver contacts assuming a PV

module is modeled by a single diode and series and parallel

resistances will likely miss the complexity of behavior

because the diode model lacks the essential parameters for

this complex materials system.6 The series resistance, in par-

ticular, comprises several contributors and is not unrelated to

the shunt resistance—or recombination current—in real

devices. Yet by studying the massive real-world datastreams

using data-driven models can provide new insights into com-

plex behavior. For example, we will show here that it is pos-

sible to model the behavior of nonuniform PV modules with
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bypass diodes, and from the “turn-on” voltage of the bypass

diode to model relative changes in the series resistance and

the distribution of series resistance among the cells.

Considerable research has already been published on

observed degradation modes or mechanisms, but it is not

clear how these mechanisms interact or how the network of

mechanistic degradation pathways, acting in parallel or

series, actually produce the degradation in performance.39

Reliability research efforts conducted on complete modules

are typically conducted in the laboratory under accelerated

aging conditions, exposing the module to high doses of heat/

humidity and/or light well in excess of the extremes of the

real world. Relative humidity of 85 �C and 85% is a typical

exposure condition for accelerated aging.

III. ANALYTICS

As we are concerned with degradation in performance

over lifetime, the variation in time of Pmp and FF would con-

vey the relative performance loss. The parameters Rs, Rsh, n,

and I0 are representations of the I–V curve behavior and are

more intimately linked to fundamental mechanisms of the

degradation phenomena. To gain insights into degradation

phenomena it is desirable to track the I–V shape phenomena

as time series data.

The International Energy Agency’s (IEA) PV Power

Systems Programme Task 13 (Ref. 40) cataloged a collection

of I–V curve responses related to PV module degradation

and failure,5 which we summarize in Fig. 1.

This typical selection of I–V curves indicates the features

already associated with degradation mechanisms, although

I–V curve shapes shown have been generated from equiva-

lent circuit, or diode, models, i.e., the five parameters

described earlier. Yet these shapes form the basis of what

can be used for automated feature selection among massive

datasets of I–V curves. In addition, the IEA report catalogs

“inflex points,” which we refer to as “change points,” as

points in the I–V curve where bypass diodes become for-

ward biased and turn-on due to module heterogeneities.

These heterogeneities can include cell cracking and hot

spots for example and are more closely linked to the meso-

scale degradation processes affecting localized areas of a

single, or a few cells, in a module or string of modules. In

this manuscript, we will describe the importance and utility

of these points and the voltage at which they appear. We

will also classify the change points as well as the overall

curve shape.

A. Machine-learning modeling

New techniques of modeling solar cell behavior have been

developed of late that are largely data-driven and less

restricted by the mathematical tractability of physics-based

diode models and draw upon advances in statistical and

machine learning.41,42 Many of these techniques are super-

vised, in that the data are labeled and identified by a

researcher a priori. Riley and Venayagamoorthy43 employed

a recurrent neural network to model maximum power time

series behavior for a systematic model of PV performance

and also described the utility of this methodology for prog-

nostics and health management of PV systems over time.44

Other authors more recently have been utilizing machine

learning algorithms to better predict the behavior of PV sys-

tems beginning within the constraints of the diode model, but

these approaches have utility in a more supervised manner

as well. For example, genetic algorithms45 and differential

evolution has been used to parametrize the I–V curve for

sample PV cells.46 These methods are largely used as optimi-

zation and fitting methodologies by researchers in control

theory to find best values within the single diode model

for fitting to real data, yet these metaheuristics hold

much promise for supervised analytics of I–V curves.47

FIG. 1. (Color online) Selection of I–V curves from Ref. 5 and typical associated degradation mechanisms. Red curves depict the beginning-of-life profile for a

PV module, and the blue curves depict the degraded output.
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Machine-learning techniques can be utilized to classify and

find anomalous behavior in the data, such as bypassing of

I–V curves.

Machine-learning anomaly detection techniques can be

supervised, semisupervised, or unsupervised,41 depending on

whether the dataset is labeled as typical or anomalous. The

massive amount of PV data that exist as power, I–V, and

weather time series suggests that these data are ripe for unsu-

pervised machine learning automated analytics techniques.

We have developed an automated analysis of I–V curves

based on a nonparametric regression approach of local poly-

nomial regression,48 and using the loess package in R.49,50 In

a population of I–V curves, such as acquired in a time-series

study and dataset, the majority of curves are typical in shape

as may well fit the simplistic diode model. This aids in the

automated anomaly detection of I–V curves where the

emphasis is to identify unusual curves exhibiting change

points or inflection points. The loess, nonparametric regres-

sion approach we developed allow for model independent

analysis of I–V time-series datasets, in which anomaly detec-

tion is the focus. Further, the machine-learning techniques

need not try to analyze and fit curves to standard macro-

scopic physical models, but rather utilized to develop data-

driven representations of the data that can be used in support

of laboratory-based experimentation. In this concept, it

becomes less critical to translate an increase in series resis-

tance from real-world to laboratory, as it is to identify fea-

tures and characteristics of the curve shape and translate

those features among disparate datasets.

B. SPICE modeling

Building upon diode modeling, some researchers have

utilized simulation program with integrated circuit emphasis

(SPICE) to simulate behavior of the equivalent circuits.51–53

Here, SPICE can provide a compromise between diode

modeling and totally supervised models in that SPICE is

built on a numerical solver and therefore with no inherent

limitations on granularity. Further, there is no specification a
priori of the equivalent circuit model to employ that

describes a solar cell, and any other contributors including

bypass diodes can be added. Although these models inher-

ently have no connection to microscopic or quantum effects,

the purely macroscopic coarseness can be mitigated to

approach the mesoscale by deploying a high density of

equivalent circuits per unit of real space.

We invoked this type of modeling to rapidly step

through simulation scenarios and test hypotheses related

to nonuniform illumination. Our models started with a sin-

gle diode model for each cell, with the ability to vary

series and shunt resistors, diode parameters, as well as

illumination. In this way, we simulate a generalized ver-

sion of Eq. (1), where we abandon the trivial example of

all cells having equivalent parameters and the voltage

scales by Ns the number of solar cells, and instead replace

it, whereby the voltage is a function of current for any

given solar cell, i, given by

Vi I;Tið Þ ¼ Min IL½ � þ I0;i

� �
Rsh;i� I Rs;iþRsh;ið Þ

�niVth;i�W
I0;iRsh;i

niVth;i
exp

IL;iþ I0;i� Ið ÞRsh;i

niVth;i

� �
;

�

(13)

where Min½IL� is an operator to find the minimum IL in the

entire ensemble of i solar cells. Here, the ensemble is the

collection of I–V curves in a substring spanned by a bypass

diode, and in the event of bypassing will include the bypass

diode. Then, the complete I–V curve could be found by sum-

ming all ViðI; TiÞ, and summing over all substrings, s, as in

VðI; TÞ ¼
X

s

X
i

ViðI; TiÞ: (14)

Our SPICE models were built in the Linear Technology

SPICE (LTSPICE) distribution, and incorporated 60 individual

circuit equivalent models for a solar cell with resistive inter-

connects and three bypass diodes equally distributed to con-

struct a commercial 60-cell module. Our models allowed for

direct I–V curve generation given the input parameters of tem-

perature, integrated irradiance, series and shunt resistance,

reverse saturation current, and diode ideality factor. This sim-

ple model was used to test the behavior of bypass diodes under

forward and reverse bias conditions and simulate a large matrix

of conditions related to changing the series and shunt resistors,

photogenerated current, and any diode parameter we choose.

To add utility and rigor to the description and discussion

of I–V curves with bypassing, we developed the following

classification rules that are most easily understood when I–V
curves are transformed into the power versus voltage, P–V,

space, where P ¼ I � V. Conventional I–V curves exhibit a

single global maximum in the P–V space, or Pg
max;1, where

the nonconventional superscript represents “global.” We

also associate with that Pg
max point a change-point at the

open-circuit voltage, Voc. Since Voc is also one of two global

minima in power along with Isc, we can describe these points

as Pg
min;1 and Pg

min;2, respectively. For curves that show

change points due to bypassing, the form of the P–V curve

will show additional power maxima and minima for each

change point. Thus, for example, a curve with three sub-

strings under different irradiances will exhibit three change

points (the turn-on voltage of two bypass diodes plus the

open circuit voltage) that correspond to three minima in

power, or Pg
min;1;P

l
min;2;P

l
min;3;P

g
min;4, where Pg

min;4 in this

case is the Isc. Correspondingly, there are three power max-

ima, and a comparison among these is required to determine

which is the global maximum. We describe this set as Pg
max;1;

Pl
max;2;P

l
max;3, and in this example scenario, the local maxi-

mum closest in voltage to Voc is the global maximum.

The utility of this method is exemplified by simulating

a four-cell “minimodule” comprising two substrings with

Schottky bypass diodes in a configuration shown in Fig. 2.

Sweeping the series resistance of a single cell under nonuni-

form irradiance is clearly changing the turn-on voltage of the

string bypass in a predictable manner. The results of the

SPICE simulation for varying irradiance and variable series

resistance of a single cell are shown as a series of curves in
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Fig. 3. Further we find that for large series resistance values

bypassing is turned on even under uniform irradiance, which

will be shown below when compared to experimental

measurements.

Hence, modules in the field with bypassing evident in the

I–V curves need not always be nonuniformly illuminated,

but localized hotspots can dramatically and temporarily

increase the resistance of a cell and hypothetically manifest

as bypassing. Next, we fabricated four-cell minimodules in

order to compare experimental measurements with the

simulation.

IV. EXPERIMENT

Here, we will verify in the laboratory the features that

will be sought in the massive datasets obtained in the real-

world and validate the shape of I–V curves related to specific

degradation mechanisms causing heterogenous degradation

of SP-Ag contacts.

A. Laboratory-based: Engineered damage signatures

We fabricated a four-cell mini module with three identi-

cal new cells and one cell heavily degraded. The cells were

multicrystalline silicon, 156� 156 mm2, purchased from

Q-Cells and were approximately 15% efficient. These cells

contain three busbars and SP-Ag conductive lines making

contact to the front emitter. The cells were placed in a 2� 2

pattern, and each two-cell half was tabbed and strung in

series, and then, the interconnect was run outside of the lami-

nated module. The modules were laminated using a polye-

thyleneterephthalate (PET) backsheet, two layers of EVA,

and tempered front glass.

Heavily degraded PV cells were made by exposing several

cells to the ASTM G154 cycle four testing protocol, using

an environmental chamber (QUV by Q-Lab) to heavily degrade

its performance. The cycle consists of 8 h UV exposure at

70 �C, followed by 4 h condensing humidity at 50 �C. The inten-

sity of the UV exposure is 1.55 W/m2/nm centered at 340 nm,

approximately five times the intensity of the UV component of

1 sun, i.e., AM 1.5 over 7 days. Hypothetically, the multifactor

exposure condition will greatly degrade the performance of the

solar cells by preferentially corroding the screen printed silver

front contact.54,55 To enhance series resistivity further, only the

center busbar was tabbed for current collection. In this way, we

engineered damage into the cell in a predictable manner.

A solar simulator, the Solo Apollo by AllReal, and a

DayStar DS100-C I–V curve tracer were used to characterize

the degraded cells by collecting several I–V curves at points

in time. A downward trend in the maximum power of three-

cells connected in series was observed over the exposure

time and is shown in Fig. 4. All data points were normalized

FIG. 2. (Color online) Schematic from LTSPICE showing four solar cells in

series, described by their single diode equivalent circuit model, with two

Schottky bypass diodes.

FIG. 3. (Color online) I–V curves generated from SPICE, stepping through

values of series resistance for one cell, holding the other three constant. Also,

we stepped through irradiance values resulting in a matrix of simulated

curves. In this plot, we can see that the bypass turn-on voltage is not strongly

dependent upon the irradiance mismatch in these ranges but is strongly

dependent upon the effective series resistance of the “damaged” cell.

FIG. 4. (Color online) Plot of the average power of a 156 � 156 mm solar

cell vs time in exposure under conditions prescribed in the ASTM G154

testing protocol and a linear fit to the power.
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to standard test conditions of 1000 W/m2 and 25 �C. The

thermal coefficient of the maximum power shift is explicitly

provided by the datasheet for the solar cells used and is equal

to 0.43%/K.

B. Outdoor studies

The Solar Durability and Lifetime Extension (SDLE)

Research Center at Case Western Reserve University owns

and operates a unique outdoor test facility, the “SDLE

SunFarm” in Cleveland, OH,56 that provides 14 dual-axis

solar trackers populated with 144 commercial photovoltaic

modules, 122 individual grid-connected photovoltaic power

plants of varying power, and four mirror-augmented PV

(MAPV) modules,57 with controllable nonuniform irradiance

forcing bypass diodes to be forward biased.

The MAPV modules are not grid-connected, but instead

were loaded by a 32 channel DayStar Multitracer, which

provides maximum power point tracking and also scans the

full I–V curve from open circuit voltage (Voc) to Isc at regu-

lar 10 min intervals. Additionally, climatic (weather and

irradiance) metrology is provided by irradiance pyranome-

ters and pyrheliometers (Kipp and Zonen CMP 11 and CHP

1). The weather station (Vaisala WXT520) is capable of

providing measurements58 of air temperature, wind speed,

wind direction, relative humidity, rain intensity, and rain

direction, and these data are collected by a networked

data acquisition system (Campbell Scientific CR1000) on a

minute-by-minute basis.56 T-type thermocouples affixed to

the back of the MAPV modules provide the local tempera-

ture of the module.

Fraunhofer ISE provide us access to their raw outdoor

I–V curve data, tracking data, and supplementary weather

data from three different outdoor test facilities.58–60 These

outdoor test facilities are located at Isla Gran Canaria, Spain

(GC), Mount Zugspitze, Germany (UFS), and Negev Desert,

Isreal (NEG). The sites in GC and UFS have been recording

data since 2010 while the NEG site started recording from

2012. On each of the three sites, I–V curve of two module

samples are measured every 5 min. The maximum power

output of the module is recorded approximately every

minute between sequential I–V measurements.

V. DISCUSSION

A. Engineered damage

We collected irradiance-dependent I–V curves for two

halves of the minimodule with engineered damage, as shown

in Fig. 5. These curves show the disparity in performance

between two cells that are new and two cells where one is

new and one is heavily degraded and highly resistive.

Among the damaged cells, we see that the behavior is not

simply modeled by an increase in the series resistance,

which is evident at voltages near Voc but the slope near short

circuit is also affected. This region of the curve is associated

with the shunt resistance in a diode model system and repre-

sents Ohmic carrier recombination mechanisms. The data

support the interpretation that an increase in the series resis-

tance, which is itself comprised of many factors, is linked to

the shunt resistance in that the resistance cannot support

fully the available current and more photogenerated carriers

are recombining even if the characteristic scattering time is

unchanged in the bulk.

The minimodule fabricated with the damaged cell showed

bypass diode turn-on under uniform irradiance, due to the

resistances of the cells being strongly nonuniform. This

observation demonstrates the potential for real-world mod-

ules to show bypassing even under uniform illumination if a

localized cell or interconnect becomes highly resistive. A

scenario in which this observable may be found is localized

hot spots, where positive thermal feedback occurs because

the photogenerated carriers of a solar cell are thought of as a

current source. Current sources through a resistor can

undergo thermal runaway effects because the power dissipa-

tion is I2R and I is unchanged at the source, but as R increases

the power dissipation increases, causing local heating and a

continual increase in R.

Comparing the measurements of the irradiance-dependent

I–V curves of the minimodule with engineered damage and

SPICE modeling shows similar behavior. The SPICE model

for the minimodules was seeded with measured values from

the individual I–V curves and measurements of the irradi-

ance uniformity in an attempt to closely predict the mini-

module behavior as well as a model for the exact Schottky

bypass diode used, a Hy Electronics 15SQ045. Shunt and

series resistance of the individual cells were extracted by

typical means found in the literature,12 where the shunt resis-

tance was found by fitting a tangent line near I ¼ Isc and

series resistance was approximated by the tangent line near

I¼ 0. These curves are shown in Fig. 6, and although several

similarities arise such as the position and magnitude of the

bypassing even under uniform illumination, and the irradi-

ance in which bypassing disappears, the fill factors of the

simulated and measured curves are very different. In the

FIG. 5. (Color online) Two series of I–V curves as a function of irradiance.

The red series shows the curves acquired from the two cells that were new,

and the blue curves were acquired from the two cells that contained one new

cell and one heavily degraded cell.
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simulated curves, the performance of the nonbypassed cells

is quite poor, showing a nearly linear behavior whereas the

experimentally determined curves still demonstrate signifi-

cant curvature.

The comparison of modeled and experimentally deter-

mined I–V curves underscores the potential problems equiva-

lent circuit models, which are potentially insightful, but

incomplete in describing photovoltaic behavior under all

conditions. These conditions can occur under system degra-

dation as well as the nonuniform irradiance that is often

observed relying solely on diode modeling, particularly since

diode models for a complete Si cell gives results that are

inconsistent with experimental data. Hence, we shift to

learnings that can be gained from examining real-world

behavior and subsequent data-driven modeling of anomalous

I–V behavior.

B. Massive analytics of I–V curves

Massive datasets of I–V curves are too burdensome to

analyze one at a time and therefore require taking a statisti-

cal approach with a validated data analytics pipeline.4

These large datasets comprise many climatic variables and

module performance variables, which allow for the demon-

stration of more subtle behaviors that can arise from tran-

sient or permanent changes in the PV modules and can

guide the developments of new models that are more inclu-

sive of heterogeneous behaviors.

The analysis of massive temporal datasets is benefited by

machine learning practices that are implemented in the data

analytics pipeline, which can then be applied to the entire

dataset.

Over 1.5� 106 I–V curves over 500 days have been

acquired on an average interval of 10 min on the SDLE

SunFarm. This massive dataset of I–V curves comprise many

climatic variables and module performance variables, which

allow for the demonstration of more subtle behaviors that

can arise from transient or permanent changes in the PV

modules, and can guide the developments of new models

that are more inclusive of heterogeneous behaviors.

An automatic machine learning pipeline is needed to ade-

quately extract key features from each of the 1.5� 106 I–V
curves.4 The features of interest in the data include Isc, Voc,

the number of change-points, and the I–V curve slopes, m,

at short circuit and at each change-point. The selection

of features was guided initially by the SPICE development

and extended with empirical evidence. The I–V curves

are grouped into appropriate subpopulations and modeled

accordingly after the feature values are estimated.

The core of this pipeline is a statistical procedure that

involves two parts: change-point detection and parameter

estimation. The change-point detection procedure identifies

the presence and locations of change points in an otherwise

concave I–V curve, by fitting a first or second degree local

polynomial regression48 over the curve and flagging spikes

in residuals. The sensitivity of the algorithm is tuned on a

representative sample that is investigated and labeled by the

researchers. The parameter estimation procedure estimates

current, voltage, and the I–V curve slopes at short circuit

and at each change-point, by, in this case, fitting a first

degree polynomial regression line41 along each I–V curve

and using the linear components as the estimates (see red

lines in Fig. 7). After feature recognition, we next classify

the results. Here, the classification is straightforward and is

based on the number of bypassed strings of cells. For a 60-

cell module, we have three types of curves: type I curves

show a single Voc with no additional change points, type II

shows Voc and 1 additional change point, and type III shows

Voc and two additional change points.

A pairwise scatter and correlation matrix is a useful

method in multivariate analytics for visualizing the learnings

from these massive data. As an example, Fig. 8, generated

using the language “R,”61 shows several variables including

the currents at the intercept of each change point, I1, I2, and

I3 (note that I1 is equivalent to Isc), Voc, maximum power

FIG. 6. (Color online) Series of I–V curves acquired as a function of irradi-

ance for the minimodule with bypass diodes fabricated by combining the

two halves whose I–V curves are shown in Fig. 5 in blue. A comparison to

simulated I–V curves depicted in red is shown. The simulated curves were

seeded with values extracted from I–V curves of the two halves and the data-

sheet of the bypass diodes used in an attempt to match the experimental sce-

nario closely.

FIG. 7. (Color online) Representative type III I–V curve exhibiting three

change points at voltages of 7.35, 16.05 V, and 34 V.
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point irradiance, and temperature in a pairwise scatter and

correlation matrix. Variables and their histograms are shown

along the matrix diagonal. Below the diagonal shows the

pairwise scatter plots of the variables, and the corresponding

pairwise linear correlation coefficient is shown above the

diagonal. For example, the scatter plot of irradiance versus

Isc is found in the first column, sixth row, and the corre-

sponding linear correlation coefficient of Isc versus irradi-

ance is 0.77, found in the first row, sixth column. This

module was augmented with a mirror to apply nonuniform

irradiance so as to engineer stress into the system as well as

ensure bypass diode turn-on. These data were subset to day-

time measurements only and resulted in approximately 6000

I–V curves over 1 year.

Figure 9 is a bar plot of a small subset of I–V curve data

showing the relative populations of classified I–V curves.

The data set shown was selected from eight days (June 09,

2012 to June 16, 2012) of I–V curves data from the “UFS”

site. On each day, there were 288 measured I–V curves

(5 min time interval, 24 h a day). An I–V curve with less

than ten measurement points will be classified as

“few.points.” Thus I–V curves with a short circuit current

measured less than 1.1 A are classified as “small.amps.”

Figure 9 shows that, on each day, within 288 I–V meas-

urements, a large percentage are classified as either few.-

points or small.amps because I–V measurements were made

continuously day and night during times of little or no mod-

ule illumination. The vast majority of the rest of the I–V
curves are type I, yet there are type II I–V curves on each

day. This finding supports the idea that many modules will

undergo types II and III behavior in typical installations, at

least in a transient manner and those data can be harvested to

FIG. 8. (Color online) Pairwise scatter and correlation matrix of several variables including the currents at the intercept of each change point, I1, I2, and I3
(note that I1 is equivalent to Isc), Voc, maximum power point irradiance, and temperature. Variables and their histograms are shown along the matrix diagonal.

Below the diagonal shows the pairwise scatter plots of the variables, and the corresponding pairwise linear correlation coefficient is shown above the diagonal.

For example, the scatter plot of irradiance vs Isc is found in the first column, sixth row, and the corresponding linear correlation coefficient of Isc vs irradiance

is 0.77, found in the first row, sixth column.

FIG. 9. (Color online) Bar plot of a small subset of I–V curve data showing the relative populations of classified I–V curves. The data set shown was selected

from eight days (June 9, 2012 to June 16, 2012) of I–V curves data from the UFS site. On each day, there were 288 measured I–V curves (5 min time interval,

24 h a day).
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gain insights into the performance heterogeneity. Further,

mining these data for the transient behavior of bypass turn-

on as a function of climate may potentially indicate the prev-

alence of performance heterogeneity with climatic stressors.

Therefore, for analysis tracking, the periodicity, or lack

thereof, and the irradiance are critical measures of the

response function of the modules to determine heterogeneity

and discern whether or not the bypassing is externally or

internally caused. This work is ongoing and beyond the

scope of this manuscript. Here, we focus mainly on the

potential for massive data analytics to provide scientific

insights into the mesoscopic solar cell performance.

VI. CONCLUSIONS

Big data analytics is becoming a commonplace term

today, and one that is being invoked in materials science.

We have demonstrated the feasibility and novelty of study-

ing massive I–V datasets spanning many years and including

thousands of curves per year per module using machine

learning techniques. These techniques were validated among

a small set of data and are then useful to devise data analyt-

ics pipelines that enable the analysis and modeling to effi-

ciently be applied to large datasets. I–V curves that are

collected from research facilities in the real-world show

behaviors that are not modeled by simplistic equivalent cir-

cuit models and analytical solving techniques, but these

behaviors and their time dynamics are crucial to understand-

ing heterogeneous degradation. The I–V curves form a link-

age to the laboratory where hypothetical degradation

scenarios can be verified and a more conventional materials

characterization process can be undertaken to identify and

understand the behavior and dynamics of mechanisms.

These linkages then allow for a nonbiased approach to meso-

scale science applied rigorously to the vast scale of real-

world photovoltaic deployment. Our future efforts in this

area will involve classification and examination of the anom-

alous I–V curves collected from outdoor sites, and further

modeling the system heterogeneity as a time-series metric

and comparison to the simulation-aided, laboratory-based

confirmatory experiments.
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