
Case Western Reserve University Case Western Reserve University 

Scholarly Commons @ Case Western Reserve Scholarly Commons @ Case Western Reserve 

University University 

Faculty Scholarship 

3-25-2021 

International Collaboration Framework for the Calculation of International Collaboration Framework for the Calculation of 

Performance Loss Rates: Data Quality, Benchmarks, and Trends Performance Loss Rates: Data Quality, Benchmarks, and Trends 

(Towards a Uniform Methodology) (Towards a Uniform Methodology) 

Alan J. Curran 
Case Western Reserve University 

Kunal Rath 
Case Western Reserve University 

Arash Khalilnejad 
Case Western Reserve University 

Roger H. French 
Case Western Reserve University, roger.french@case.edu 

Author(s) ORCID Identifier: 

Arash Khalilnejad 

Roger H. French 

Follow this and additional works at: https://commons.case.edu/facultyworks 

Recommended Citation Recommended Citation 
Curran, Alan J.; Rath, Kunal; Khalilnejad, Arash; and French, Roger H., "International Collaboration 
Framework for the Calculation of Performance Loss Rates: Data Quality, Benchmarks, and Trends 
(Towards a Uniform Methodology)" (2021). Faculty Scholarship. 64. 
https://commons.case.edu/facultyworks/64 

This Article is brought to you for free and open access by Scholarly Commons @ Case Western Reserve University. 
It has been accepted for inclusion in Faculty Scholarship by an authorized administrator of Scholarly Commons @ 
Case Western Reserve University. For more information, please contact digitalcommons@case.edu. 

https://commons.case.edu/
https://commons.case.edu/
https://commons.case.edu/
https://commons.case.edu/
https://commons.case.edu/facultyworks
https://orcid.org/0000-0002-7138-8095
https://orcid.org/0000-0002-6162-0532
https://commons.case.edu/facultyworks?utm_source=commons.case.edu%2Ffacultyworks%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.case.edu/facultyworks/64?utm_source=commons.case.edu%2Ffacultyworks%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@case.edu


R E S E A R CH A R T I C L E

International collaboration framework for the calculation of
performance loss rates: Data quality, benchmarks, and trends
(towards a uniform methodology)

Sascha Lindig1,2 | David Moser1 | Alan J. Curran3 | Kunal Rath3 |

Arash Khalilnejad3 | Roger H. French3 | Magnus Herz4 | Björn Müller5 |

George Makrides6 | George Georghiou6 | Andreas Livera6 | Mauricio Richter7 |

Julián Ascencio-Vásquez2,7 | Mike van Iseghem8 | Mohammed Meftah8 |

Dirk Jordan9 | Chris Deline9 | Wilfried van Sark10 | Joshua S. Stein11 |

Marios Theristis11 | Bennet Meyers12 | Franz Baumgartner13 | Wei Luo14

1Institute for Renewable Energy, EURAC Research, Viale Druso 1, Bolzano, 39100, Italy

2Faculty of Engineering, University of Ljubljana, Trzaska cesta 25, Ljubljana, 1000, Slovenia

3SDLE Research Center, Materials Science, Case Western Reserve University, White 536, 10900 Euclid Ave., Cleveland, OH, 44106, USA

4TÜV Rheinland Energy, TÜV Rheinland, Am Grauen Stein, Cologne, 51105, Germany

5PV Power Plants, Fraunhofer ISE, Fraunhofer Institute for Solar Energy Systems, Heidenhofstrasse 2, Freiburg, 79110, Germany

6FOSS Research Centre for Sustainable Energy, PV Technology Laboratory, Department of Electrical and Computer Engineering, University of Cyprus, 75 Kallipoleos

Avenue, P.O. Box 20537, Nicosia, 1678, Cyprus

7iLab, 3E sa, Quai à la Chaux 6, Brussels, 1000, Belgium

8EDF R&D, EDF Lab Les Renardières, Moret-Loing-et-Orvanne, France

9National Center for Photovoltaics, National Renewable Energy Laboratory, 15013 Denver West Parkway, MS 3411, Golden, CO, 80401, USA

10Copernicus Institute of Sustainable Development, Utrecht University, Heidelberglaan 2, Utrecht, 3584 CS, the Netherlands

11Photovoltaic Systems Evaluation Laboratory, Sandia National Laboratories, PO Box 5800 MS 0951, Albuquerque, NM, 87185 -0951, USA

12Department of Electrical Engineering, Stanford University, 350 Serra Mall, Stanford, CA, 94305, USA

13Group Photovoltaic, ZHAW School of Engineering, Technikumstrasse 9, Winterthur, 8400, Switzerland

14Solar Energy Research Institute of Singapore, National University of Singapore, 119077, Singapore

Correspondence

Sascha Lindig, Institute for Renewable Energy,

EURAC Research, Viale Druso 1, Bolzano

39100, Italy.

Email: sascha.lindig@eurac.edu

Funding information

European Union's Horizon 2020, Grant/Award

Number: 721452-H2020-MSCA-ITN-2016; U.

S. Department of Energy's Office of Energy

Efficiency and Renewable Energy (EERE),

Grant/Award Number: 34366

Abstract

The IEA PVPS Task 13 group, experts who focus on photovoltaic performance,

operation, and reliability from several leading R&D centers, universities, and indus-

trial companies, is developing a framework for the calculation of performance loss

rates of a large number of commercial and research photovoltaic (PV) power plants

and their related weather data coming across various climatic zones. The general

steps to calculate the performance loss rate are (i) input data cleaning and grading;

(ii) data filtering; (iii) performance metric selection, corrections, and aggregation;

and finally, (iv) application of a statistical modeling method to determine the
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performance loss rate value. In this study, several high-quality power and irradiance

datasets have been shared, and the participants of the study were asked to calcu-

late the performance loss rate of each individual system using their preferred

methodologies. The data are used for benchmarking activities and to define capa-

bilities and uncertainties of all the various methods. The combination of data filter-

ing, metrics (performance ratio or power based), and statistical modeling methods

are benchmarked in terms of (i) their deviation from the average value and (ii) their

uncertainty, standard error, and confidence intervals. It was observed that careful

data filtering is an essential foundation for reliable performance loss rate calcula-

tions. Furthermore, the selection of the calculation steps filter/metric/statistical

method is highly dependent on one another, and the steps should not be assessed

individually.

K E YWORD S

degradation rate, performance loss rate, PV system degradation, PV system performance

1 | INTRODUCTION

The calculation of the evolution of a photovoltaic (PV) system's per-

formance is crucial to (i) evaluate if a system is operating within the

boundaries of long-term yield assessments and warranties and

(ii) provide more accurate values to be used in yield assessments not

only in terms of absolute value but also in terms of uncertainty. In

order to be able to judge a system's performance, the performance

loss rate (PLR), which is provided in units of %/a, or %/year, must be

calculated in an accurate and well-documented way and with its

uncertainty reported. The PLR does not just represent the irreversible

physical degradation of PV modules; it also measures performance-

reducing events, which may be reversible or even preventable

through good O&M practices. Data availability, accuracy, and tempo-

ral resolution have to be taken into account when choosing and car-

rying out the necessary steps to calculate PLR values. These include

(i) input data cleaning; (ii) data filtering; (iii) performance metric selec-

tion, corrections and aggregation; and finally, (iv) application of a sta-

tistical modeling method to determine the PLR. The calculation of

PLR in PV systems is nontrivial as the “true” value is unknown.

Another important issue is that there is no clear agreement of what

the PLR represents, for example, a partial loss in power output over

the complete irradiance range or a verifiable loss at predetermined

conditions such as Standard Test Conditions. In the course of this

work, the “voted” PLR is simply the average value of all calculated

values per system and considered to be close to the “true” unknown

value.

Several statistical methods have been proposed and compared1;

however, there is no industry-wide consensus, and thus, no standard-

ized approach to PLR calculations. At the IEC level, there was an early

effort to introduce a standard or aTechnical Reference for the calcula-

tion of degradation with the IEC 61724-Part 4; however, the initial

activity was discontinued.2

The IEA PVPS Task 13 group, which focuses on PV performance,

operation, and reliability and consists of experts from several leading

R&D centers, universities, and companies, is developing a framework

for the calculation of PLR of a large number of commercial and

research PV power systems located across the globe. The aim of this

international collaboration is to elucidate the steps and algorithms for

calculating PLR. Various data filtering and temporal aggregation

approaches coupled with different algorithms and statistical models

can be used for PLR calculation, each of which can impact the results

in terms of absolute values, uncertainties, and confidence intervals.

Here, we present PLR results on 19 real-world datasets and four

datasets from a simulated, or “digital,” PV power plant with a

predefined degradation rate. The contributors were asked to apply

their preferred metrics and statistical methods resulting in the use of

11 data filtering approaches, eight performance metrics, and nine sta-

tistical modeling methods. Two additional tools from this comparative

study were the development of an A to D grading system based on

data quality metrics of percentage of outliers, missing datapoints and

data gaps, and an R package for PLR determination using multiple met-

rics and methods for PV time series data. The results were then com-

pared to identify the PLR that is the most commonly reported PLR

value for that system, and we use this averaged PLR as the most likely

approximation for the unknown “true” PLR value. Our goal is not to

determine a single highly performing filter + metric + correction

+ model approach, which is based on the results probably not existing.

Instead, we want to provide tools to PV researchers and PV plant

owners to assess the performance of all their systems, even ones with

realistic, and partially severe, data quality issues as well as to enable a

cross-comparison among systems. We also analyze uncertainties by

comparing the standard deviation of the input datasets, and the stan-

dard errors and confidence intervals of the PLR results from multiple

metrics and methods, to illuminate relative performance differences

among these multistep PLR determination approaches.

574 LINDIG ET AL.
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2 | DESCRIPTION OF DATASETS FOR PLR
BENCHMARK

Nineteen datasets were made available to the interlab benchmarking

participants. An overview together with the most important informa-

tion can be found inTable A1. The climate zone categorization used in

Table A1 is based on the well-known Köppen–Geiger classification,3-6

and we include the new KGPV classification which includes irradiance

intensity (L–K) but has reduced weather distinctions (A–F). In the fol-

lowing, the PV systems are briefly introduced, and Figure 1 shows

their geographical distribution. All datasets are publicly available at

https://osf.io/vtr2s/.

2.1 | Data characteristics: Time interval, time
length, and data types

Data from PV systems are not standardized and can show significant

variation based on the source. There are several characteristics related

to how the data were collected that are considered before the PLR

analysis.

Data resolution: The time interval of collected data. Typical values

range from 1 to 15 min but can vary between 1 s to one or more

hours, depending on the hardware and user settings. Typically, high-

resolution data are desired since they provide more detail on the PV

performance and also improve the model fitting due to the larger

amount of data.

Time length: The total operating time of a system. For understand-

ing the long-term performance of systems, the obvious choice of data

would be from systems that have been operating for long periods of

time. The absolute minimum of available data is 2 years, as a linear

PLR describes a yearly change in performance. For reliable PLR evalua-

tion, at least 4 to 5 years of data should be available.7

Available variables: Power (P), irradiance (G), and temperature (T)

are the foundation of most PLR analyses, but they can be measured in

a number of different ways. Power can be recorded at the AC or DC

side or represented as energy accumulation instead of a power read-

ing. DC power is desired over AC power readings in order to remove

inverter influences. Irradiance can be reported as global horizontal

irradiance (GHI) or plane-of-array (POA) irradiance. Temperature gen-

erally refers to ambient or module temperature, typically measured by

a thermocouple. Backsheet temperature measurements of single mod-

ules may not be representative of the whole array in given PV system,

particularly in larger plants. Additional variables including wind speed

and direction, current, voltage, rainfall, and air mass can all be used in

certain types of PLR analysis, depending on availability. Lastly, meta-

data are also important, for example, module and inverter characteris-

tics, location, scale, and orientation.

Collection quality: Events such as missing values or gaps, reading

errors, or sensor drifting are all commonly observed in PV system

data. This is why the proposed PV data quality grading is a useful

measure to better understand why one system can be modeled eas-

ily, and yet another can have multiple approaches fail. Most PLR ana-

lyses are robust to a certain amount of such problems or can account

F IGURE 1 The locations of the PV systems used for the benchmarking exercise [Colour figure can be viewed at wileyonlinelibrary.com]
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for some of them. However, PLR cannot be calculated reliably in data

sets with large proportions of anomalous or missing data or large

time gaps in the dataset. Regular maintenance of sensors, site perfor-

mance, and observation of data collection can reduce the impact of

these issues.

2.2 | Datasets

2.2.1 | EURAC PV system

The EURAC PV system was installed at the airport of Bolzano/Italy

(ABD) in 2010. The polycrystalline system has a nominal power of

4.2 kWp. The system is ground mounted with a fixed tilt of 30� and

an orientation of 8.5� west of south. Additionally, a weather station is

installed in close proximity to the test side. Various meteorological

parameters are recorded such as POA irradiance, ambient tempera-

ture, and wind speed. On the rear side of the system, the module tem-

perature is measured. The sensors are systematically cleaned and

periodically calibrated in order to comply with the IEC 61724-1:2017

standard.8 The weather data are recorded with a time interval of one

minute. Since the electrical measurements are taken at time intervals

of 15 min, all values are averaged to the same time interval. A period

of 8 years is evaluated ranging from February 2011 until January

2019. It is important to mention that the time of observation is not

equal to the system age; the system began operating in August 2010,

which is roughly 6 months before the observation time starts. The del-

ayed start of observation was set to exclude initial degradation

effects.

2.2.2 | FOSS PV system

The FOSS PV system was installed at the outdoor test facility of the

University of Cyprus (UCY) in Nicosia, Cyprus, and was commissioned

in May 2006. The climate in Nicosia, Cyprus, is characterized as hot

semiarid. The PV system dataset used in this investigation is obtained

from a ground-mounted monocrystalline silicon (mono-c-Si) system

that is rated at 1025 Wp, as depicted from the manufacturer's

datasheet. Furthermore, the PV system is installed in an open-field

mounting arrangement due South and at the optimum inclination

angle of 27.5�.

The monitoring of this system started in June 2006, and both cli-

matic data and operational measurements were acquired and stored.

More specifically, the electrical performance of the system along with

the prevailing irradiance and environmental conditions were recorded

according to the requirements set by the IEC 61724-1 standard stan-

dard8 and stored with the use of a robust measurement monitoring

system. The monitoring system records POA irradiance (secondary

standard pyranometer), wind, and temperature measurements. Peri-

odic calibrations and inspections of the sensors were performed, in

order to ensure high-quality data and reveal any deviations from the

real measurements.

The PV system time series constructed for the purpose of this

evaluation covers a period of 10 years starting from June 2006 until

June 2016.

2.2.3 | RSE PV systems

RSE PV systems are based in the experimental area of Milan (north

of Italy), where various PV technologies are analyzed. The data ana-

lyzed in this document refer to two PV power plants, respectively,

with c-Si (polycrystalline silicon) and CdTE (cadmium telluride) tech-

nology, which started to operate in June 2009. The c-Si PV plant is

a ground-mounted PV plant, south orientation, and tilt of 30�. The

PV plant has a nominal power of 1.61 kW, constituted by a string

of eight PV modules of 210 W. The CdTe PV plant is a ground-

mounted PV plant, south orientation, and tilt of 30�. The PV plant

has a nominal power of 1.16 kW and consists of four strings with

four PV modules of 72.50 W each. A weather station is installed

close to the test site and allows the acquisition of irradiance mea-

surements (POA) and air temperature. Sensors are periodically

cleaned and calibrated according to the IEC 61724-1:2017 stan-

dard.8 Operational data are acquired every 10 s and sent to the

remote unit which stores them as mean or integral values (1- and

15-min intervals).

2.2.4 | Pfaffstaetten PV systems

The Pfaffstaetten PV system is a 5-kWp rooftop system, running from

January 2013 until April 2019. The system has three strings, two with

second-hand polycrystalline modules (110 and 120 Wp, dating back

to the end of the 1990s) and the third with CIGS modules (150 Wp).

The inverter has three separate maximum power point (MPP) trackers,

and these are connected to

• Pfaffstaetten A: 18 × pc-Si modules (initially measured power

1.812 kWp);

• Pfaffstaetten B: 18 × pc-Si modules (initially measured power

1.669 kWp); and

• Pfaffstaetten C: 15 × CIGS modules (rated at 2.250 kWp).

The monitoring data are inverter based with a 10-min timestep,

but during morning start-up and closing down, additional measure-

ment data with arbitrary timesteps are produced. If the inverter is idle

during the night, no data are recorded.

Irradiance values are based on a c-Si reference cell, and the ambi-

ent temperature sensor is integrated in the case underneath. There-

fore, the ambient temperature readings do not correspond to the air

temperature (i.e., in the shade). As such, these temperature readings

approximate the module temperatures obtained from the rear side of

one of the Kyocera modules. There are no additional temperature

measurements for the Miasole CIGS glass/glass modules, which may

operate at slightly higher temperatures.

576 LINDIG ET AL.
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2.2.5 | US DOE RTC baseline systems

The US Department of Energy (DOE) Regional Test Center (RTC)

Project has five sites.9 At each site, there are two systems that are

used as the “baseline systems.”
This dataset is currently version 0.2 and consists of a series of

eight PV systems in four locations/climate zones, 3.24-kW strings

with the same module and inverter at each site. The data are 1-min

time series inverter data with ground and satellite weather data.

These systems have proved to be useful for research purposes

given that they are nearly identical at each climate zone, including the

same number and brand of modules and inverters.

2.2.6 | NREL systems

Four PV systems from the US National Renewable Energy Laboratory

(NREL) were included in the benchmark study, all located at the NREL

main campus in Golden, Colorado. Short time interval 1-min data are

collected for three systems, with 15-min data collected for the fourth

and largest system. System #1 is similar to the RTC baseline systems

described above using the same PV module type in one string of

10, total system size 2.7 kWdc, 3 kWac, with data available from April

2016 until July 2019.

System #2 is also a small research system using a string of five sil-

icon heterojunction modules, 1 kWdc, 1.8 kWac, with data availability

from August 2007 until December 2016. Both of these small research

systems have colocated calibrated broadband pyranometer GPOA irra-

diance measurements, wind speed, and back-of-module temperature

measurement and are mounted on free-standing open-rack

structures.

Systems #3 and #4 are larger building-mounted systems with

lower quality silicon photodiode GPOA irradiance measurement. A

nearby weather station provides calibrated GHI, wind speed, and

ambient temperature. System #3 is a 94-kWdc building-mounted sys-

tem at 10� tilt and using multicrystalline-Si modules and a single

75-kVA central inverter. System #4 is a 524-kWdc carport using high-

efficiency back-contact modules connected to two 250-kVA central

inverters, also at �9� tilt angle.

2.2.7 | Digital power plant

The simulated “digital” power plant has been created with EDF R&D's

tool “PV NOV.” It consists of a string of 10 PV modules in series, with

the following characteristics:

• From datasheet: Pmpp =180W (+/−3%), Isc =5:29A, Voc =44:8V

• From Flash simulated: Pmpp =182W, Isc =5:44A, Voc =44:8V

The string is connected to a 2kW inverter. The behavior of the

plant is simulated with a Dymola/BuildSyspro Software, developed by

EDF.10,11 The model for the PV modules is a two-diode model.

Solar data were derived from HelioClim with a temporal resolu-

tion of 15 min. All in all, four PV systems have been created with the

following settings:

• 1-year weather data repeated for 5 years with and without known

degradation;

• 5-year weather dataset (real weather conditions given by Helioclim

for a period of 4 years and an added fifth year which is the mini-

mum value of each previous years) with and without known

degradation.

The degradation of PV panels is simulated with a linear variation

of parameters: short-circuit current (Isc, initial value: 5.44 A, variation

of −4%/a), series resistance per cell (Rscell , initial value: 0.00012Ω.m
2,

variation of +7%/a), shunt resistance per cell (Rshcell , initial value:

0.14745Ω.m2, variation of −6%/a), and the temperature coefficient of

the Isc (αIsc , initial value: 0.037%/K, variation of −1.5%/a). Those values

were chosen to induce an overall high degradation of the output

power in a scenario that belongs to a bigger experiment including a

wide range of degradation cases. The theoretical degradation for the

simulated dataset with induced power loss was calculated from two

viewpoints:

• @STC the Pmpp degradation is −4.41% per year.

• Absolute energy degradation is −4.89% per year, which has been

quantified for the systems with repeating weather data.

The PV system files consist of timestamp, POA irradiance, ambi-

ent temperature, wind speed, AC power, and DC power.

3 | METHODS

3.1 | General approach

Each organization applied their preferred filters, metrics, and statistical

methods for the calculation of the PLR. The necessary steps to calcu-

late performance losses depend on the available data. A general

approach for high-quality data treatment is presented below.

In this work, PLR have been calculated based on DC power read-

ings if available; otherwise, AC power has been used. An overview of

available measurement data for the individual systems can be found in

Table A1.

Figure 2 presents the necessary calculation steps for retrieving a

PLR. The steps include gathering, understanding, and grading of the

input data; the application of certain filter; the selection and aggrega-

tion of a performance metric including possible corrections; and the

application of models to calculate PLR.

First, we have to understand which data are available and the for-

mat conditions of our raw data. A quality assessment of measured data

is always recommended and will ensure a smooth application of the

steps to follow. To characterize the quality of time series datasets, we

use a grading scheme that assess a dataset for outliers, missing

LINDIG ET AL. 577
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datapoints, and larger gaps in the data. Next, we apply filters to extract

the essence of our data. This step is performed to get rid of outliers,

measurement errors and nonrepresentative data. Usually irradiance,

power, temperature, and performance ratio (PR) are considered. In

cases where local weather data (irradiance and temperature) are not

available, it is possible to use interpolated (weighted regression) data of

different peered weather stations in relatively close proximity to the

test side, satellite, or reanalysis-based datasets or clear-sky modeled

data. Afterwards, a performance metric is selected. These metrics are

usually not only power or PR but also empirically defined metrics. The

next step involves data correction for temperature. It is not required

but in most cases suggested. The correction attenuates seasonal varia-

tions of the chosen metric. Additionally, the data will be aggregated to

a desired time interval, which is usually days, weeks, months, or years.

In the next step, the performance metric is prepared for the final PLR

determination through the application of seasonal decomposition, data

imputation, and a final outlier removal. The last step involves the appli-

cation of a statistical modeling method to determine the system's final

PLR followed by an uncertainty assessment. Currently, there are numer-

ous statistical PLR determination methods in the literature to choose

from. A comparative study of methods found in the literature has been

performed by Lindig et al.1

Two different definitions for the PLR are found in the literature.

The relative PLR is calculated by

PLR½%=a�= β1
t
β0

� �
100, ð1Þ

and absolute PLR by

PLR½%=a�= ðβ1tÞ100: ð2Þ

β1 is the slope and β0 is the y-intercept of the corresponding lin-

ear model of the linear trend line for the PLR calculation. t is a scaling

parameter that converts the time scale at which power or PR is

observed to a yearly scale, as PLR is per year (12 for monthly, 52 for

weekly, etc.). The absolute PLR (Equation 2) is independent of the ini-

tial starting value of the chosen metric. The absolute PLR gives an

indication of the absolute loss rate, but it is important that the fitting

parameter β0 is also given.12 The relative PLR (Equation 1) makes it

easier to generalize the findings to the energy yield of the array using

the initial yield of the plant. In the course of this work, the calculated

PLR refers to the relative performance loss rate.

3.2 | Data imputation, filtering, and correction
approaches

In case of missing data different strategies can be implemented. If only

a small fraction of data is missing, imputation is not necessary and

usually data aggregation solves the issue. If instead a larger share of

data is missing, data imputation is the recommended approach,

although many different imputation techniques are existing. A recent

study by Livera et al.13 proposes a unified methodology for data

processing, quality verification, and reconstruction. It was shown that

PLR studies are sensitive to invalid or missing data rate. If less than

10% of data are missing, the study recommends to use the list-wise

deletion method, where simply data with invalid measurements are

omitted. If more than 10% of the data are missing, data imputation

techniques should be applied. In this study, the Sandia PV Array

Performance Model14,15 is recommended for missing power measure-

ments, multiple imputation by predictive mean matching for missing

irradiance measurements,16 and the Sandia module temperature

model14 for temperature measurements. In another study by Lindig

et al.17 data imputation techniques for a considerable amount of miss-

ing POA irradiance measurements were compared, where other on-

site measured climate data were available. Here, the histogram-based

gradient boosting regressor performed with highest accuracy among

several tested classical irradiance transposition and machine learning-

based models.

Filtering serves to identify and remove data within the time series

that are influenced by factors that cannot be modeled. The basic rela-

tionships between the output of a solar panel, incident irradiance, and

the temperature are well understood; however, real-world applica-

tions cannot be well controlled and the performance of the plant may

have external dependencies. Natural occurrences such as night,

F IGURE 2 The four PLR analysis
steps for high-quality time series power
and weather data [Colour figure can be
viewed at wileyonlinelibrary.com]
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shading/soiling/snow coverage or inconsistent irradiance, operational

features such as inverter saturation and outages, or extreme condi-

tions including high temperature and irradiance, can all influence the

instantaneous power production of a system. These features are typi-

cally difficult to control, model, or quantify, and may not necessarily

relate to the temporal performance of the system, so it is prudent to

remove these data in any given analysis.

It is a common approach to remove such data; however, the

extent of filtering is often an arbitrary process that varies by individual

analysts, or must be tailored to individual systems in many cases.

3.2.1 | Irradiance threshold filtering

The irradiance threshold is one of the most standard filters applied to

PV time series. Data with irradiance values that fall below or above

given values are removed. Low cutoff values (filtering out irradiance

data below a given value) are intended to remove nighttime and low

irradiance periods. High irradiance thresholds remove outliers and

potential errors in measurement. High cutoff values are typically set

at 1200 W/m2 based on typical maximum terrestrial irradiance read-

ings, this generally concerns a small portion of the total data. The low

irradiance cutoff, however, applies to a much larger portion of data.

Low irradiance threshold values have varied significantly between

research groups. Previously, data were subset to a high irradiance

level, typically 800 W/m2 and above to maintain conditions similar to

STC. This has become less popular recently given the massive amount

of data removal and current low irradiance cutoffs are generally

around 100–200 W/m2.

3.2.2 | Power threshold filtering

Power thresholding and irradiance thresholding have strong overlap

with each other, given their fundamental link for PV systems. Remov-

ing low irradiance values will also remove low power values and vice

versa. System outages are a common occurrence in commercial sys-

tems which can be easily removed with a low power filter, as power

values will be low during these periods even when irradiance is high.

High power cutoffs target outliers in the time series; power values

that are unreasonably high. Power presents a unique problem since it

is not uniform across systems due to the different technologies

installed at different locations that are exposed under different envi-

ronmental conditions. Power outputs of different systems can vary by

many orders of magnitude, so threshold values have to be tailored to

individual systems. A common method is to remove data based on a

percentage of maximum power.

3.2.3 | Inverter saturation and curtailment

Inverter saturation occurs in a PV system when the power output

produced by the modules is higher than the allowed AC power

output of the inverter. At this point, the inverter will be “saturated”
and the power output will be maintained at this maximum value

and will not be able to increase, even if the module DC power

increases. Curtailment is commonly used to stabilize the power out-

put of PV plants and increase the capacity factor, making the sys-

tems easier to integrate into existing grids, but proactive curtailment

can lead to reduced availability. As such, inverter saturation is most

commonly observed in larger scale commercial PV systems. Satura-

tion poses a unique problem in PV data analysis as it occurs at

higher irradiances, when systems are assumed to perform under

ideal operating conditions. Power values exceeding saturation limits

are no longer a function of weather conditions and should not be

used in modeling.

Saturated data can be removed quickly if the saturation limit is

known by filtering out power above 99% of the limit. Ninety-nine per-

cent is commonly used, but other values can be applied if needed for

different data sets. Unknown saturation limits can be identified by

observing maximum power trends in the data, appearing as flat pla-

teaus at the peaks of daily power trends.

3.2.4 | Clear-sky filters

Clear-sky filters attempt to subset data to periods of time with lit-

tle to no cloud cover during operation. There are several different

reasons why someone might want to perform this filter step.

Clear-sky filters may be used to reduce the influence of inconsis-

tent shading on a system. Large systems in particular may experi-

ence variation in irradiance between different strings or the

pyranometer under periods of partial or intermittent cloud cover,

leading to a discrepancy between power produced and irradiance

measured. Additionally, clear-sky filters are often used to merge in

modeled irradiance values for a system, which do not perform well

in cloudy periods. Comparing sensor and modeled irradiance

during clear-sky periods is a common method for detecting sensor

drift.

There are two well-used methods of identifying clear-sky

periods in a system, the 5-factor moving average by Reno and

Hansen18 available in PVLib19 and a clear-sky index (CSI), used by

NREL in RdTools.20 The first uses a comparison between modeled

and sensor irradiance with a moving average evaluating which

periods show strong similarity. Periods where sensor and modeled

irradiance show strong overlap are noted as clear-sky periods. The

CSI is a less strict method and simpler to apply. It is also used as a

comparison between sensor and clear-sky modeled irradiance but

identifies clear periods using a ratio between the two, defaulting to

85%. Any period where the sensor irradiance is within 15% of the

modeled irradiance is flagged as clear sky or near clear sky. The

five-criteria method is stricter causing the removal of larger amounts

of data, which ends up removing large amounts of data, and is gen-

erally not used in a direct PLR analysis. The CSI method keeps more

data and is incorporated into the standard RdTools PLR analysis

pipeline.
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3.2.5 | Shading, soiling, and snow corrections

Shading, soiling, and snow coverage may refer to events that inhibit

light reaching the surface of the modules, while not being represented

in the local irradiance if the sensors are cleaned periodically or freed

from snow. This effect is observed as a drop in power without a

corresponding drop in irradiance. Identifying these periods can be

tricky as their influence on the power output can vary greatly from

minor affects to large-scale loss, making them difficult to detect. Sys-

tem logs can identify snow events or dust build up, however these

may not be available or accurate for all systems. Automated soiling

removal is usually done with outlier detection. When converting

power measurements to PRs, soiling events will produce lower PR

values than regular operating periods and can be filtered out.21 Other

methods can also be applied which use power and irradiance trends

and clustering to detect and remove data influenced by soiling.22

Shading, soiling, and snow can vary greatly between systems, and it is

recommended that PV analysts should view power corrected time

series (PR, weather regression, etc.) of their systems to identify any

potential areas of concern.

3.2.6 | Performance metric IQR filters

Power P and performance ratio PR are the most common performance

metrics used. PR is a unit-less parameter, which describes the relation-

ship between incoming irradiation and produced power by a PV sys-

tem. Since power and irradiance follow a nearly linear trend over a

wide range of irradiance, this relationship can be used to detect and

remove nonrealistic power–irradiance pairs created through sensor

shadowing, alignment, or other issues. Usually, statistical thresholds

based on interquartile ranges (IQRs) around the median or mode23 of

the performance metric values are used to filter irradiance and

power data.

TABLE 1 Chosen statistical model, metric, filter and aggregation steps

Filter

Nr Models Metric

Irradiance Module

Power

Performance

Aggregation(W/m2) temperature (�C) ratio

1 STL1, YoY1 PRTcorr 500–1200 −40 to 100 (0.01–1.2) ±2sd around Monthly

� Pnom monthly PR mode

2 STL3, STL4,

STL5, STL6

LS-LR4, LS-LR5,

LS-LR6, LS-LR7,

STLYoY1, YoY4

6K

PVUSA

Xbx

Xbx(UTC)

>100 (0.01–1.2)
� Pnom

1.5× interquartile

range

Monthly

3 VAR1 Power 350–850 ±2sd around Daily then

instantaneous PR yearly

4 R-LR1, LS-LR1 Power 800–1000 5k bin containing

largest share of

datapoints

±5% from yearly

median PR

None

5 CSD1, LS-LR2 PR 0% < PR < 100% Monthly

6 STL2, YoY3

CSD2, LS-LR3

PRTcorr 200–1200 −50 to 100 0.01-(98th percentile

of 0.99 Pac)

PR > 0 Monthly

7 YbY1 780–820 18–22

or Power Yearly

YbY2 980–1020 23–27

8 LS-LR8, CSD3 PR 50–1300 (0.1–1.3)
� Pnom

±3sd around

monthly PR mode

Monthly

STL7,a STL8a

HW1, FBP1

9 YoY2 PVWatts 200–1200 −50 to 110 P > 0 Daily

10 YoY5 PR 100–1000 1.5× interquartile

range

Daily

11 SCSF1 Power Strict clear-sky filter Daily

aSTL7 and STL8 follow the exact same approach including filtering and metric. The only difference is that STL7 uses the STL function of the R stats

package24 implemented with the rstl package25 in Python and STL8 the function directly implemented in the statsmodel package26 of Python.
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3.2.7 | Data filters summary

In Table 1, the applied filters and the chosen aggregation steps are

summarized together with the model names and the performance

metric used.

3.3 | Performance metrics

A metric is a certain measure that provides information about the per-

formance of a PV system in one way or another. In the following, the

most commonly used metrics in PV are described.

3.3.1 | Power (P) metrics

This metric refers to the measured system power, filtered, and

adapted depending on the selected statistical method for PLR deter-

mination. For instance, the power metric was subject to very strict

irradiance filters and temperature binning for the R-LR1 and LS-LR1

models.

3.3.2 | PR models

The PR at the DC side is calculated by8

PRDC =
Ya

Yref
=

EDC=Pnom
HPOA=GSTC

, ð3Þ

where Ya is the array yield, and Yr is the reference yield; EDC is the DC

energy produced over a certain time t; Pnom is the nominal power at

STC; HPOA is the POA irradiation over a certain time t; and GSTC is the

irradiance of 1000 W/m2. We have decided to use DC values to elimi-

nate losses due to DC/AC conversion.

The PR can be corrected for temperature8 using temperature

coefficients as provided by the manufacturers or obtained from the

time series data to better reflect the actual outdoor performance of

the module (PR + temperature correction [PRTcorr]). The advantage of

correcting temperature based on power data over the PV power

plant's lifetime is the large range of available temperature, increasing

the certainty of the power versus temperature trend. The correction

should be performed according to standard IEC 61724-1:2017.8 Sea-

sonal fluctuations are still evident even when temperature-corrected

PR is used; this is due to other effects such as angle of incidence and

spectrum. Furthermore, if the temperature coefficients are biased, a

seasonality due to changing temperature ranges will be introduced.27

3.3.3 | Power predictive models

Generally, a power prediction model is built, for a specific time period

such as a day, week, or month, to predict power as a function of

weather, and then, standard or representative weather variable

parameters are applied to each aggregated temporal period model.

This produces a predicted power value, for the given weather condi-

tions and time period, which is therefore independent of the actual

measured weather values. Four power predictive models are used in

this study to compare the effects of the subsequent time series they

produce on PLR. The models are described in detail by Curran et al.28

XbX: The XbX model, is a data-driven, multiple regression predic-

tive model29 with a temperature and irradiance term. The flexibility of

this model enables nonlinear, change-point PLR calculations and

allows for either POA or GHI to be used in the irradiance term and air

or module temperature in the temperature term (T).

Ppred = β0 + β1G+ β2T + ϵ: ð4Þ

The X in the name refers to the given time aggregation period

that the power prediction model is built to predict for; a model built

on a day of data would be day-by-day (DbD), while in week-by-week

(WbW) or month-by-month (MbM) modeling, data would be subset

by weeks or months. The time aggregation period is chosen based on

the condition of the data being modeled and what modeling will be

performed on the overall data set.

XbX + UTC: When modeling on small time scales such as individ-

ual days, it can be difficult to properly model temperature given the

low variation that typically occurs in that time. Days staggered by sea-

son (i.e., summer vs. winter) have very different ranges of tempera-

ture, so modeling temperature between them can lead to

extrapolation. By introducing a universal temperature correction

(UTC), one can produce a single temperature coefficient that can be

used to convert to the desired representative temperature value.

Pcor =
Pobs

1+ γTðTobs−TrepÞ Gobs
Grep

� � , Pcor = β0 + β1G+ ϵ: ð5Þ

Here, data are subject to a high irradiance Grep of 900 W/m2, and

the slope of the irradiance over temperature becomes γT. Obs repre-

sents observed or measured values, and Trep is a representative tem-

perature. This method is most similar to a temperature-corrected

performance ratio method used in other PLR packages such as

RdTools20,21,30 but structured as a power predictive model for better

comparison with other models.

PVUSA: The well-known PVUSA model31 is physics based and

described by

P=GPOAðβ0 + β1GPOA + β2Tamb + β3WSÞ: ð6Þ

Here, Tamb is the ambient temperature (�C), and WS is the wind

speed (m/s). The model assumes that current is a function of the in-

plane irradiance GPOA and voltage is a function of both GPOA and the

module temperatureTmod. Tmod is predicted using Tamb and WS.

6K: The 6K model14 is the most complicated power predictive

model used in this study. The name “6K” refers to the coefficients fit

by the model.
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G0 = GPOA=GSTC ,

T0 = Tmod−TSTC ,

P= G0ðPnom + k1lnðG0Þ+ k2 lnðG0Þ2 + k3T0

+ k4T
0 lnðG0Þ+ k5T0lnðG0Þ2 + k6T02Þ:

ð7Þ

This model uses in-plane irradiance (GPOA) and module tempera-

ture (Tmod) but models them as a fraction of standard irradiance (GSTC)

and difference from standard temperature (TSTC). Additionally, this

model requires the nameplate power Pnom as an input and will always

predict Pnom at STC conditions.

PVWatts: This simple power predictive model follows the irradi-

ance and temperature scaling approach of PVWatts32 as implemented

in the PVLib Python software package:19,33

P=
GPOA

1000 �Pnom ð1+ γTðTmod−25�CÞÞ: ð8Þ

3.4 | Statistical methods

Finally, a statistical method is applied to compute the PLR, given in

percentage per year (%/a). The methods applied in this paper are

Linear regression (LR): PLR is commonly assumed as linear, where a

single PLR value is representative of the entire lifetime of a system.

Alternately, nonlinear PLR methods27,34 can be used to determine

change in the trend of performance between different periods during

the lifetime of the system.

Assumed linear PLR is determined by regression of the predicted

metric versus time or through year-on-year (YoY) modeling. For

regression determined PLR, the slope and intercept of the trend

directly relate to the change in system performance. Both least

squares linear regression (LS-LR) and robust regression (R-LR) have

been used in this study. Least squares regression can be simple if only

one dependent variable predictor, or it can be ordinary least squares

(OLS) regression if there are multiple predictors, and the errors are

homoscedastic and uncorrelated. If the errors are normally distrib-

uted; then, OLS regression provides maximum likelihood estimation,

and the coefficients are the most probable.35 Robust regression is

another form of regression that is less sensitive to assumptions about

the data-generating process and can be less affected by outliers, com-

pared to OLS regression, while being more computationally

demanding.36

Classical seasonal decomposition (CSD): CSD separates seasonal-

ity and a certain irregular component from a set of measured time

series data, using a centered moving average, to determine the per-

formance trend over time.37 The step of the seasonal period

depends on the data resolution and is usually set to 12 for monthly

data. In this case, 6 months at the beginning and six at the end of

the observation period are not included in the averaged time series.

By removing the trend from the measured data and averaging

months of consecutive years, the remainder corresponds to the

residuals.38

Seasonal and trend decomposition using loess (STL): The idea behind

STL is to decompose the PR time series into a seasonal component, a

remainder or residual component and a trend using locally weighted,

nonparametric regression.37 The trend is a nonlinear curve,39 and STL

functions are available in R in both the base R stats package and the

STL-Plus package.24,40 Afterwards, a linear fit of the trend is per-

formed to get a regression representation of the performance evolu-

tion of the PV system, of which the gradient is multiplied by a factor

to present yearly values (12 for months, 365 for days, etc.) of the final

PLR. This statistical method is suitable for time series with a seasonal

behavior and where the data are of high quality.1

YoY: The YoY approach for PLR determination was first applied by

Hasselbrink et al.41 and is now available in the RdTools package20 in

Python and the PVplr package in R.22 In YoY, the differences

between one datapoint in a calendar year with the datapoint at the

same position in the subsequent year are accumulated over a 1-year

period. The median value of these multiple yearly PLR represents the

overall system PLR. The PLR of the YoY method is normalized to the

first year's median, though one can choose not to normalize. The con-

fidence interval is calculated using a Monte Carlo or bootstrap

resampling of the distribution.20,21,35

VAR method: The VAR method gives degradation rates from one

year to the next. By averaging the annual degradation rates, we get

the PL of a system. Regression models of power variations with

respect to environmental variations (irradiance and ambient tempera-

ture) are fitted. The basic idea of the VAR method is to build a model

of correlation between yearly variations of output power with respect

to yearly variations of environment, hence the name: the VAR

method.42 After processing and filtering the data, it fits a regression

ΔPower = fðΔIrr,ΔTambÞ+ d , meaning that if f is accurate enough, d is

the variation of power not due to environmental changes, but only

due to the system condition itself, and then interpreted as a perfor-

mance degradation. It gives degradation rates from 1year to the next

and by averaging the annual degradation rates we get the PLR of a

system.

Year-by-year (YbY): A yearly aggregation of strictly filtered data is

the basis for this method. Consequently, the first year of measure-

ments is set as a base value to 0% and the yearly difference in pro-

duced power within the filtered frame is evaluated in the following

years. The average of differences between yearly values in respect to

Year 1 is the final PLR.

Statistical clear-sky fitting (SCSF): The SCSF method fits a con-

strained, nonparametric clear-sky model to the data.43 This model is

adaptive and can model sites with complex shade patters, as well as

unobstructed fixed-tilt and tracking systems. The model is very robust

to missing data and poor data quality and can be used for data impu-

tation, clear-sky condition detection, and clear-sky adaptive forecast-

ing. The algorithm compares data on subdaily, daily, seasonal, and

yearly time scales to estimate daily and seasonal patterns. One of the

constraints on the problem is a consistent year-over-year percent

change in daily energy, which becomes the estimate of system degra-

dation.44 This approach is unique in that no other information or data

is required besides measured power—no irradiance data, no
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temperature data, no meteorological data, no system configuration

information, and no metadata. Therefore, this method is suitable for

the analysis of distributed rooftop PV systems and the more highly

instrumented and well-modeled centralized PV power plants. In addi-

tion, irradiance sensors can themselves be treated as a PV power sig-

nal source, allowing the automated analysis of sensor drift.

Holt-Winters (HW): The HW seasonal model can be used to fore-

cast and smooth performance time series of PV systems. It consists of

three smoothing parameters, a level, slope, and seasonal component.

Although the HW model can be used in an additive or multiplicative

manner, the additive method should be used for PV time series

because seasonal variations are expected to be fairly constant

throughout the time of observation. A weighted average is used to

compute the slope of the level, and the smoothing parameter deter-

mines how fast the exponential weights decline over the past

observations.37,45

Facebook Prophet (FBP): This statistical method is a modular

regression model with an additive structure. It consists of four param-

eter, namely trend, seasonality, holiday, and error. The holiday term is

used in business applications and omitted for this study. Seasonality is

considered for daily, weekly, and yearly recurring patterns. Since PV

power time series are expected to show monthly seasonality, the

built-in yearly seasonality option of the model is set to TRUE which

takes into account monthly patterns. Time is used as a regressor, and

the trend is fit using a piecewise linear and a saturating growth

model.46 FBP has the advantage of incorporating change-point analy-

sis which is useful for computing nonlinear PLR. However, in order to

calibrate this model to provide meaningful results for PV degradation

behavior, the flexibility of the extracted trend, number of potential

change points, and range had to be adjusted according to the process

and settings reported by Theristis et al.27,47

4 | RESULTS AND DISCUSSION

This section is divided into six different parts. First, the steps of calcu-

lating a PLR are shown as a detailed example using the EURAC

dataset. In Section 4.2, the statistical characteristics of the PV power

time series datasets are characterized and presented. A discussion on

the contributions to the uncertainty of PLR results follows, including

measurement uncertainty and the standard deviation of the power

time series. Afterwards, the impact of different data filters utilized in

the benchmarking exercise are compared by applying them on two PV

system datasets while holding the other calculation steps the same. In

Section 4.5, the calculated PLR of the digital plants are investigated.

Finally, the results based on the real PV power time series datasets

are examined in Section 4.6 including a discussion on the impact of

data quality with respect to the magnitude and uncertainty of PLR.

4.1 | Example calculation of a PV system PLR

Here, the necessary steps for calculating the PLR of a PV system are

shown graphically based on the monitoring data of the EURAC sys-

tem. The specifications of the corresponding system can be found in

Section 2.2 and inTable A1.

In Figure 3, the graphical evolution of possible PLR calculation

steps is shown. In this example, STL has been applied to the monthly

F IGURE 3 Example calculation steps for retrieving PLR value: (A) yield, (B) PR, (C) filtered PR, (D) temperature-corrected PR; (E) performance
trend of temperature-corrected PR; and (F) assumed linear PLR [Colour figure can be viewed at wileyonlinelibrary.com]
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temperature-corrected PR. The performance trend, extracted with

STL, is fit with a simple linear model to determine the asumed

linear PLR.

First, the power time series or the yield (the power divided by the

installed capacity, in kWh/kWp), is shown in Figure 3A as the monthly

aggregated yield of the power plant throughout the time of observa-

tion. The system shows peak yield in the summer time and the lowest

yield in the winter months. In Figure 3B, the selected metric (i.e., PR)

is added to the plot. It is shown that due to the strong temperature

dependence of PV modules, especially in crystalline, the PR exhibits

high seasonality with low values during the warmer months and

higher values during the colder periods. The application of a strict irra-

diance filter combined with a PR filter, to exclude values out of the

range of two times the standard deviation of the monthly PR mode,

yields the filtered PR, visible in Figure 3C. The applied filters corre-

spond to Filter #1 of Table 1. It can be seen that the PR time series

exhibit a sinusoidal shape, which is an indicator of the exclusion of

nonrepresentative measurements or measurement conditions through

filtering. Figure 3D shows the effect of temperature correction

according to the standard IEC 617214-1:2017.8 The correction was

performed using measured module temperature values, and one can

see a reduction in the apparent seasonality of the time series. The

chosen statistical method for receiving the final linear PLR was a com-

bination of STL39 and LR. STL is a locally weighted regression, which

extracts a nonlinear trend from a dataset by excluding the remaining

seasonality and the residuals. This nonlinear trend can then be fitted

with a simple linear model using regression to determine the best fit

linear trend line, visible in Figure 3F. The yearly aggregated gradient

of the linear function, divided by the intercept, is the final, assumed

linear, relative PLR of our system (see Equation 1). The intercept of

the function represents the PR value at the starting time of the time

series. For this system, a relative PLR of −0.90%/a was calculated

using the approach explained above. For the associated uncertainty of

the PLR value, the residuals are added back into the STL trend compo-

nent. The uncertainty between the STL combined component and the

linearized trend is ±0.09%.

4.2 | EDA of the power time series datasets

To assess the meaning, accuracy, and robustness of the calculated

results for a particular dataset, it is useful to determine during initial

exploratory data analysis (EDA), the appropriate statistical measures

of PV dataset quality. This provides insights into which datasets are

robust to analysis, and which datasets may fail at particular steps or

for certain types of analysis, such as the case where different

aspects of data missingness makes analysis impossible.48,49 In addi-

tion these measures can guide the user on the expected uncer-

tainties in comparing multiple PV systems, which may have quite

different equipment and operational histories, and therefore dataset

quality. From time series analysis of building electricity time series

data to perform virtual building energy audits, a time series dataset

grading schema has been developed which has proven useful to

alert users to expect high, or low, quality of results of data analysis

of the systems.50 We have adapted this approach for application to

PV system time series datasets such as the power and irradiance

time series and have implemented PV dataset quality grading in the

PVplr package. We statistically characterize the power time series

and then grade each dataset in three areas, outliers, missing

datapoints, and data gaps. We have developed a grading schema,

summarized in Table 2, and the measures and grades are summa-

rized in Table 3.

Outliers are typically defined as points that are greater than ±1.5

times the IQR and may be anomalous datapoints.48 In time series,

such as PV time series, outliers can arise from causes that fall

beyond the expectations of a model, so, for example, for the power

generated by a PV system, if there were no clouds, then a linear

second-order model can fit the daily and seasonal changes in power

production.51 But clouds, being statistically random, are not easily

modeled, and the power drops due to cloud shading would be outlier

datapoints, while still physically meaningful. Anomalies are a subset

of outliers, and correspond to datapoints that are not physically rea-

sonable, but arise due to a mistaken measurement or malfunction of

a piece of equipment.52 For outlier detection we use the tsoutliers R

package, which identifies time series outliers arising from clouds and

anomalous datapoints such as arise from measurement errors.53,54

Various of the filtering and correction methods discussed here are

examples of approaches to address dataset outliers. Missing

datapoints in a dataset is another typical data error that can impact

analysis. A set of up to 5 sequential missing datapoints can be

imputed rather easily using simple interpolation, so we consider the

% missing datapoints the second important dataset characteristic to

identify, and if desired, to impute. Longer data gaps in a time series

dataset can arise from system or communications outages, can be

quite problematic for different analysis methods, and are hard to cor-

rect or impute in an attempt to mitigate their impact, so we consider

this the third important characteristic. These three categories of sta-

tistical properties give us a quantitative sense of the “missingness” of
the dataset, and learning which filters, and methods are robust in the

face of outliers, missing datapoints and data gaps, is important to

advance the field. There is much active work on data imputation to

address both outliers, missing datapoints and data gaps, but we have

not implemented these here.55

TABLE 2 Data quality grading criteria

Letter Outliers Missing Longest

grade (%) percentage (%) gap (days)

A Below 10 Below 10 Below 15

B 10 to 20 10 to 25 15 to 30

C 20 to 30 25 to 40 30 to 90

D Above 30 Above 40 Above 90

Note: Outliers include the impact of clouds and anomalous datapoints;

missing data is 5 or fewer sequential datapoints; and the longest gap is of

all the data gaps in the dataset. The dataset length needs to be >2 years

for a P grade; otherwise, it is graded F.
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4.2.1 | Dataset quality issues

Various dataset quality issues are present in the selection of PV sys-

tem power time series, as can be seen in Table 3, and are discussed

here.

• EURAC system: No major data quality issues have been detected.

This system has more than 10% outliers, probably due to

cloudiness.

• FOSS system: No major data quality issues have been detected.

This system had a higher amount of missing datapoints.

• RSE systems: No major data quality issues have been detected.

These systems had a 25-day-long gap in the datasets.

• Pfaffstaetten systems: A relatively low amount of measured data

has been reported. This can be seen in the missing % and the # of

datagaps.

• US DOE RTC baseline systems: Several data quality problems have

been detected, which resulted in some filter-metric-methods to be

unable to calculate sensible PLR results for some methodologies.

System c10hov6 experienced a 4-month-long initial inverter clip-

ping followed by a period of 4 months without data. Afterwards,

normal data acquisition without major issues is reported. The sys-

tems luemkoy and lwcb907 are also, at least partially, subject to

inverter clipping, and negative power values are recorded. It is

likely that the polarity has been switched for the time period of

recorded negative values. For the luemkoy system, positive PLR

values have been calculated which can be traced back to an initial

power limitation due to inverter clipping followed by a period in

which the power was not capped. System t3pg1sv is subject to sig-

nificant inverter clipping. In the data of the systems wca0c5m and

z0aygry, a data shift in the power output measurements has been

detected additionally to inverter clipping.

• NREL systems: The power versus measured irradiance data for the

PV systems NREL1 and NREL2 show a substantial number of out-

liers. Therefore, a large share of the raw data has to be filtered to

ensure reliable data. For the PV systems NREL3 and NREL4, the

measured irradiance sensor data were faulty and should be rep-

laced by modeled clear-sky values (provided in raw data). The irra-

diance sensor used for NREL3 is installed in a distance of a few

hundred meters away from the PV system, has a different tilt,

which was translated to the POA, and shows decreasing irradiance

values over time, possibly a result of a degrading reference cell.

TABLE 3 Statistical characteristics of PV datasets used in the PLR benchmarking exercise

Dataset ID Grade (outliers, Power Length Outliers Missing Data gaps: # of

missing, gaps, P/F) variable (kW) (years) (%) (%) gaps/longest gap (days)

EURAC BAAP PDC 7.95 11.5 2.1 2847 7.0

FOSSa BCBP PDC 10.9 13.8 32.9 134 26

RSE CdTe AABP PAC 9.59 10.0 0.3 2 25.3

RSE pc-Si BABP PAC 9.59 11.0 0.3 2 25.3

Pfaffstaetten Aa ADAP PDC 6.33 2.0 41.2 2082 0.9

Pfaffstaetten Ba ADAP PDC 6.33 2.2 40.1 2014 0.9

Pfaffstaetten Ca ACAP PDC 6.33 2.2 39.1 2061 0.9

US DOE c10hov6 BAAP PDC 3.16 14.6 1.2 69 13.1

US DOE kobdpi8 BAAP PDC 3.44 13.2 0.4 15 5.2

US DOE luemkoy AAAP PDC 2.45 10.0 0.5 16 3.7

US DOE lwcb907 BACP PDC 3.47 13.8 3.7 33 49

US DOE t3pg1sv BACP PDC 3.47 12.2 3.7 33 49

US DOE wca0c5m BAAP PDC 3.16 12.8 1.2 69 13.1

US DOE wxzsjaf AAAP PDC 2.45 9.9 0.5 16 3.7

US DOE z0aygry BAAP PDC 3.44 14.8 0.4 15 5.2

NREL1a BACP PDC 3.31 13.0 6.3 727 76.7

NREL2a BABP PDC 6.06 15.2 4.3 1733 22.2

NREL3a, b AADP PDC 7.88 8.7 10.0 669 146.1

NREL4a ABBP PDC 6.82 1.7 18.5 1999 27.9

Digital power plant 1 AAAP PDC 5.0 8.2 0 0 0

Digital power plant 2 AAAP PDC 5.0 7.9 0 0 0

Digital power plant 3 AAAP PDC 5.0 8.6 0 0 0

Digital power plant 4 AAAP PDC 5.0 8.6 0 0 0

aIncomplete cases omitted.
bNegative and high values (>60) for PDC and a high power time series standard deviation.
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4.3 | Uncertainty contributions to reported PLR
results

Uncertainties in the final reported PLR result arise from multiple con-

tributions, including measurement and sampling uncertainties. The

power, temperature, and irradiance time series datasets which are

used as the input to PLR determination, are a sample of a real-world

PV system. Consider two different samples of this system, a 1-min

interval and a 5-min interval time series, acquired over the same time

period, but with different instruments. These two time series, mea-

sured by different instruments, would exhibit different standard devi-

ations (σmeas) due to the instrumentation's characteristics. If instead

we use two identical measurement instruments, each measuring the

system over the same time period, for example, by lagging on mea-

surement by 30 s, these should have the same measurement uncer-

tainty σmeas, but two independent samples, their sampling

uncertainties will vary when one considers the population mean μ of

the PLR of the PV system, and will have sampling standard deviations

(σsamp) that are also different. Of course, each dataset is a sample of

the system and contains contributions to their standard deviation aris-

ing from measurement and sampling uncertainty, intrinsically. The eas-

iest way to determine the dataset standard deviation s of the time

series is by seasonal decomposition, into its seasonal, trend, and resid-

ual components, and the sampling standard deviation is easily calcu-

lated from the time series residuals. The PVplr package reports the

dataset standard deviation, as a % of initial power, as one of its mea-

sures of PV data quality.22

In many fields of research, it has long been reported that

researchers do not distinguish the descriptive statistics of the stan-

dard deviation of a set of measurements and the standard error of the

mean.56 As a descriptive statistic the standard deviation is a measure

of the variability of a set of measurements, arising from instrument

and sampling effects. The standard error of the mean provides an esti-

mate of our uncertainty in the “voted” value of a population mean,

which in this study is supposed to be the true PLR value of the real-

world PV system.57 In this study we are benchmarking which filter-

metric-method approach can determine the “true” voted value for a

system. Researchers using common approaches to PLR determination,

such as in the RdTools or PVplr packages, or using their own methods,

are producing results which should replicate the “true” PLR of the sys-

tem. We are benchmarking methods applied to diverse datasets, to

identify the most robust approaches to determine the replication

means for these 19 systems.58 Typically replication studies attempt

exactly the same method, and the standard error of the mean mea-

sures the variance among the attempts, to determine the population

mean value of PLR. Here, since we have no a priori basis to know

which of these many methods is “correct,” we can expand to using

differing methods, and by comparing standard errors, or better yet

overlapping confidence intervals we can determine statistically, what

the true, or as we refer to it, the “voted” PLR of that real-world PV

system is. We are interested in the standard error of the population

mean, and if we desire the standard 5% type I error rate35 that is

related to a p value of 0.05, we should compare PLR determination

results (and filter-metric-method approaches) using 95% confidence

intervals, determined from the standard error of the mean PLR of

these results.

Consider that we want to know the true PLR of one PV system,

and we use one or many PLR determination methods and calculate

PLR 100 times, the PLR will vary around the mean, or “true” PLR and

the important descriptive statistic is the standard error of the mean,

as we calculate more values, our confidence in the mean improves.

This is the basis of the “voting” method we apply here so that we can

determine the most likely mean value of PLR for the 19 real-world PV

systems, but utilizing many data filtering and statistical modeling

methods and for each given dataset, the mean PLR value is probably

the most likely.59 And the standard error of the mean is a measure of

the variance of these methods in determining the mean PLR. For com-

paring multiple methods of PLR determination for a single system, we

can compare the different results and their 95% confidence interval

(CI). With this, we will find the true population PLR mean, with in

range of the 95% CI 19 out of 20 times. To determine if different

methods show statistically similar, or different, estimates of the PV

system's true PLR, we can check that the 95 % CIs are overlapping.60

This is the approach we use here, for example, as shown for the

EURAC system and multiple methods in Figure 9. If in this figure 95%

CIs for each result were used, then we could define which methods

give similar estimates of the PV systems mean PLR and which

methods provide distinctly different estimates.

Regression based PLR uncertainty can be evaluated from the vari-

ance of the linear model coefficients of the corrected performance

metrics with time (section Linear Regression), returning a standard

deviation or 95% CI of the final PLR result. This process is described in

Lindig et al.1 When using this method with time series decomposed

into components using either CSD or STL to determine the PLR, it is

recommended to add back the residuals component into the trend

component so that the final time series has the same signal to noise

characteristics, as a PLR determined without using decomposition. In

this way the uncertainties for regression PLR and regression on

decomposed time series PLR are comparable. Otherwise, STL would

have an apparent advantage due to the separation of the residuals'

standard deviation from the regressed model line on the trend compo-

nent. This cannot be used for YoY PLR as the individual PLR values

used in YoY have no error given they are between two points only.

YoY instead uses the probability distribution of the individual PLR

results to represent the uncertainty in the reported PLR, and we will

need to determine the correct comparative measure of uncertainty;

should this be standard deviations, standard errors, or 95% or 83.4%

confidence intervals.

Since the coefficient uncertainties from different methods are

important to be able to compare, we wish to address this question

so as to address this divide between regression and YoY PLR uncer-

tainties. PLR uncertainty can also be evaluated using bootstrap

resampling of the time series with replacement.28,35,61,62 For regres-

sion determined PLR,1 65% of the days are randomly chosen from

the total time series and the PLR is recalculated, and this process is

repeated for 1000 iterations. The standard error of the distribution
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of the PLRs obtained from each iteration relate to the uncertainty

of the overall PLR value. A more stable PLR is expected to have less

variance through resampling. This process can also be used with

YoY as well; however, instead of resampling individual days, which

would bias YoY, the final PLR distribution is resampled. Bootstrap

resampling requires large computational capabilities, and the final

uncertainty can be made artificially lower by increasing the number

of iterations; however, it does offer a direct comparison between

regression and YoY PLR.

The graphical display of 95% CIs and whether the ranges over-

lap is an effective way to show the relative uncertainties of the esti-

mates of the mean PLR, and this graphical approach enables multiple

comparisons, where as the traditional student t test is only a

pairwise comparison.63 For a 5% type I error rate, a 0.05 p value, we

can compare methods for one system by plotting the 95% CIs. But

the criteria will be different when we wish to determine if the mean

PLR for two different PV systems are statistically similar (the null

hypothesis), or different. In this case, the comparison of the esti-

mates of two means, to achieve a 5% type I error, we should graphi-

cally compare the estimate of the mean PLR with 83.4% CIs, so as to

attain a 5% capture rate.64,65 This suggests that researchers who

wish to compare on a common basis, different PLR determination

methods should use 95% CIs, while a PV system fleet owner, who is

wanting to determine which PV systems in the fleet are exhibiting

similar or distinctly different performance loss, will compare

83.4% CIs.

4.4 | Data filtering PLR

It is useful to demonstrate the strong impact that data filtering has

on all of these different PLR determination approaches, which is a

concept that has not been emphasized in data analyses done to date.

Instead, many researchers just stated the filtering they felt was rea-

sonable, without documenting filtering's role and impact on reported

PLR results. Here, we benchmark the complex role of filters on oth-

erwise identical PLR data analyses. The applied filter can be found

together with the corresponding number in Table 1. As a metric,

PRTcorr has been used in monthly aggregation together with STL as

the statistical method. In the case of missing data in the monthly

PRTcorr time series, data imputation is accomplished using linear inter-

polation to address this aspect of missingness. The PLR of the digital

system with degradation and real weather data was investigated

next to the EURAC system. Figure 4 shows an example power ver-

sus irradiance plot for Filter #3 applied to the EURAC system. The

power along the y-axis has been normalized to the nominal power of

the system and a POA irradiance interval from 0 to 1250 W/m2 is

depicted along the x-axis. The blue dots represent the raw data, the

green ones a first threshold filter, and the red points the final filtered

dataset which is used for the subsequent PLR calculation steps.

Some filters only include a threshold filter. In this case, the in-

between filter step has been omitted, and just the final filtered data

are shown.

Figure 5 shows the calculated PLR values of the digital plant in

dependence on the used filter together with power versus POA irradi-

ance plots in order to get an idea of the impact of the individual filter.

The same is shown for the EURAC system in Figure 6.

4.4.1 | Digital plant with degradation and real
weather data

Looking at Figure 5, it is clear that the choice of filter does affect the

PLR to a large extent. The calculated PLR values range from −4.48%/a

to −5.47%/a. It seems that filters with similar irradiance cutoff thresh-

olds are clustered together when using the same metric and calcula-

tion method. This correlation is especially pronounced for the

datasets of the digital plants which are, due to their nature, not sub-

ject to outliers, and the outlier grade or filtering (mainly PR related)

does not have any effect on the outcome. Stricter irradiance thresh-

olds yield lower PLRs, an observation that could be exploited by an

analyst to arrive at “desirable” PLR results. The application of Filter

#3, #1, #4, and #7 results in PLR with the lowest calculated values,

particularly close to the STC PLR, while the irradiance thresholds

stretch from 350 to 800 W/m2. Filter #6 and #9 apply a 200-W/m2

cutoff resulting in PLR of −4.82%/a each, being quite close to the

energy related PLR. Filter #2 and #8, both applying a very low irradi-

ance threshold of 50 to 100 W/m2, yield the results closest to the

energy PLR. Filter #10 also applies a similar lower bound threshold,

but additionally as well a high threshold at 1000 W/m2, which appears

to further increase the calculated PLR above the indicated value. Filter

#5, which does not apply any threshold filter, but only a very loose PR

filter, yields the highest deviations from both indicated degradation

values. Considering PV plant data free of any data outliers, that is,

Grade A in outliers, such as the digital once presented here, and the

approach of applying STL together with PRTcorr, it seems that low irra-

diance cutoffs between 50 and 200 W/m2 yield the most accurate

results based on the energy related PLR described in Section 2.2 for

the digital plants.

F IGURE 4 Normalized power versus irradiance plot for EURAC
dataset with applied Filter #3; blue, raw data; green, threshold filter;
red, final filter [Colour figure can be viewed at wileyonlinelibrary.com]
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4.4.2 | EURAC system

Looking at Figure 6, one can see that similar observations can be

made to a certain extent for the EURAC plant. Again, higher irradiance

thresholds tend to yield lower PLR. Additionally, low irradiance thresh-

olds (e.g., Filter #10 and #2) give, in certain circumstances, accurate

PLR results. As we deal here with real performance data, outlier

accountability seems to play an important role as well.

Filter #7, #4, #10, #3, #1, and #2 yield PLR very close to the mean

reference. Four of these six filters are in relatively narrow intervals,

excluding power–irradiance pairs which are not representing the

nearly linear relationship between both variables. If a metric is directly

irradiance related, such as the PR, accounting for outlier in power–

irradiance pairs is crucial to provide clean and representable data. It is

visible that the usage of Filter #4 and #7, both subject to very strict

irradiance filtering approaches, provides results close to the mean ref-

erence, at least for high-quality data. A problem of both approaches is

the amount of filtered data. Below, the amount of data used for the

final PLR calculation after filtering is shown in respect to raw data

excluding nights for four different filter:

• Filter #1: 33.7%

• Filter #2: 61.1%

• Filter #4: 2.7%

• Filter #7: 0.4%

Filter #1 already applies a strict irradiance threshold at 500 W/

m2, but the data within the considered irradiance interval, although

F IGURE 6 Calculated PLR using all
proposed filter with PRTcorr as metric and
STL as calculation statistical method for
EURAC system [Colour figure can be
viewed at wileyonlinelibrary.com]

F IGURE 5 Calculated PLR using all
proposed filter with PRTcorr as metric and
STL as calculation statistical method for
digital plant with degradation and real
weather data [Colour figure can be
viewed at wileyonlinelibrary.com]
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just being 33.7% of the total amount of data, still account for roughly

80% of the produced power by the EURAC system and can therefor

be considered as being representative. Instead, a vast amount of data

is excluded in the PLR calculation using Filter #4 and #7. Although

the methodologies perform well on the example dataset above and

on some of the high-quality datasets in Section 4.6.2, it is believed

that such a small amount of remaining data (2.7% and 0.4%) does

possibly not represent the overall performance evolution well. Fur-

thermore, depending on the location, such strict irradiance thresholds

might reduce the amount of available data even further. Instead,

given the used metric and statistical method, a narrow power–

irradiance interval seems to be the filter of choice for real datasets

including outlier. It has to be stressed that this does not hold for all

metric-method combinations. For instance, Filter #9 used with

PVWatts as metric and the YoY approach as statistical method yields

quite accurate results for the EURAC system (see model YoY2 in

Figure 9) whereas Filter #9 applied to PRTcorr combined with STL

shows in direct comparison the largest deviation from the mean ref-

erence PLR. This circumstance underlines the strong dependency

between all calculation steps from filtering up until the choice of a

statistical method.

4.5 | Benchmarking PLR digital datasets

The digital datasets have been introduced along with the real PV

plants in Section 2. Table 4 shows the most important characteristics

of the plants.

Four PV systems have been modeled, two plants with 5 years of

repeating weather data and two PV systems with 4 years of satellite

data (location: Rennes in the west of France) followed by a fifth colder

year. The benchmarking results of the digital plants serve as a refer-

ence since the real PLR values are known for these systems, which is

not the case for the real datasets. Two definitions of PLR are indi-

cated, the loss in Pmpp at STC and the constant absolute loss in energy

from year to year. Both approaches are presented in the results. From

a practical point of view, the parameter of interest is the degradation

in energy.

The individual methods used in this comparison have been intro-

duced in Table 1. Figure 7 shows the calculation results for the two

digital plants without degradation. The colors of the dots indicate the

chosen metrics and the symbols the applied statistical models. Two

horizontal lines are visible in the figures, the orange one representing

the degradation value for Pmpp at STC, and the green one the energy

degradation. For this systems with no induced degradation, these

values are very similar to one another.

Looking at the results, it is obvious that the calculation accuracy

varies depending on the source of weather data. While all used

approaches yield the correct value within a ±0.05% interval for the

system with repeating weather data, greater deviations can be

detected looking at the figure where real weather data with an

induced colder year were used. Especially, the last induced colder year

in the weather dataset seems to bias the results towards negative

values. This colder year, subject to artificially induced lower radiation,

yields just 63% of the initial power output for this system, without

being subject to degradation. Methods using high irradiance threshold

filter (VAR1, R-LR1, LS-LR1, and STL1) or predictive power

approaches as metrics (i.e., XbX(UTC)) seem to be able to remove this

induced effect and provide reliable results.

Figure 8 shows the results for the digital plants with simulated

degradation. Here, the indicated degradation values (orange and green

lines) vary distinctively from one another. Among other things, this

has to do with the irradiance distribution for this particular simulated

site. In Figure A1, the yearly POA irradiation per irradiance interval is

shown for the dataset measured at the test site in Rennes, France. It

is visible that more than 60% of the irradiation energy is provided

from instantaneous irradiance values below 600 W/m2. Thereby, a

large amount of PV energy is produced under irradiance conditions far

TABLE 4 Main characteristics of digital PV plants

Characteristics
Repeating weather
data

Real weather data with
5th induced cold year

No degradation Same Meteo_0Deg Real Meteo_0Deg

Induced

degradation

Same Meteo_xDeg Real Meteo_xDeg

F IGURE 7 (A) Calculated PLR of digital plant with no degradation and repeating weather data. (B) Calculated PLR of digital plant with no
degradation and real weather data; orange line: PLR at STC; green line: PLR in absolute energy [Colour figure can be viewed at wileyonlinelibrary.com]
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away from STC, and therefore, both degradation values differ. It is

expected that such degradation estimations are closer together in

areas with a high amount of irradiation in higher irradiance level

regimes.

For the digital systems with induced degradation, the deviations

among the calculated PLR values are smaller between the systems,

and most calculated values are higher than the STC PLR value and

lower compared to the energy degradation value. As mentioned

before, the degradation in energy is the indicator of interest. All

approaches are within a 10% interval of the true energy PLR. It is visi-

ble that several YoY approaches yield values very close to the energy

PLR. Furthermore, it seems that methods based on PR and PRTcorr met-

rics, except for YoY3 and YoY5, yield results with lower PLR values,

laying between the lower and upper bound. It seems that the fifth col-

der year shifts most approaches to larger average PLR values.

For the two systems without degradation, the methodologies

VAR1, LS-LR5, STL4, R-LR1, LS-LR1, YoY5, and STL1 yield the most

accurate results with average deviations below −0.025%/a. For the

systems with induced degradation, the application of YoY3, STL4,

YoY5, and YoY2 returns results with deviations lower than −0.05%/a

compared to the energy related PLR. It is believed that a threshold fil-

ter for irradiance and power affect the final PLR calculation results in a

way such that higher thresholds yield lower PLR values. All four sys-

tems have very high-quality data where the effect of filtering

irradiance–power pairs seems secondary in the sense that the main

purpose of these filters, namely, outlier removal, is unnecessary as the

raw datasets do not have any outlying values.

4.6 | Benchmarking PLR real datasets

4.6.1 | Evaluation methodology

An evaluation of the overall results for real datasets is fairly compli-

cated since the true value of the PLR for each respective system is

unknown. To rate the methodologies among each other, we used a

replication study approach, where multiple filter-metric-method

approaches to PLR were used to determine the PLR values and

comparing this sample of PLR values as a sample of the true popula-

tion mean of the PV system. Since we don't know the “correct” value,
we use the sample mean from the calculations and using a voting pro-

cedure to identify the mean PLR as the mostly reasonable value for

each PV system. First, the mean PLR for an individual PV system is cal-

culated using all calculated PLR values (Figure 9A). Next, the relative

difference of all methodologies from the reference (mean) PLR, which

is set at 0%, is calculated for this particular system (Figure 9B). The

closer a result is to 0%, the more accurate the calculated PLR is. We

see, for example, that the highest deviations for the EURAC system

are observed for statistical method LS-LR7 followed by SCSF1. LS-

LR7 uses the 6K method as metric, which might be the root cause for

the deviation. Statistical method SCSF1 has a different approach from

the other methods, as it does not account for irradiance in the PLR cal-

culation. SCSF1 practitioner's analysis suggested a positive sensor

drift for the EURAC POA pyranometer accounts for the difference of

their reported result from the mean result (a difference of +0.47%/a).

Combining the suggested sensor drift with the estimation of degrada-

tion for the system, the deviance of the results using SCSF1 is

reduced compared to the mean and yields a value similar to the major-

ity of other methods.

The difference from the normalized mean PLR was subsequently

calculated for all systems, and the values were averaged to see which

methodologies seemingly yield the highest accuracy by cross-comparison.

Here, two key performance indicators (KPIs) were then identified to

benchmark the proposed combinations for the calculation of PLR.

• Absolute average deviation from the mean value considering all

datasets

=

Pn
i=1

ðPLRi−PLRiÞ
PLRi

� ���� ���
n

: ð9Þ

• Standard error of the average deviation

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i=1

ðPLRi−PLRiÞ
PLRi

−μ

� �2

n−1

vuuut
=

ffiffiffi
n

p
: ð10Þ

F IGURE 8 (A) Calculated PLR of digital plant with degradation and repeating weather data. (B) Calculated PLR of digital plant with degradation
and real weather data; orange line: PLR at STC; green line: PLR in absolute energy [Colour figure can be viewed at wileyonlinelibrary.com]
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The first KPI provides an indication of how a particular filter-

metric-method performs overall in terms of estimating the average

value over all considered datasets. Thereby, the absolute average of

the differences between the mean PLR ( �PLRi ) and the PLR for each

statistical method is calculated, where i refers to a specific PV system

of the n PV systems being analyzed. The second KPI provides an indi-

cation on how the average value deviates from dataset to dataset.

Here, μ is the mean of the numerator of Equation (9) over all systems

for one filter-metric-method. Finally, all results are averaged in a tar-

get plot to see which methodologies perform the best across all sys-

tems. The results are discussed in Section 4.6.2. Figure 9 shows, in

addition to the absolute PLR values, the uncertainties reported by the

analysts for each applied methodology, which unfortunately were a

variety of standard deviations, standard errors, and CIs, so are not

actually comparable. Since there is no consensus on how to report

PLR uncertainty values in the PV community, the analyst reported

uncertainties were omitted in the final evaluation. InTable 5, the mean

PLR for all systems are depicted to get an overall impression of the

degradation of the systems under evaluation. The calculated PLR for

all systems considering all methodologies can be found in Appendix

C1. Unfortunately, some of the datasets under investigation had cer-

tain dataset quality issues, as discussed in Section 4.2 and Table 3,

and individual methodologies failed to yield PLR results for these

datasets. In Table 5, several systems belonging to the US DOE and

NREL datasets are marked because of PLR calculation issues related

to data quality.

4.6.2 | PLR analysis

Based on the discussion above the PLR evaluation is subdivided into

different groups considering a varying number of analyzed systems.

That was done to also study the variability of the results. For example,

the PLR of the systems NREL3 and NREL4 was only calculated using

five different methods of which a few of these results were strong

outliers. Since the PLR evaluation is based on the mean of the calcu-

lated PLR values, a small predictor dataset may yield biased results.

The idea is that an increasing number of calculated values decreases

the average PLR variability and therefore increases the accuracy of

the estimated reference PLR. Thereby, the trustworthiness of the PLR

F IGURE 9 (A) Calculated PLR of EURAC system. (B) Relative calculated PLR values of EURAC system [Colour figure can be viewed at
wileyonlinelibrary.com]

TABLE 5 Mean PLR, across all filter/
methods used, for all systems included in
the benchmarking study

System PLR (%/a) System PLR (%/a) System PLR (%/a)

EURAC −0.85 NREL1 −0.33 US DOE luemkoyb 0.95

FOSS −0.71 NREL2 −0.54 US DOE lwcb907 −0.03

RSE CdTe −1.75 NREL3a 0.06 US DOE t3pg1sv −0.75

RSE pc-Si −0.96 NREL4 −0.25 US DOE wca0c5mc −1.00

Pfaffstaetten A −3.57 US DOE c10hov6 −0.50 US DOE wxysjaf −0.97

Pfaffstaetten B −3.96 US DOE kobdpi8 −0.73 US DOE z0aygryc −2.32

Pfaffstaetten C −1.29

aThe provided modeled irradiance dataset should have been used, which was not done by all participants.

The reported PLR corresponds to the average PLR of SCSF1, YoY2, and STL1 (see Figure A3).
bThe system power was for approximately the first half of its recorded lifetime limited by inverter

clipping. Afterwards, the output power was not capped anymore. A calculation of PLR using this power

data series, which has been done by all participants, does not correspond to the mean PLR.
cThe power datasets were subject to data shifts at the beginning of operation. These shifts were detected

only by the participants applying STL1 and YoY2. The average of the results of these methodologies is

reported as PLR (see Figure A4).
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as being close to the “real” PLR is higher if more PLR values are

included.

With the voted results of our interlab/intermethod comparison

shown in Table 5, we may actually have an ensemble learning

approach to determine the �PLRi accurate and reproducible. Ensemble

models in machine learning defines the usage of different modeling

approaches, and the final result is a voted result across all models.66

An example of this is random forest machine learning, where the

result of a “forest” of decision tree models are averaged together, and

this ensemble averaging allows the different approaches to counter-

balance their uncertainties. In the case of PLR determination, with

tools such as RdTools and PVplr, it is easy to perform an ensemble of

PLR results on a system and then calculate the PV systems �PLRi.

Thresholds for a minimum amount of calculated PLR values were

set per evaluation group for a given filter-metric-method to be

included in the benchmark comparison:

• G7-3-24: evaluate seven systems with a minimum of three calcu-

lated PLR values per filter-metric-method. This includes 24 filter-

metric-method combinations.

• G13-7-17: evaluate 13 systems with a minimum of seven calcu-

lated PLR values per filter-metric-method of which at least one has

not been included in first evaluation group. This includes 17 filter-

metric-method combinations.

The threshold for an evaluation over all systems was set to 15 cal-

culated PLR values. This reduces the number of considered filter-

metric-method combinations to two, namely, STL1 and YoY2. Since

these results are strongly biased, an evaluation over all systems has

not been carried out.

G7-3-24: Evaluation of seven systems with 24 approaches

The first evaluation is based on the results calculated for seven

datasets excluding all NREL and US DOE PV systems based on the

dataset issues discussed before. For a PLR calculation method to be

included in this analysis, at least three PLR values have to be calcu-

lated. The number of calculated PLR per system over these seven sys-

tems ranges from 20 to 27.

Figure 10A shows the PLR statistical method ratings when consid-

ering seven different PV systems. The deviance, a goodness-of-fit sta-

tistic for a statistical model, shown along the x-axis, describes the

absolute overall difference from the reference mean PLR, and along

the y-axis the standard error (se) of the average differences from the

reference PLR across the systems under consideration is shown.

Uncertainties are omitted because no homogenized way has been

used throughout the application of different methodologies and

therefore, the usage of the indicated uncertainties would be mislead-

ing. The difference in colors describes the usage of different metrics

and the difference in symbols the usage of different statistical

methods. The isobands, at 10% increase, are a guide for the eye to

categorize the results into different groups of accuracy. In Figure 10A,

a minimum of three calculated PLR was set for a statistical method to

be included in the benchmark evaluating seven different PV systems.

These datasets are considered as being of high quality without serious

data quality issues apart from the minor ones reported in Section 4.2.

It can be seen that the majority of applied filter-metric-method

approaches have results in the first and second isoband with a relative

average difference from the mean PLR of up to 17% and a

corresponding standard error (se) of 1% to 6%. According to the

results evaluating seven different PV systems, YbY1, STL4, STL8, LS-

LR3, and HW1 provide the most accurate results (all in the first

isoband). YbY1 has been applied to three PV systems, and the

remaining three methods have been applied to all seven PV systems

considered in the study. Two out of five of this methods use

temperature-corrected metrics (PRTcorr and XbX(UTC)). YbY1 is one of

the methodologies not applying any temperature correction, whereas

this methodology applies the strictest overall filter by only including

data within an irradiance interval of 40 W/m2 around NOCT

conditions.

From 24 tested filter-metric-method approaches, seven are not in

the first and second isoband with deviance values from the mean PLR

greater than 20% and perform thereby in direct comparison with

lower accuracy. YbY2 is at the edge of the cluster with methodologies

performing with higher accuracy. It seems that the usage of power as

metric combined with LR and CSD as statistical methods results in

higher uncertainty results. Especially, LR where the metric was not

F IGURE 10 Target plot with
absolute average deviations from mean
PLR value and standard error considering
(A) seven PV systems (excluding all NREL
and US DOE datasets) and (B) 13 PV
systems (excluding US DOE luemkoy,
lwcb907, wca0c5m, and z0aygry and
NREL3 and NREL4) [Colour figure can be
viewed at wileyonlinelibrary.com]
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subject to temperature correction is subject to high variations. The

statistical method with the lowest accuracy in direct comparison is

LS-LR2, an approach using the PR as metric and LR as calculation

method. The filter (see Table 1) used for LS-LR2 only applies a PR

threshold of 0% to 100% and thereby does not exclude outlier suffi-

ciently, which are ultimately affecting the final result since LR is

strongly affected by nonvalid datapoints.

Methods using the common approaches of YoY and STL are per-

forming with relatively lower uncertainty throughout, but also alterna-

tive models such as HW, FBP, or the VAR method yield satisfactory

results.

It is interesting to observe the deviance in the results looking at

YbY1 and YbY2. For both approaches, only three PLR values have

been calculated. The only difference between these approaches are

the applied filters. While YbY1 filters a narrow irradiance band around

NOCT conditions (780–820 W/m2), YbY2 filters around STC condi-

tions (980–1020 W/m2). Just considering this small sample of

datasets, it seems that NOCT conditions represent the calculated

mean PLR better in direct comparison. Furthermore, both methodolo-

gies, together with LS-LR1 and R-LR2, use narrow irradiance band and

temperature filter and exclude thereby the vast majority of

datapoints. Three out of four (except the mentioned YbY1) of this

heavy filtering approaches yield results with higher uncertainties, pos-

sible because of filtering out large amounts of data. These filtering

approaches are further discussed in Section 4.4.

A direct comparison of statistical method SCSF1 is more compli-

cated as it does not include irradiance values for the PLR calculation. It

evaluates power and irradiance time series independently. For

instance, the application of SCSF1 on the EURAC systems irradiance

data suggests a positive drift (see Section 4.6.1). If one combines that

with the PLR calculated for the EURAC system using SCSF1, the dif-

ference of the PLR using statistical method SCSF1 compared to the

result decreases. A similar observation was made for the FOSS sys-

tem. The calculated PLR (using SCSF1) is with −0.35%/a clearly below

the mean PLR of −0.7%/a. An evaluation of the irradiance sensor data

is still ongoing to verify a possible drift, but it has been ensured that

both sensors are calibrated according to existing guidelines and

standards.

Instead, the results for the Pfaffstaetten systems using SCSF1 are

quite close to the mean PLR, although a strong irradiance sensor drift

of +0.67%/a is suggested using this statistical method. Irradiance

drifts have to be considered with care, since interannual variations

might contribute to this effect and are not excluded while estimating

a sensor drift using the SCSF approach. Additionally, solar brightening

effects are taking place since the early 1980s to this date, describing

an increase of solar irradiation on the earth's surface in certain parts

of the world.67 For example, Kiefer et al.68 saw an average increase in

irradiance of +1.1% per year while studying the performance of sev-

eral PV plants in Germany. These effects might as well influence such

measurements. It seems that a direct comparison of the SCSF

approach to others is quite complex for real datasets. A comparison

based on a greater number of digital plants may present a better foun-

dation for further evaluation.

Furthermore, CSD did not perform well. CSD is based on a cen-

tered moving average where the first and last datapoints are removed

by creating a statistical smoothing function. This may lead to the

exclusion of important performance data, especially in shorter time

series. Comparing the individual CSD approaches with one another, it

is visible that CSD3 performed the best. This is the only CSD

approach having a statistical PR filter which excludes outlier of

power–irradiance pairs.

Overall, the majority of the test approaches calculate PLR with

relatively low uncertainties considering this datasets. This study

serves thereby as a first indicator of PLR estimation accuracy for high-

quality datasets without major measurement and operation issues.

G13-7-17: Evaluation of 13 systems with 17 approaches

The second evaluation considers 13 PV systems excluding NREL3,

NREL4, US DOE luemkoy, US DOE lwcb907, US DOE wca0c5m, and

US DOE z0aygry. The latter two systems were excluded because of

the detected data shift in the power output. As explained in Appen-

dix C1, only two participants, using the approaches STL1 and YoY2,

took the data shift into account. The inclusion of the PLR evaluation

results for these two PV systems would alter the results based on a

thorough data quality check instead of the actual statistical method

application.

A minimum of seven calculated PLR was set for a statistical

method to be included in this second benchmark category. At the

same time at least one calculated PLR had to be for a NREL or US

DOE dataset in order to avoid having redundant results compared to

the first evaluation. The threshold reduced the number of considered

methodologies from 24 to 17. The results can be seen in Figure 10B.

The inclusion of methodologies in itself is already a first quality

characteristic by being applicable to a wider set of PV system perfor-

mance data, which are partially subject to certain data related issues.

Comparing both benchmark evaluations, it is visible that the spread of

methodologies in the target plot in Figure 10B increased substantially.

While the majority of methodologies in Figure 10A yields results

corresponding to values in the first and second isoband, seven of now

17 methodologies are remaining in this area and the rest stretches

over the other isobands. The approaches with the highest accuracy

are LS-LR8 and FBP1. Both methodologies use the PR as metric and

apply the same Filter #8 from Table 1. It has to be noted that,

although very accurate results have been achieved using this two

methodologies, results where serious data issues have been detected

were omitted. Four more statistical methods have been tested using

the same metric and filter. It is interesting to note that two of these

use STL as a statistical method, the only difference is that one func-

tion was taken from Python (STL8) while the other one was taken

from R (STL7). The latter exhibits the highest se in Figure 10B. A

cross-comparison of STL7 and STL8 shows that both approaches yield

very similar results, except for system NREL1. Here, STL7 overesti-

mates the mean PLR substantially, whereas STL8 results in a PLR

lower than the mean value, but with a lower deviation. This over-

estimation explains the highest standard error across all tested

methodologies.
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Apart from LS-LR8, FBP1, and STL8, four more methodologies

are in the second isoband, namely, HW1, YoY2, STL1, and LS-LR5. It

should be noted that YoY2 and STL1 are next to YoY5, the only

approaches for which all 13 PLR have been calculated and provided.

Furthermore, LS-LR5 stands in direct comparison to LS-LR6, LS-LR4,

and LS-LR7, three methodologies with high deviations from the mean

PLR. For all four methods, Filter #2 fromTable 1 and LS-LR as statisti-

cal method are used together with different power predictive models.

Thereby, 6K, PVUSA, and XbX do not seem to yield reliable results

with the 6K metric performing the poorest. Due to its nature the 6K

metric tends to predict values close to the nameplate power at STC

and underestimates thereby the PLR. Instead, XbX(UTC) provides

already satisfactory results by just applying LR. It is expected that the

usage of a more sophisticated statistical method such as STL or YoY

would return results with lower uncertainties. Method STL4, which

uses XbX(UTC) as metric, performed with high accuracy in the first

benchmark considering seven systems but was not applied to a suffi-

cient number of systems to be included in this second benchmark.

Overall, a “perfect” combination of filter, metric, and PLR calcula-

tion method probably does not exist, since there are complex interac-

tions of filters, metrics, and methods with the characteristics of the

datasets. Instead, based on the results discussed in this section, case-

to-case-dependent arrangements of dataset-dependent adaptive filter

(possibly automated based on quantitative data quality measures),

temperature-corrected metrics, and suited methods are rec-

ommended. Although LS-LR did yield some good results, it is not rec-

ommended for more complicated datasets as it gives too much weight

to outliers. The commonly used statistical methods STL and YoY per-

formed well if suited filter and metrics have been applied.

5 | CONCLUSIONS

In this work, several experts in the field of PV reliability have applied

their preferred methods for the calculation of PLR including various

combinations of filters, metrics, and statistical methods. The aim of

the exercise was to determine the capabilities and uncertainties of all

the various approaches tested and to determine the “best” voted PLR

estimates for the 23 systems under investigation. Furthermore, we

wanted to quantify the variation and sensitivity of the individual PLR

calculation steps based on the uncertainty, reproducibility, and bias of

the results. This work is an important step forward to support the

community to have tools to assess data quality of research and com-

mercial PV systems, to utilize various filters, metrics, corrections and

methods, and to have these tools be accessible and broadly usable.

Examples are the software packages RdTools, PVlib and PVplr.

Based on the presented results, one uniform way of calculating

reliable PLR, including fixed filtering approaches, the same metric, and

statistical method, does not seem to exist at that point. Instead, it was

shown that a thorough data quality check together with careful filter-

ing approaches are absolutely crucial steps in calculating PLR, espe-

cially if the PV system dataset is subject to monitoring data related

issues. In terms of calculation approaches, not only the most popular

ones, STL and YoY, but also newly developed or less common ones,

such as the VAR method, HW or FBP, demonstrated reliable results.

While a standardized way of calculating PLR would be the desirable

outcome of this study in order to reliably intercompare results across

PV systems and operators, it was highlighted that a sensitive combina-

tion of filtering/metrics and statistical methods is crucial for achieving

reliable results.

Even if we currently cannot define a single way to calculate the

PLR of a PV system, this study does suggest that the voting, or prefer-

ence aggregation, approach used here, may itself represent an accu-

rate ensemble approach for PLR determination. It seems that a

calculating PLR using many filters, performance metrics, corrections,

and statistical modeling approaches does appear to provide consistent

and robust estimates of �PLRi for system i. This multiple method

approach may serve as an ensemble model in which inaccuracies of all

the different approaches are minimized in the voted result of the

ensemble calculation of �PLRi.

Often, the filtering step is either performed insufficiently or not

reported clear enough in corresponding literature. Therefore, when

calculating PLR, an exhaustive report on filter selection and data flag-

ging is vital to better comprehend, or even reproduce, the calculation

steps and to enable the reader to compare the results. This circum-

stance gave way to the implementation of a direct filter comparison,

where 10 different filtering approaches have been applied to one digi-

tal plant and one real dataset with an otherwise identical PLR calcula-

tion approach. Filtering can be divided into two sets, namely,

threshold filter and statistical filter used to remove outliers of power–

irradiance pairs.

High irradiance thresholds tend to lower the overall PLR, espe-

cially when modules/systems are experiencing degradation in low

light performance due to a decreasing shunt resistance. Additionally,

filtering approaches including statistical filter, which remove a large

share of power–irradiance data pair outliers, together with low to

medium irradiance thresholds seem to provide the most reliable

datasets for further treatment and consequently result with the

highest accuracy.

ACKNOWLEDGEMENTS

The authors kindly acknowledge the data provided by Karl Berger

(AIT) for the Pfaffstaetten system and Giosué Maugeri (RSE) for the

RSE datasets. The research has received funding from the European

Union's Horizon 2020 program under GA. No.

721452-H2020-MSCA-ITN-2016. This material is based upon work

supported by the U.S. Department of Energy's Office of Energy Effi-

ciency and Renewable Energy (EERE) under the Solar Energy Technol-

ogies Office Award Number 34366. Sandia National Laboratories is a

multimission laboratory managed and operated by National Technol-

ogy & Engineering Solutions of Sandia, LLC, a wholly owned subsidi-

ary of Honeywell International Inc., for the U.S. Department of

Energy's National Nuclear Security Administration under contract DE-

NA0003525. This paper describes objective technical results and anal-

ysis. Any subjective views or opinions that might be expressed in the

paper do not necessarily represent the views of the U.S. Department

594 LINDIG ET AL.

 1099159x, 2021, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pip.3397 by C

A
SE

 W
E

ST
E

R
N

 R
E

SE
R

V
E

 U
N

IV
E

R
SIT

Y
, W

iley O
nline L

ibrary on [23/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



of Energy or the United States Government. The authors thank the

Department of Innovation, Research and University of the Autono-

mous Province of Bozen/Bolzano for covering the Open Access publi-

cation costs.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ORCID

Sascha Lindig https://orcid.org/0000-0001-5421-8265

David Moser https://orcid.org/0000-0002-4895-8862

Arash Khalilnejad https://orcid.org/0000-0002-7138-8095

Dirk Jordan https://orcid.org/0000-0002-2183-7489

Chris Deline https://orcid.org/0000-0002-9867-8930

Wilfried van Sark https://orcid.org/0000-0002-4738-1088

Wei Luo https://orcid.org/0000-0002-7075-3521

REFERENCES

1. Lindig S, Kaaya I, Weiß K, Moser D, Topic M. Review of statistical and

analytical degradation models for photovoltaic modules and systems

as well as related improvements. IEEE J Photovoltaics. 2018;8(6):

1773-1786.

2. Jordan DC, Deceglie MG, Kurtz SR. PV degradation methodology

comparison—a basis for a standard. In: 2016 IEEE 43rd Photovoltaic

Specialists Conference (PVSC); 2016:0273-0278.

3. Bryant C, Wheeler NR, Rubel F, French RH. KGC: Koeppen-Geiger

Climatic Zones. https://CRAN.R-project.org/package=kgc, R package

version 1.0.0.2; 2017.

4. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F. World map of the

Köppen-Geiger climate classification updated. Meteorol Z. 2006;15:

259-263.

5. Rubel F, Brugger K, Haslinger K, Auer I. The climate of the European

Alps: shift of very high resolution Köppen-Geiger climate zones

1800–2100. Meteorol Z. 2016. http://www.schweizerbart.de/papers/

metz/detail/prepub/87237/The_climate_of_the_European_Alps_

Shift_of_very_hig?af=crossref

6. Rubel F, Kottek M. Observed and projected climate shifts 1901-2100

depicted by world maps of the Koppen-Geiger climate classification.

Meteorol Z. 2010;19(2):135-141.

7. Jordan DC, Marion B, Deline C, Barnes T, Bolinger M. PV field reliabil-

ity statusâĂŤanalysis of 100,000 solar systems. Prog Photovoltaics:

Res Appl. 2020;28(8):739-754. https://doi.org/10.1002/pip.3262

8. IEC61724-1:2017. Photovoltaic system performance, part 1: monitor-

ing. Standard, Geneva, CH, International Electrotechnical Comission;

2017.

9. Sandia National Laboratories and United States. Department of

Energy. Office of Scientific and Technical Information. The US DOE

Regional Test Center Program: driving innovation quality and reliabil-

ity. https://books.google.it/books?id=-x0YzQEACAAJ; 2015.

10. Braisaz B, Dupeyrat P, Lindsay A, Radouane K, Helm P, Jager-

Waldau A, Mine A. An advanced model of PV power plants based on

Modelica. In: 28th European Photovoltaic Solar Energy Conference

and Exhibition. WIP; 2013:3644-3648. http://www.eupvsec-

proceedings.com/proceedings?paper=21666

11. Plessis G, Kaemmerlen A, Lindsay A. BuildSysPro: a Modelica library

for modelling buildings and energy systems. In: Proceedings of the

10th International Modelica Conference; 2014:1161-1169.

12. Ingenhoven P, Belluardo G, Moser D. Comparison of statistical

and deterministic smoothing methods to reduce the uncertainty of

performance loss rate estimates. IEEE J Photovoltaics. 2018;8(1):

224-232.

13. Livera A, Theristis M, Koumpli E, Theocharides S, Makrides G,

Sutterlueti J, Stein JS, Georghiou GE. Data processing and quality ver-

ification for improved photovoltaic performance and reliability analyt-

ics. Prog Photovoltaics: Res Appl. 2020;29:143-158. https://doi.org/

10.1002/pip.3349

14. Huld T, Friesen G, Skoczek A, Kenny RP, Sample T, Field M,

Dunlop ED. A power-rating model for crystalline silicon PV modules.

Sol Energy Mater Sol Cells. 2011;95(12):3359-3369.

15. Kratochvil JA, Boyson WE, King DL. Photovoltaic array performance

model: Sandia Technical Report; 2004.

16. Buuren S, Groothuis-Oudshoorn C. mice: multivariate imputation by

chained equations in R. J Stat Softw. 2011;45:1-67.

17. Lindig S, Louwen A, Moser D, Topic M. Outdoor PV system monitor-

ing input data quality, data imputation and filtering approaches. Ener-

gies. 2020;13(19):5099. http://doi.org/10.3390/en13195099

18. Reno MJ, Hansen CW. Identification of periods of clear sky irradiance

in time series of GHI measurements. Renew Energy. 2016;90:

520-531.

19. Holmgren W, Lorenzo T, Krien U, Mikofski M, Hansen C, Driesse A,

Boeman L, Miller E, Anoma MA, Beutner V, Hendricks T, Dollinger J,

Leroy C, Stark C, Anderson K, Gaffiot J, Oos J, Peronato G,

Schachler B, Mathew A, Kafkes A. Pvlib/pvlib-python: V0.7.2.

Zenodo, https://zenodo.org/record/2850192; 2020.

20. Deceglie MG, Jordan DC, Nag A, Deline CA, Shinn A. RdTools: an

open source Python library for PV degradation analysis. In: PV Sys-

tems Symposium; 2018; Albuquerque, United States.

21. Jordan DC, Deline C, Kurtz SR, Kimball GM, Anderson M. Robust PV

degradation methodology and application. IEEE J Photovoltaics. 2018;

8(2):525-531.

22. Curran AJ, Burleyson TJ, Lindig S, Moser D, RH French. PVplr: SDLE

performance loss rate analysis pipeline. https://CRAN.R-project.org/

package=PVplr; 2020.

23. Diez DM, Çetinkaya-Rundel M, Barr CD. OpenIntro Statistics. 4th edi-

tion: OpenIntro, Inc.; 2019. https://www.openintro.org/book/stat/

24. R Core Team. R: the R Stats Package. https://stat.ethz.ch/R-manual/

R-devel/library/stats/html/stats-package.html; 2020.

25. Rauch E. rstl. https://pypi.org/project/rstl/; 2018.

26. Seabold S, Perktold J. statsmodels: econometric and statistical

modeling with Python. In: 9th Python in Science Conference; 2010:

92-96.

27. Theristis M, Livera A, Micheli L, Jones CB, Makrides G, Georghiou GE,

Stein JS. Modeling nonlinear photovoltaic degradation rates. In: 2020

47th IEEE Photovoltaic Specialists Conference (PVSC); 2020:

0208-0212.

28. Curran AJ, Jones CB, Lindig S, Stein J, Moser D, French RH. Perfor-

mance loss consistency and uncertainty across multiple methods and

filtering criteria. In: IEEE 46th Photovoltaic Specialists Conference

(PVSC); 2019; Chicago:1328-1334.

29. Curran AJ, Zhang R, Hu Y, Haddadian R, Braid JL, Peshek TJ,

French RH. Determining the power rate of change of 353 solar plant

inverters using a month-by-month analysis and common data science

applications to power time series. In: IEEE 44th Photovoltaic Special-

ists Conference (PVSC); 2017; Washington:1927-1932.

30. Jordan DC, Deceglie MG, Kurtz SR. PV degradation methodology

comparison—a basis for a standard. In: 2016 IEEE 43rd Photovoltaic

Specialists Conference (PVSC); 2016; Portland, United States:

273-278.

31. King DL, Kratochvil JA, Boyson WE. Field experience with a new per-

formance characterization procedure for photovoltaic arrays. Sandia

Technical Report, United States; 1998.

32. National Renewable Energy Laboratory. PVWatts version 5 manual.

https://pvwatts.nrel.gov/downloads/pvwattsv5.pdf; 2014.

33. Holmgren W, Hansen C, Mikofski M. pvlib python: a python package

for modeling solar energy systems. J Open Source Softw. 2018;3:884.

PVLIB version 0.5.2 https://doi.org/10.5281/zenodo.1246152

LINDIG ET AL. 595

 1099159x, 2021, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pip.3397 by C

A
SE

 W
E

ST
E

R
N

 R
E

SE
R

V
E

 U
N

IV
E

R
SIT

Y
, W

iley O
nline L

ibrary on [23/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



34. Lindig S, Moser D, Müller B, Kiefer K, Topic M. Application of

dynamic multi-step performance loss algorithm. In: 2020 47th IEEE

Photovoltaic Specialists Conference (PVSC); 2020:0443-0448.

35. James G, Witten D, HastieT, Tibshirani R. An Introduction to Statistical

Learning: With Applications in R. 1st ed. 2013, Corr. 5th printing 2015

edition, Springer Texts in Statistics: Springer; 2013. http://www-bcf.

usc.edu/gareth/ISL/index.html

36. Faraway JJ. Linear Models with R, 2nd Ed. 2nd edition: Chapman and

Hall/CRC; 2014(English).

37. Hyndman RJ, Athanasopoulos G. Forecasting: Principles and Practice.

2nd edition: OTexts; 2018. https://otexts.com/fpp2/

38. Jordan DC, Kurtz SR. Analytical improvements in PV degradation rate

determination. In: 35th IEEE Photovoltaic Specialists Conference;

2010:688-693.

39. Cleveland RB, Cleveland WS, McRae JE, Terpenning I. STL: a

seasonal-trend decomposition procedure based on loess. J Off Stat.

1990;6(1):3-33.

40. Hafen R. stlplus: enhanced seasonal decomposition of time series by

loess. https://CRAN.R-project.org/package=stlplus, R package ver-

sion 0.5.1; 2016.

41. Hasselbrink E, Anderson M, Defreitas Z, Mikofski M, Shen Y-C,

Caldwell S, Terao A, Kavulak D, Campeau Z, DeGraaff D. Validation

of the PVLife model using 3 million module-years of live site data. In:

2013 IEEE 39th Photovoltaic Specialists Conference (PVSC); 2013:

0007-0012.

42. Meftah M, Lajoie-Manzenc E, van Iseghem M, Perrin R, Boubil D,

Radouane K. A less environment-sensitive and data-based approach

to evaluate the performance loss rate of PV power plants. In: 36th EU

PVSEC Proceedings; 2019; Marseille, France:1554-1559.

43. Meyers B, Tabone M, Kara EC. Statistical clear sky fitting algorithm.

In: 2018 45th IEEE Photovoltaic Specialists Conference (PVSC);

2018; Hawai.

44. Meyers B, Deceglie M, Deline C, Jordan D. Signal processing on PV

time-series data: robust degradation analysis without physical models.

IEEE J Photovoltaics. 2019;10:546-553.

45. Holt CC. Forecasting seasonals and trends by exponentially weighted

moving averages. Int J Forecast. 2004;20(1):5-10.

46. Taylor SJ, Letham B. Forecasting at scale. Am Stat. 2018;72(1):

37-45.

47. Theristis M, Livera A, Jones CB, Makrides G, Georghiou GE, Stein JS.

Nonlinear photovoltaic degradation rates: modeling and comparison

against conventional methods. IEEE J Photovoltaics. 2020;10(4):1112-

1118.

48. Kwak SK, Kim JH. Statistical data preparation: management of miss-

ing values and outliers. Kor J Anesthesiol. 2017;70(4):407-411.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5548942/

49. Tierney NJ, Cook DH. Expanding tidy data principles to facilitate

missing data exploration, visualization and assessment of imputations.

arXiv:180902264 [stat], http://arxiv.org/abs/1809.02264; 2020.

50. Khalilnejad A, Karimi AM, Kamath S, Haddadian R, French RH,

Abramson AR. Automated pipeline framework for distributed

processing of large-scale building energy time series data. PLoS ONE.

2020;18:1-22.

51. Aggarwal CC. Outlier Analysis. 2nd ed. 2017 edition: Springer; 2016

(English).

52. Hodge V, Austin J. A survey of outlier detection methodologies. Artif

Intell Rev. 2004;22(2):85-126.

53. Chen C, Liu L-M. Joint estimation of model parameters and outlier

effects in time series. J Am Stat Assoc. 1993;88(421):284-297. http://

www.jstor.org/stable/2290724

54. López-de-Lacalle J. TsOutliers: detection of outliers in time series.

https://CRAN.R-project.org/package=tsoutliers; 2019.

55. Gelman A, Hill J. Chapter 25. Missing Data Imputation, from Data Anal-

ysis Using Regression and Multilevel/Hierarchical Models. 1st edition:

Cambridge University Press; 2006.

56. Horan BF. Standard deviation, or standard error of the mean? Anaes-

thesia and Intensive Care; 1982.

57. Curran-Everett D. Explorations in statistics: standard deviations and

standard errors. Advances in Physiology Education. 2008;32(3):

203-208. https://journals.physiology.org/doi/full/10.1152/advan.

90123.2008

58. Cumming G, Williams J, Fidler F. Replication and researchers' under-

standing of confidence intervals and standard error bars. Underst Stat.

2004;3(4):299-311. https://doi.org/10.1207/s15328031us0304_5

59. Muravyov SV, Marinushkina IA. Processing data from interlaboratory

comparisons by the method of preference aggregation. Measurement

Techniques. 2016;58(12):1285-1291. https://doi.org/10.1007/

s11018-016-0886-4

60. Goldstein H, Healy MJR. The graphical presentation of a collection of

means. J R Stat Soc. Ser A (Stat Soc). 1995;158(1):175. https://www.

jstor.org/stable/10.2307/2983411?origin=crossref

61. Efron B, Tibshirani RJ. An introduction to the bootstrap. Monographs

on Statistics and Applied Probability, Vol. 57: Chapman & Hall/CRC;

1993.

62. Efron B, Tibshirani R. Improvements on cross-validation: the 632+

bootstrap method. J Am Stat Assoc. 1997;92(438):548-560. https://

doi.org/10.1080/01621459.1997.10474007

63. Payton ME, Greenstone MH, Schenker N. Overlapping confidence

intervals or standard error intervals: what do they mean in terms of

statistical significance? J Insect Sci. 2003;3:34-40. https://www.ncbi.

nlm.nih.gov/pmc/articles/PMC524673/

64. Cumming G, Finch S. Inference by eye: confidence intervals and how

to read pictures of data. Am Psychol. 2005;60(2):170-180.

65. Kamath SM. Energy use intensities across building use types and cli-

mate zones using the CBECS dataset. Ph.D. Thesis: Case Western

Reserve University; 2020. https://etd.ohiolink.edu/pg_10?::NO:10:

P10_ETD_SUBID:184439

66. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning.

2nd edition: Springer; 2009.

67. Wild M, Gilgen H, Rsch A, Ohmura A, Long CN, Dutton EG, Forgan B,

Kallis A, Russak V, Tsvetkov A. From dimming to brightening: decadal

changes in solar radiation at earth's surface. Science. 2005;308(5723):

847-850.

68. Kiefer K, Farnung B, Müller B, Reinartz K, Rauschen I, Külnter C. Deg-

radation in PV power plants: theory and practice. In: 36th EU PVSEC

Proceedings; 2019; Marseille, France:9-13.

69. Ascencio-Vasquez J, Brecl K, Topic M. Methodology of Köppen-

Geiger-photovoltaic climate classification and implications to world-

wide mapping of PV system performance. Sol Energy. 2019;191:

672-685.

How to cite this article: Lindig S, Moser D, Curran AJ, et al.

International collaboration framework for the calculation of

performance loss rates: Data quality, benchmarks, and trends

(towards a uniform methodology). Prog Photovolt Res Appl.

2021;29:573–602. https://doi.org/10.1002/pip.3397

596 LINDIG ET AL.

 1099159x, 2021, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pip.3397 by C

A
SE

 W
E

ST
E

R
N

 R
E

SE
R

V
E

 U
N

IV
E

R
SIT

Y
, W

iley O
nline L

ibrary on [23/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



T
A
B
L
E
A
1

D
es
cr
ip
ti
o
n
o
f
da

ta
se
ts

us
ed

in
th
e
PL

R
be

nc
hm

ar
ki
ng

ex
er
ci
se

K
ö
p
p
en

–G
ei
ge

r
P
V
se
n
si
ti
ve

D
at
as
et

T
ec

hn
o
lo
gy

C
o
un

tr
y

P
n
o
m
(k
W

p)
T
im

e
pe

ri
o
d

A
zi
m
ut
h

T
ilt

M
ea

su
re
m
en

t
cl
im

at
e

cl
im

at
e

da
ta

av
ai
la
b
le

cl
as
si
fi
ca
ti
o
n
3
a
,
b
,
c

cl
as
si
fi
ca
ti
o
n
6
9
a
,
b
,
d

E
U
R
A
C

pc
-S
i

It
al
y

4
.2
0

0
2
/1

1
-0
1
/1

9
1
8
8
.5

�
3
0
�

G
P
O
A
,T

a
m
b
,W

S,
D
fb

to
E
T

E
M

to
D
M

T m
o
d
,P

D
C
,P

A
C

F
O
SS

m
c-
Si

C
yp

ru
s

1
.0
3

0
6
/0

6
-0
5
/1

6
1
8
0
�

2
7
.5

�
G
P
O
A
,T

a
m
b
,W

S,
C
sa

to
B
Sk

D
H

to
C
H

T m
o
d
,P

D
C

R
SE

C
dT

e
C
dT

e
It
al
y

1
.1
6

0
6
/0

9
-1
2
/1

8
1
8
0
�

3
0
�

G
P
O
A
,T

a
m
b
,P

A
C

C
fa

to
C
fb

D
M

R
SE

pc
-S
i

pc
-S
i

It
al
y

1
.6
8

0
6
/0

9
-1
2
/1

8
1
8
0
�

3
0
�

G
P
O
A
,T

a
m
b
,P

A
C

C
fa

to
C
fb

D
M

P
fa
ff
st
ae

tt
en

A
a

pc
-S
i

A
us
tr
ia

2
.1
1

0
1
/1

3
-0
4
/1

9
2
2
0
�

2
2
�

G
P
O
A
,T

a
m
b
,

C
fb

to
D
fb

D
M

T m
o
d
,P

D
C
,P

A
C

P
fa
ff
st
ae

tt
en

B
a

pc
-S
i

A
us
tr
ia

2
.0
6

0
1
/1

3
-0
4
/1

9
2
2
0
�

2
2
�

G
P
O
A
,T

a
m
b
,

C
fb

to
D
fb

D
M

T m
o
d
,P

D
C
,P

A
C

P
fa
ff
st
ae

tt
en

C
a

C
IG
S

A
us
tr
ia

2
.2
5

0
1
/1

3
-0
4
/1

9
2
2
0
�

2
2
�

G
P
O
A
,T

a
m
b
,

C
fb

to
D
fb

D
M

T m
o
d
,P

D
C
,P

A
C

U
S
D
O
E
c1

0
ho

v6
m
c-
Si

U
SA

3
.2
4

0
3
/1

5
-0
5
/1

8
1
8
0
�

3
5
�

G
P
O
A
,T

a
m
b
,

B
Sk

to
C
fb

C
K
to

D
H

T m
o
d
,P

D
C

U
S
D
O
E
ko

bd
pi
8

m
c-
Si

U
SA

3
.2
4

1
1
/1

5
-0
5
/1

8
1
8
0
�

3
5
�

G
P
O
A
,T

a
m
b
,

B
W

k
to

B
W

h
B
K
to

C
K

T m
o
d
,P

D
C

U
S
D
O
E
lu
em

ko
y

m
c-
Si

U
SA

3
.2
4

1
1
/1

4
-0
5
/1

8
1
8
0
�

3
5
�

G
P
O
A
,T

a
m
b
,

D
fb

E
M

T m
o
d
,P

D
C

U
S
D
O
E
lw

cb
9
0
7

m
c-
Si

U
SA

3
.2
4

1
1
/1

4
-0
5
/1

8
1
8
0
�

3
5
�

G
P
O
A
,T

a
m
b
,

D
fb

E
M

T m
o
d
,P

D
C

U
S
D
O
E
t3
pg

1
sv

m
c-
Si

U
SA

3
.2
4

0
3
/1

5
-0
5
/1

8
1
8
0
�

3
5
�

G
P
O
A
,T

a
m
b
,

B
Sk

to
C
fb

C
K
to

D
H

T m
o
d
,P

D
C

U
S
D
O
E
w
ca
0
c5

m
m
c-
Si

U
SA

3
.2
4

1
2
/1

4
-0
5
/1

8
1
8
0
�

3
0
�

G
P
O
A
,T

a
m
b
,

C
fa

D
H

T m
o
d
,P

D
C

U
S
D
O
E
w
xz
sj
af

m
c-
Si

U
SA

3
.2
4

1
1
/1

5
-0
5
/1

8
1
8
0
�

3
5
�

G
P
O
A
,T

a
m
b
,

B
W

k
to

B
W

h
B
K
to

C
K

T m
o
d
,P

D
C

(C
o
nt
in
u
es
)

A
P
P
E
N
D
IX

A

LINDIG ET AL. 597

 1099159x, 2021, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pip.3397 by C

A
SE

 W
E

ST
E

R
N

 R
E

SE
R

V
E

 U
N

IV
E

R
SIT

Y
, W

iley O
nline L

ibrary on [23/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



T
A
B
L
E
A
1

(C
o
nt
in
ue

d)

K
ö
p
p
en

–G
ei
ge

r
P
V
se
n
si
ti
ve

D
at
as
et

T
ec

hn
o
lo
gy

C
o
un

tr
y

P
n
o
m
(k
W

p)
T
im

e
pe

ri
o
d

A
zi
m
ut
h

T
ilt

M
ea

su
re
m
en

t
cl
im

at
e

cl
im

at
e

da
ta

av
ai
la
b
le

cl
as
si
fi
ca
ti
o
n
3
a
,
b
,
c

cl
as
si
fi
ca
ti
o
n
6
9
a
,
b
,
d

U
S
D
O
E
z0

ay
gr
y

m
c-
Si

U
SA

3
.2
4

1
2
/1

4
-0
5
/1

8
1
8
0
�

3
0
�

G
P
O
A
,T

a
m
b
,

C
fa

D
H

T m
o
d
,P

D
C

N
R
E
L1

m
c-
Si

U
SA

2
.7
0

0
5
/1

6
-0
7
/1

9
1
8
0
�

3
0
�

G
P
O
A
,T

a
m
b
,W

S,
D
fb

to
B
Sk

D
H

to
C
H

T m
o
d
,P

D
C
,P

A
C

N
R
E
L2

H
IT

U
SA

1
.0
0

0
8
/0

7
-1
2
/1

6
1
8
0
�

4
0
�

G
P
O
A
,T

a
m
b
,

D
fb

to
B
Sk

D
H

to
C
H

T m
o
d
,P

D
C
,P

A
C

N
R
E
L3

m
c-
Si

U
SA

9
4
.0
0

0
9
/0

9
-0
1
/1

8
1
7
5
�

1
0
�

G
PO

A
,G

PO
A
m
od
,T

am
b
,

D
fb

to
B
Sk

D
H

to
C
H

W
S,

T m
o
d
,P

A
C

N
R
E
L4

m
c-
Si

U
SA

5
2
4
.0
0

0
7
/1

1
-0
5
/1

8
1
6
5
�

9
.1

�
G
PO

A
,G

PO
A
m
od
,T

am
b
,

D
fb

to
B
Sk

D
H

to
C
H

W
S,

T m
o
d
,P

A
C

4
di
gi
ta
l

c-
Si

F
ra
nc

e
4
×
1
.8
2

1
8
0
�

2
1
�

G
P
O
A
,T

a
m
b
,W

S,
C
fb

D
M

po
w
er

pl
an

ts
b

P
D
C
,P

A
C

a
Se

co
nd

-h
an

d
m
o
du

le
s.

b
Ir
ra
di
an

ce
da

ta
fr
o
m

H
el
io
C
lim

fo
r
R
en

ne
s,
F
ra
nc

e.
c A

,t
ro
pi
ca
l;
B
,a
ri
d,

C
,t
em

pe
ra
te
;D

,c
o
nt
in
en

ta
l;
E
,p

o
la
r
cl
im

at
es
;f
,n

o
dr
y
se
as
o
n;

m
,m

o
ns
o
o
n,

s,
dr
y
su
m
m
er
;w

,d
ry

w
in
te
r;
S,

st
ep

pe
;W

,d
es
er
t;
a,
h
o
t
su
m
m
er
;b

,w
ar
m

su
m
m
er
;c
,c
o
ld

su
m
m
er
;d

,v
er
y
co

ld

su
m
m
er
;h

,h
o
t;
k,
co

ld
.

d
A
,t
ro
pi
ca
l;
B
,d

es
er
t;
C
,s
te
pp

e;
D
,t
em

pe
ra
te
;E

,c
o
ld
;F

,p
o
la
r
cl
im

at
es
;L

,l
o
w
;M

,m
ed

iu
m
;H

,h
ig
h;

K
,v
er
y
hi
gh

ir
ra
di
at
io
n
zo

ne
s.
T
he

fi
rs
t
cl
im

at
e
zo

n
e
co

rr
es
p
o
n
d
s
to

th
e
n
ea

re
st

lo
ca
ti
o
n
la
b
el
ed

,w
h
ile

th
e

se
co

nd
o
ne

co
rr
es
po

nd
s
to

th
e
m
o
st

ad
ja
ce
nt

cl
im

at
e
zo

ne
.

598 LINDIG ET AL.

 1099159x, 2021, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pip.3397 by C

A
SE

 W
E

ST
E

R
N

 R
E

SE
R

V
E

 U
N

IV
E

R
SIT

Y
, W

iley O
nline L

ibrary on [23/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Here, the calculated PLR of all systems are listed. The number of

calculated values per system varies due to monitoring data issues

participants were facing while working on the data. They are dis-

cussed in greater detail in Section 4.2.1. The methodologies are

depicted on the x-axis and the PLR on the y-axis. The colors indicate

the chosen metrics and the symbols the applied statistical models.

The horizontal lines indicate the mean PLR for the respective sys-

tem. An exception are the US DOE systems wca0c5m and z0aygry

as well as NREL3. For the US DOE systems, the mean PLR corre-

sponds to the average PLR of the methodologies STL1 and YoY2.

That is because both system datasets were subject to data shifts at

the beginning of operation (see Section 4.2.1). This shift should

have been detected and excluded for the PLR calculation. This was

done only with statistical method STL1 and YoY2. For NREL3, the

mean PLR corresponds to the average PLR of the methodologies

F IGURE A2 Calculated PLR of
EURAC system, FOSS system, RSE
CdTe & pc-Si systems, Pfaffstaetten A,
B & C systems [Colour figure can be
viewed at wileyonlinelibrary.com]

F IGURE A1 Irradiance distribution for digital power plant (location:
Rennes, France). Plane-of-array irradiance distribution per 100-W/m2

interval [Colour figure can be viewed at wileyonlinelibrary.com]
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SCSF1, YoY2, and STL1. YoY2 and STL1 used the provided modeled

clear-sky irradiance data series as an input, and the methodology

SCSF1 is not based on any irradiance data series. The remaining

approaches used the faulty measured irradiance dataset as input the

corresponding results deviate thereby substantially from the

“true” PLR.

F IGURE A3 Calculated PLR of NREL systems; mean PLR * for NREL3 corresponds to average PLR of SCSF1, STL1 and YoY2 [Colour figure
can be viewed at wileyonlinelibrary.com]
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F IGURE A4 Calculated PLR of US
DOE systems; mean PLR* for US DOE
wca0c5m and z0aygry corresponds to
average PLR of STL1 and YoY2 [Colour
figure can be viewed at
wileyonlinelibrary.com]
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F IGURE A5 Data quality issues US
DOE systems: Energy (red)/power (blue)
over time for US DOE datasets: (A) US
DOE c10hov6—initial inverter clipping
and missing data; (B) US DOE luemkoy—
negative power values and initial inverter
clipping; (C) US DOE lwcb907—negative
power values and inverter clipping; (D) US
DOE t3pg1sv—inverter clipping; (E) US

DOE wca0c5m—data shift after 1 year
and inverter clipping; and (F) US DOE
z0aygry—data shift after 1 year and initial
inverter clipping [Colour figure can be
viewed at wileyonlinelibrary.com]

F IGURE A6 Data quality issues NREL
systems: Power over plane-of-array irradiance for
NREL datasets: (A) measured irradiance—NREL1—
numerous outlier detected; (B) measured
irradiance—NREL2—numerous outlier detected;
(C) modeled irradiance—NREL3—extreme outlier
and inverter clipping detected; and (D) modeled
irradiance—NREL4—extreme outlier and inverter
clipping detected [Colour figure can be viewed at
wileyonlinelibrary.com]
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