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RESEARCH ARTICLE

Predictive models of poly(ethylene-

terephthalate) film degradation under multi-

factor accelerated weathering exposures

Abdulkerim Gok1,2*, David K. Ngendahimana3, Cara L. Fagerholm2, Roger H. French2,

Jiayang Sun3, Laura S. Bruckman2*

1 Department of Materials Science and Engineering, Gebze Technical University, Gebze, Kocaeli, Turkey,

2 Solar Durability and Lifetime Extension (SDLE) Research Center, Department of Materials Science and

Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America, 3 Center for

Statistical Research, Computing & Collaboration (SR2c), Department of Epidemiology and Biostatistics, Case

Western Reserve University, Cleveland, Ohio, United States of America

* agok@gtu.edu.tr (AG); laura.bruckman@case.edu (LSB)

Abstract

Accelerated weathering exposures were performed on poly(ethylene-terephthalate) (PET)

films. Longitudinal multi-level predictive models as a function of PET grades and exposure

types were developed for the change in yellowness index (YI) and haze (%). Exposures with

similar change in YI were modeled using a linear fixed-effects modeling approach. Due to

the complex nature of haze formation, measurement uncertainty, and the differences in the

samples’ responses, the change in haze (%) depended on individual samples’ responses

and a linear mixed-effects modeling approach was used. When compared to fixed-effects

models, the addition of random effects in the haze formation models significantly increased

the variance explained. For both modeling approaches, diagnostic plots confirmed indepen-

dence and homogeneity with normally distributed residual errors. Predictive R2 values for

true prediction error and predictive power of the models demonstrated that the models were

not subject to over-fitting. These models enable prediction under pre-defined exposure con-

ditions for a given exposure time (or photo-dosage in case of UV light exposure). PET deg-

radation under cyclic exposures combining UV light and condensing humidity is caused by

photolytic and hydrolytic mechanisms causing yellowing and haze formation. Quantitative

knowledge of these degradation pathways enable cross-correlation of these lab-based

exposures with real-world conditions for service life prediction.

Introduction

The reliability of photovoltaic (PV) modules is of critical importance [1] to the growing PV

industry. The PV module polymeric backsheets play a critical role in power production, elec-

trical safety, and lifetime performance [2, 3]. Today’s PV modules typically have a 25 year [4]

product warranty based on pass/fail type standardized tests not designed for lifetime qualifica-

tion. Environmental stressors present in all climatic zones, such as irradiance, heat, and
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humidity, drive degradation of polymeric components in PV modules and contribute to per-

formance loss. One important degradation pathway of poly(ethylene-terephthalate) (PET)

containing backsheets leads to PET embrittlement and cracking [5, 6] in addition to backsheet

delamination [7, 8]. Degradation modes lead to loss of wet insulation resistance and loss of PV

module integrity and contribute to other degradation and power-loss modes.

PET is highly susceptible to moisture and ultraviolet (UV) irradiance [9]. PET degradation

mainly occurs via photolytic and hydrolytic cleavage of an ester bond resulting in decreased

molecular weight with concomitant changes in crystallinity, morphology, discoloration (yel-

lowing) and/or haze formation. Photodegradation and/or photo-oxidation mainly occurs via

Norrish type I or Norrish type II reactions [10–13]. When kinetically controlled, such as auto-

catalysis due to active carboxyl end groups, hydrolysis becomes more complex [14–17]. Stabi-

lizing additives attempt to reduce the degradation rate and increase the service lifetime. These

additives are also subject to degradation and can introduce subsequent degradation pathways

[18, 19]. A comprehensive understanding of degradation pathways of PET grades under

multi-factor exposures is required.

Accelerated weathering exposures can provide useful information in shorter time periods,

but the stressors (irradiance, heat, humidity) and their intensity levels must be chosen to avoid

activation of unrealistic degradation modes and failure mechanisms not seen under real-world

conditions. Lab-based accelerated tests typically study the effect of a well-controlled single

stressor on previously defined degradation mechanisms and examine a single response. The

standardized weathering exposures are viewed as an indicator of lifetime performance even

though they were developed solely to identify defects arising from manufacturing processes.

These tests lack quantitative information about degradation mechanisms, failures, or insights

into how modules and/or materials will behave in outdoor service. We focus on identifying

multiple degradation modes that arise under multi-factor exposure conditions using statisti-

cally informed study protocols to produce datasets of step-wise observational variables to build

physical and statistical models [20, 21]. This approach is akin to machine learning methods

that are being developed [22], to encompass and capture the temporal evolution and multiple

mesoscale interactions associated with degradation over lifetime. These degradation science

network models of mechanisms and pathways utilize a< Stress|Response > perspective

[23, 24] and can provide a predictive framework for service life prediction [25–28].

Several predictive models have been discussed in the PV and material literature. These span

from least squares analysis that produces empirical relationships for dielectric, mechanical,

and chemical properties [29, 30], to multiple regression modeling of thermo-oxidative and

outdoor weathering of polymers with diagnostic confirmation [31]. Hossain et al. [32] devel-

oped a multiple regression predictive model for the operating temperature of PV module

microinverters with rank-ordered dependencies on ambient temperature and PV module tem-

perature which is strongly affected by the solar irradiance. The time-temperature superposi-

tion principle was applied to degradation rates of PET and EVA (ethylene-vinyl acetate)

polymers under accelerated weathering exposures [33], but accurate determination of activa-

tion energies is a challenge. Köhl et al. [34] implemented a dynamic simulation methodology

for PV modules’ service lifetime using temperature dependent diffusion and permeation coef-

ficients of polymer films cross-correlated with with real-world time series climatic data. Com-

bined statistical and analytical modeling were performed to predict operation cell temperature

using principle component analysis and moisture content on PV modules using finite element

models and climate data [35, 36]. This approach was also applied to simulate moisture ingress

into PV modules [37]. Whitfield et al. [38] defines a multi-stress condition model in order to

predict module failure due to metalization corrosion under the standard damp heat testing.

Pickett [39] suggests well-characterized, time-dependent information about in-service

Models for weathering degradation of PET polymer
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conditions, environmental factors on degradation rates, and degradation rate data under accel-

erated exposure conditions are essential for realistic service lifetime prediction modeling in

order to encompass the kinetic effects that control mechanisms such as hydrolysis.

In this work, predictive modeling of PET degradation under four different accelerated

weathering exposures was assessed via fixed-effects and mixed-effects regression modeling

approaches. Multi-level models for degradation studies with multiple types of materials and

exposure conditions were developed to model real-world scenarios under various uncontrolled

stressors. Predictive R2 calculations for true prediction errors of the models were demonstrated

using the leave-one-out cross validation method. Targeted studies supported by these models

can lead to predictive models for in-use condition of PV systems and materials.

Experimental and statistical methods

Materials

The three PET grades studied include unstabilized (Dupont-Teijin Melinex 454), UV stabilized

(Dupont-Teijin Tetoron HB3), and hydrolytically stabilized (Mitsubishi 8LH1) PET. They are

referred to as Unstab, UVStab and HydStab, respectively. They are clear films with thicknesses

of 75, 50, and 125 μm, respectively. Nuclear Magnetic Resonance (NMR) analysis showed the

UV stabilized grade has 1.5 wt. % UV stabilizer with a chemical formula of C22 H12 N2 O4 (a

benzoxazinone type UV stabilizer commercialized under the name of Cyasorb UV 3638 by

CYTEC). Although no additive was found in the hydrolytically stabilized grade, the stabiliza-

tion was achieved by deactivating reactive carboxyl end groups (CEG) [40]. See S1 Appendix

for details.

Study design and exposures

A lab-based, randomized, longitudinal study design [41] was used where seven PET samples

from each grade were randomly assigned to four exposure types. All samples were evaluated

step-wise over time every 168 hours (one week) for a total of 1176 hours for seven steps. Each

sample was measured at every step and one sample was retained (withdrawn from further

exposure) at each time step to create retained sample library for subsequent evaluations. The

four laboratory-based accelerated conditions are summarized in Table 1.

Q-Lab QUV weathering chambers (Model QUV/Spray with Solar Eye Irradiance Control)

were used for the UV light exposures (HotQUV and CyclicQUV). The QUV uses UVA-340

fluorescent lamps (280–400 nm), which closely matches the air mass (AM) 1.5 solar spectrum

at the wavelengths between 280 and 360 nm. The HotQUV and CyclicQUV exposures had an

irradiance of 1.55 W/m2 at 340 nm at 70˚C, comparable to approximately 3 times greater than

the intensity of AM 1.5 at 340 nm [42]. The CyclicQUV exposure, per ASTM G154 Cycle 4

[43] standard, is a multi-cyclic multi-stressor exposure of alternating sequences of UV light,

heat, and condensing humidity designed to mimic outdoor conditions where materials are

exposed to morning dew or rain followed by sunlight.

Table 1. Exposure conditions.

Exposure Condition

DampHeat Constant exposure at 85˚C and 85% RH

FreezeThaw Cyclic exposure of 20 hours at 70˚C and 85% RH and 30 minutes at −40˚C

HotQUV Constant exposure of UVA light at 1.55 W/m2 at 340 nm at 70˚C

CyclicQUV Cyclic exposure of 8 hours of UVA light at 1.55 W/m2 at 340 nm at 70˚C and 4 hours of

condensing humidity at 50˚C in dark

https://doi.org/10.1371/journal.pone.0177614.t001

Models for weathering degradation of PET polymer
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For the heat and humidity exposures (DampHeat and FreezeThaw), Cincinnati Subzero

(Model ZPH8) environmental testing chambers were used, as per the IEC 61215 standard [44].

The temperature was reduced to 70˚C for the FreezeThaw exposure to keep PET below the

glass transition temperature during temperature cycling. PV modules are required to survive

1000 hours of damp heat and 10 cycles of humidity freeze tests with 1) not more than 5%

power degradation, 2) no major visual defects, and 3) no changes to the insulation and wet

leakage current.

Evaluations

Yellowness index (YI) and haze (%) were measured using a HunterLab UltrascanPro colorime-

ter. YI is a measure of the yellowing of a sample and calculated from the UV-Vis transmission

spectrum defined by ASTM E313 standard [45]. Polymer yellowing is observed when light

absorption occurs near 420 to 440 nm, which decreases YCIE and increases YI as shown in Eq 1

where X (red), Y (green) and Z (blue) represent CIE tristimulus values. Haziness, defined by

ASTM D1003-13 standard [46], is apparent cloudiness of a sample caused by scattering of light

due to bulk scattering from particles, inhomogeneities or impurities, or surface scattering due

to topography and roughness. It is calculated using the diffuse (Tdiffuse) and total transmission

(Ttotal) in the spectral range from 380 to 780 nm as shown in Eq 2. Changes in YI and haze (%)

are seen as an early indicator of chemical changes in the polymer due to chromophores or

crystallites that are formed during weathering degradation, and precursors to embrittlement

and mechanical failure [47]. All samples were evaluated at 168 hrs independent of what expo-

sure cycle the samples were currently in. Samples were measured after they had reached room

temperature.

YI ¼ 100ð1:28XCIE � 1:06ZCIEÞ
YCIE

ð1Þ

Hazeð%Þ ¼
Tdiffuse

Ttotal
� 100 ð2Þ

Statistical analysis

Statistical models help quantify the relationships between variables. With a predictor (stressor)

and a response, a basic linear model often suffices [48–50]. In longitudinal and multi-level

studies with multiple predictors, model selection becomes quite complicated. Models must

account for differences between material grades, exposure types, and interactions among these

factors. Detailed model selection criteria is in S2 Appendix.

In this study, multi-variable linear regression models (fixed-effects or mixed-effects models

depending on the between-sample variation) were applied. In these models, covariates (differ-

ent levels or groups) are categorical variables structured in a multi-level way each with its own

variation. Fixed-effects models are usually implemented when samples with repeated measure-

ments behave similarly in a study (i.e., smaller variance between samples). Mixed-effects mod-

els are defined as models that implement both fixed effects parameters and random effects

[51]. Random effects are defined as unobserved or unmeasured random variables that are

incorporated into models when randomness arises due to factors such as measurement uncer-

tainty, differences between samples’ responses, and the leveling structure of the observed data

(i.e., large variance between samples). For random effects, estimated deviation in each individ-

ual observational unit’s response are considered to explain the overall variation while keeping

the same leveled structure in the data.

Models for weathering degradation of PET polymer
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The correlation structure specified by the random effects determines the statistical signifi-

cance of the mixed-effects model [52]. Generally, a linear mixed-effects model can be repre-

sented in Eq 3 as follows:

y ¼ b0 þ b1x1 þ b2x2 þ � � � þ bnxn þ b1z1 þ b2z2 þ � � � þ bnzn þ � ð3Þ

where y is the response variable (i.e., a measured outcome: YI or haze (%)), β0 is the intercept

of the regression, β1 through βn are the fixed effect coefficients (i.e., parameter estimates),

x1 through xn are the fixed effect variables (i.e., predictors: material and exposure type),

b1 through bn are the random effect coefficients, z1 through zn are the random effect variables,

and � is the error term.

Adjusted and multiple R2, marginal and conditional R2, fitted R2, and predictive R2 are

used to determine the significance of the generated models. The predictive R2 is derived from

the Allen’s predicted residual error sum of squares (PRESS) statistics [53, 54]. It determines

the predictive quality of our models better than the traditional R2 which is not a good measure

of predictive power. Details for the calculation method are in S3 Appendix.

Results, analysis, and model selection

Model of yellowness index

Longitudinal plots of the change in yellowness index (YI) for the three PET grades under the

four different types of exposures are shown in Fig 1. YI has different quadratic trends for sam-

ples exposed to CyclicQUV and linear trends for samples exposed to HotQUV. The increase

in YI is not as pronounced under the DampHeat and FreezeThaw exposures when compared

to HotQUV and CyclicQUV. The change in YI in these exposures also suggests different qua-

dratic trends. Therefore, quadratic modeling for all PET grades and exposures and statistical

significance of both quadratic and linear terms in the models were assessed.

Fig 1. The change in yellowness index (YI) for all material and exposure types as a function of exposure step. HydStab is

hydrolytically stabilized PET; UnStab is unstabilized PET; UVStab is UV stabilized PET. Each exposure is plotted on a free scale.

https://doi.org/10.1371/journal.pone.0177614.g001

Models for weathering degradation of PET polymer
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Exposures that lead to similar trends are analyzed and modeled together to account for the

most of the variation. Fig 1 shows a positive steep trend for all materials under the HotQUV

and CyclicQUV exposures and a positive gradual trend for materials under the DampHeat

and FreezeThaw exposures. Hence samples exposed to HotQUV and CyclicQUV exposures

(Model 1) and samples exposed to DampHeat and FreezeThaw exposures (Model 2) are mod-

eled together. The variation in the rate of change in YI across all exposures and materials is

small and thus a fixed-effects modeling approach will be used. The models as a function of

material and exposure type are shown in Eq 4 for Model 1 and Eq 5 for Model 2. HydStab

grade and CyclicQUV exposure in Model 1 and DampHeat exposure in Model 2 are used as

reference material and exposures, respectively, and do not appear in the models.

YI � ðb0 þ b01M1 þ b02M2 þ b03X þ b04M1X þ b05M2XÞ

þðb1 þ b11M1 þ b12M2 þ b13X þ b14M1X þ b15M2XÞt

þðb2 þ b21M1 þ b22M2 þ b23X þ b24M1X þ b25M2XÞt2

þðb3 þ b31M1 þ b32M2 þ b33X þ b34M1X þ b35M2XÞt3

ð4Þ

YI � ðb0 þ b01M1 þ b02M2 þ b03X þ b04M1X þ b05M2XÞ

þðb1 þ b11M1 þ b12M2 þ b13XÞt

þðb2 þ b21M1 þ b22M2 þ b23XÞt2

þðb3 þ b31M1 þ b32M2 þ b33XÞt3

ð5Þ

In these model equations β’s are parameter estimates, t is exposure step, and M1, M2, and X are

as follows:

M1 ¼
1 if Material ¼ UnStab

0 otherwise

(

M2 ¼
1 if Material ¼ UVStab

0 otherwise

(

X ¼
1 if Exposure ¼ HotQUV or FreezeThaw

0 otherwise

(

Parameter estimates were then obtained through a step-wise selection procedure (Table 2).

It is seen that models do not have interactions between material and exposure in the quadratic

and cubic terms. Diagnostic plots to check the regression assumption are shown in Fig 2 for

Model 1 and Fig 3 for Model 2. There is no obvious trend in the distribution of points and the

residuals are randomly distributed around the horizontal line indicating a mean residual error

Table 2. Parameter estimates for Model 1 and Model 2.

β0 β01 β02 β03 β04 β05 β1 β11 β12 β13 β14 β15

Model 1 1.3563 −1.0122 −0.2505 0.2014 −0.2544 −0.1425 0.9061 0.1142 −0.9212 0.3933 −0.2679 −0.2221

Model 2 1.3673 −1.1014 −0.1755 0.1118 −0.0908 −0.1925 0.1031 0.1366 −0.0560 −0.1175

β2 β21 β22 β23 β24 β25 β3 β31 β32 β33 β34 β35

Model 1 −0.0411 0.0343 0.1798 0.0056 −0.0059 −0.0155

Model 2 −0.0216 −0.0450 0.0143 0.0319 0.0028 0.0036 −0.0005 −0.0039

The parameter estimates in bold font are found to be significantly different from zero at a 0.05 significance level.

https://doi.org/10.1371/journal.pone.0177614.t002

Models for weathering degradation of PET polymer
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of close to zero (Figs 2A and 3A). Normal Q-Q plots (Figs 2B and 3B) suggest that the residual

errors are normally distributed. These diagnostic plots show that the models follow the experi-

mental data reasonably well.

The models were overlaid on the observed values for all exposures in Fig 4. Both models

explained 98% of the variation in the data from adjusted R2 values. The predictive R2 value was

0.97 for Model 1 indicating a near perfect prediction power and a true prediction error close

Fig 2. Diagnostic plots for the change in yellowness index (YI) under the HotQUV and CyclicQUV exposures (Model 1). (A)

Residuals vs. fitted and (B) Normal Q-Q.

https://doi.org/10.1371/journal.pone.0177614.g002

Fig 3. Diagnostic plots for the change in yellowness index (YI) under the DampHeat and FreezeThaw exposures (Model 2). (A)

Residuals vs. fitted and (B) Normal Q-Q.

https://doi.org/10.1371/journal.pone.0177614.g003

Models for weathering degradation of PET polymer
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to zero. The predictive R2 value for Model 2 was 0.46 indicating a relatively larger true predic-

tion error due to possible model over-fitting. The final models’ parameter estimates are shown

in Table 2 and details are in S4 Appendix for Model 1 and S5 Appendix for Model 2.

Model of haze

Longitudinal plots for the change in haze (%) for the three PET grades under the four different

types of exposures are shown in Fig 5. The haze formation has a cubic trend over time for the

CyclicQUV exposure while the other exposures show a quadratic trend. Because of measure-

ment sensitivity and variation in haze (%) data between samples, the haze formation depends

on individual samples. To account for the behavior of individual samples, a linear mixed-effect

model that includes random effects was used.

The haze formation under the CyclicQUV exposure (Model 3, Eq 6) with the combination

of high level of humidity content and UV light irradiance is markedly higher than the other

three exposure types (Model 4, Eq 7). The HydStab grade and DampHeat exposure are the ref-

erence material and exposure, respectively, and do not appear in Model 4.

Hazeijkl � ðb0 þ b01M1 þ b02M2Þ þ ðb1 þ b11M1 þ b12M2 þ b1iÞtijkl

þðb2 þ b21M1 þ b22M2 þ b2iÞt2
ijkl þ ðb3Þt3

ijkl þ �ijkl

ð6Þ

Hazeijkl � ðb0 þ b01M1 þ b02M2 þ b03X1 þ b03X2 þ b04M1X1 þ b05M1X2

þb06M2X1 þ b07M2X2Þ þ ðb1 þ b1iÞtijkl þ ðb2 þ b2iÞt2
ijkl þ ðb3Þt3

ijkl þ �ijkl

ð7Þ

In these model equations, β’s are parameter estimates, t is exposure step, b1i and b2i are random

effects from each sample, i(1 � � � 7), j(1 � � � 3), k(1 � � � 3), and l(1 � � � 7) represent samples,

Fig 4. Plot of the change in yellowness index (YI) under all exposures and the generated models to show model fitting. Dashed

lines represent the measured data and solid lines represent the models.

https://doi.org/10.1371/journal.pone.0177614.g004
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materials, exposures, and exposure steps, respectively, �ijkl is the error term, and M1, M2, X1,

and X2 are as follows:

M1 ¼
1 if Material ¼ UnStab

0 otherwise

(

M2 ¼
1 if Material ¼ UVStab

0 otherwise

(

X1 ¼
1 if Exposure ¼ FreezeThaw

0 otherwise

(

X2 ¼
1 if Exposure ¼ HotQUV

0 otherwise

(

Diagnostic plots checking the regression assumptions are shown in Fig 6 for Model 3 and

Fig 7 for Model 4. Model 3 shows different trends for each material type (Fig 6A). The residu-

als are accumulated around zero residuals error, but only for the fitted values less than 10. The

overall trend suggests a possible heteroscedasticity (non-constant variance). This could be due

to very high haze (%) values for the last exposure step. Fig 5 shows that a significant change in

haze (%) does not begin until the fourth exposure step and it rises markedly afterwards (i.e.,

onset of haze formation followed by a change point). The reduced sample size from retaining

samples at each step may lead to non-constant variance. Also the impact of retained moisture

in samples is unknown since samples were not removed during the same cycle in exposures

and may have varying concentrations of absorbed water during evaluations. The standardized

residuals (Fig 6B) are normally distributed around zero residual errors. Deviation from nor-

mality is seen, particularly for the unstabilized grade due to very large increase in its haziness

in the very last exposure step. For short-tailed distributions, the result of non-normality does

not seem very significant and can be accepted as reasonable [55]. In Model 4, the residual

errors (Fig 7A) are distributed randomly and independently from material type as opposed to

Fig 5. The change in haze (%) for all material and exposure types as a function of exposure step. HydStab is hydrolytically stabilized

PET; UnStab is unstabilized PET; UVStab is UV stabilized PET. Each exposure is plotted on a free scale.

https://doi.org/10.1371/journal.pone.0177614.g005
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Model 3. Constant variance and symmetric scattering (Fig 7B) suggests that Model 4 satisfies

the regression reasonably well.

The models were superimposed on the observed data as shown in Fig 8 for all exposures.

The models predict the experimental data very well; however, they do not capture some of the

data points as seen in the diagnostic plots. The material and exposure together explained 90%

and 31% of the variation in haze formation in Model 3 and Model 4, respectively. Including

Fig 6. Diagnostic plots for the change in haze (%) under the CyclicQUV exposure (Model 3). (A) Residuals vs. fitted and (B) Normal

Q-Q.

https://doi.org/10.1371/journal.pone.0177614.g006

Fig 7. Diagnostic plots for the change in haze (%) under the DampHeat, FreezeThaw, and HotQUV exposures (Model 4). (A)

Residuals vs. fitted and (B) Normal Q-Q.

https://doi.org/10.1371/journal.pone.0177614.g007
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random effects increased the explained variance to 94% in Model 3 and 93% in Model 4.

While fitted R2 values were determined to be 0.95 for both models, predictive R2 values were

calculated to be 0.80 and 0.74 for Model 3 and Model 4, respectively, indicating a relatively

small true prediction error for both models. The final model parameter estimates are provided

in Table 3. Model summary statistics and the associated random effects can be found in

S6 Appendix for Model 3 and S7 Appendix for Model 4.

Discussion

Role of exposures, stressors, and stabilizing additives on degradation

modes

The predictive models developed demonstrate important characteristics and differences

between discoloration (yellowing) and haze formation in PET films and the categories of

stressors present in the different exposure conditions. Yellowing was mostly caused by UV

light exposures while haze formation was induced by high humidity exposures. Under the heat

Fig 8. Plot of the change in haze (%) under all exposures and the generated models to show model fitting. Dashed lines represent

the measured data and solid lines represent the models.

https://doi.org/10.1371/journal.pone.0177614.g008

Table 3. Parameter estimates for Model 3 and Model 4.

β0 β01 β02 β03 β03 β04 β05 β06 β07

Model 3 1.1663 1.4848 −1.4040

Model 4 1.1347 0.2065 −0.0118 −0.0065 (X1) −0.0632 (X2) −0.8185 −0.8378 −0.6438 −0.2566

β1 β11 β12 β2 β21 β22 β3

Model 3 4.1350 5.0791 1.2995 −2.3959 −0.6482 −0.3133 0.3749

Model 4 1.8125 −0.4429 0.0376

The parameter estimates in bold font are found to be significantly different from zero at a 0.05 significance level.

https://doi.org/10.1371/journal.pone.0177614.t003
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and humidity exposures without irradiance, neither degradation mechanisms were found to

be pronounced. The effect of stabilization on the UV or hydrolytically stabilized grades was

evident from the change points (i.e., onset of yellowing and haze formation). These change

points occurred when the degradation mechanisms which led to yellowing or hazing were acti-

vated after sufficient damage accumulation. During the induction period, the degradation

responses showed little changes as the mechanisms were latent and hindered by the presence

of stabilizers. These stabilization techniques did not play a significant role in protecting PET

films under the applied exposures. The type of UV stabilizer used was reported to have a poor

photo-stability [56]. The rapid exhaustion of the UV stabilizer within a short exposure time

caused considerable degradation to the polymer. In the hydrolytically stabilized PET, the

diminished carboxyl end group content provided some stabilization. It was slightly more stable

than the other two grades under hydrolytic conditions, but this effect was not large [40].

Yellowing

The fixed-effects modeling was suitable for yellowing due to the small variation in the data

across samples. Yellowing is caused by the impact of residual catalysts and the accumulation of

degradation byproducts as light absorbing chromophores [57]. Catalysts used in the polymeri-

zation give rise to byproducts that accumulate during polymerization and further processing

[58]. Degradation byproducts are formed during photolytic or thermo-oxidative degradation

in response to applied environmental stressors. Yellowing arises from the strong and broad-

band optical absorption of these chromophores in the ultraviolet and visible spectral regions.

The chromophores are typically small molecules which form uniformly through the volume of

the polymer giving rise to the small observed variation across samples and repeated

measurements.

Haze formation

Hazing is intrinsically a light scattering phenomena and progresses from Rayleigh to Mie scat-

tering as the size of the light scattering entity, which has a contrasting index of refraction from

the film, changes its size relative to the wavelength of light [59, 60]. The haze formation in PET

films has a number of origins, such as partial crystallinity, i.e., crystallite formation within the

bulk material, which can increase due to hydrolysis induced chain scissions leading to

increased polymer chain mobility and enabling re-arrangement of amorphous polymer chains

into ordered crystalline structures. Volumetric changes from thermal and/or mechanical

expansion and contraction in the polymer matrix can cause internal stresses. These internal

stresses can produce crazing and cracking in the bulk and/or on the surface, especially as more

chain scissions occur due to hydrolysis and temperature cycling. These stressors can also influ-

ence the polymer morphology, promoting increased crystallinity. Both reasons for haze forma-

tion, crystallites and cracking or crazing, are localized inhomogeneities, not arising from a

homogeneous phenomena as is the case for yellowing. Both crystallites and crack formation

follow similar nucleation and growth (transformation) kinetics, i.e., time-dependent nuclei

formation during which the number of nucleus increase with time, and growth, as governed

by well-known Avrami equation [61–63]. This random, localized and distributed formation of

the light scattering moieties in a sample leads to measurement sensitivity in the data. The

amount of moisture retained inside the samples may be different based on when in the humid-

ity containing exposures samples were removed and if those samples reached equilibrium

before evaluation causing a large variation in haziness. Therefore, a mixed-effects model is

needed to account for these random effects between samples to accommodate the large

variation.
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Prediction errors of models

Predictive R2 provides a better statistical measure than adjusted R2 in judging model fit and

prediction power since it is calculated using the testing data for a model trained on the training

data. Comparing adjusted R2 to predictive R2 also allows one to assess model over-fitting.

Apart from the model for yellowing under the DampHeat and FreezeThaw exposures (Model

2), the other models had a predictive power of at least 74%. Adjusted R2 values were found to

be similar to or greater than the predictive R2 values. The low predictive R2 indicate that mod-

els will not predict new observations as accurately as they fit the existing data, which reduces

the accuracy of lifetime prediction.

Cross-correlation of standards-based tests and real-world performance

In real-world conditions, the stressors are uncontrolled and unpredictable. Modeling

approaches based on simple constant stressors and stress levels can not simply be applied for

lifetime prediction. Alternatively, under these lab-based, multi-level longitudinal, standardized

tests, the fixed- and mixed-effects modeling approaches based on exploratory data analysis

have provided accurate prediction for the materials’ behaviors. An advantage of these multi-

level models is they account for multiple material types and exposure conditions.

Extending these modeling methods to encompass outdoor exposures will open new oppor-

tunities for the development of more reliable lifetime prediction models applicable to in-use

conditions. Cross-correlation between lab-based and real-world exposures can elucidate accel-

erated exposures that more closely mimic outdoor conditions. Well designed, unbiased lab-

based and real-world exposures are essential to advance the degradation science of photovol-

taic modules.

Conclusions

The modeling approaches used in this study provide reliable predictions of the changes in yel-

lowing index and haze formation when exposed to constant stressors and stress levels for a

given exposure time. Targeted studies supported by these models can lead to predictive life-

time models for in-use condition of PV materials during outdoor deployment where uncon-

trolled stress conditions make conventional techniques inapplicable. Degradation science

studies that combine lab-based and real-world data with predictive models will aid the PV

polymer community to improve synthesis and polymerization routes and manufacturing pro-

cesses and develop materials with increased service life and lifetime performance.
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48. Diez DM, Barr CD, Çetinkaya Rundel M. OpenIntro Statistics: Third Edition. 3rd ed. S.l.: OpenIntro,

Inc.; 2015. Available from: https://www.openintro.org/stat/textbook.php?stat_book=os.

49. James G, Witten D, Hastie T, Tibshirani R. An Introduction to Statistical Learning: with Applications in

R. 1st ed. Springer Texts in Statistics. New York: Springer; 2013. Available from: http://www-bcf.usc.

edu/*gareth/ISL/index.html.

50. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. Springer Series in Statistics.

New York, NY: Springer New York; 2009. Available from: http://link.springer.com/10.1007/978-0-387-

84858-7.

51. Bates DM. lme4: Mixed-effects modeling with R; 2010. Available from: http://lme4.0.r-forge.r-project.

org/lMMwR/lrgprt.pdf.

52. Nettleton D. A Discussion of Statistical Methods for Design and Analysis of Microarray Experiments for

Plant Scientists. The Plant Cell. 2006; 18(9):2112–2121. https://doi.org/10.1105/tpc.106.041616 PMID:

16968907

53. Allen DM. Mean Square Error of Prediction as a Criterion for Selecting Variables. Technometrics. 1971;

13(3):469–475. https://doi.org/10.1080/00401706.1971.10488811

54. Allen DM. The Relationship Between Variable Selection and Data Augmentation and a Method for Pre-

diction. Technometrics. 1974; 16:125–127. https://doi.org/10.1080/00401706.1974.10489157

55. Faraway JJ. Practical regression and ANOVA using R. University of Bath; 2002. Available from: http://

www.mathstat.ualberta.ca/*wiens/stat568/misc%20resources/Faraway-PRA.pdf.

56. Pickett JE. Permanence of UV Absorbers in Plastics and Coatings. In: Hamid SH, editor. Handbook of

polymer degradation. 2nd ed. No. 21 in Environmental science and pollution control series. New York:

Marcel Dekker; 2000. p. 163–190.

57. Buxbaum LH. The Degradation of Poly(ethylene terephthalate). Angewandte Chemie International Edi-

tion in English. 1968; 7(3):182–190. https://doi.org/10.1002/anie.196801821

58. Ravindranath K, Mashelkar RA. Polyethylene terephthalate—I. Chemistry, thermodynamics and trans-

port properties. Chemical Engineering Science. 1986; 41(9):2197–2214. https://doi.org/10.1016/0009-

2509(86)85070-9

59. Thiele ES, French RH. Light-Scattering Properties of Representative, Morphological Rutile Titania Parti-

cles Studied Using a Finite-Element Method. Journal of the American Ceramic Society. 1998; 81(3):

469–479. https://doi.org/10.1111/j.1151-2916.1998.tb02364.x

60. McNeil LE, Hanuska AR, French RH. Near-field scattering from red pigment particles: Absorption and

spectral dependence. Journal of Applied Physics. 2001; 89(3):1898–1906. https://doi.org/10.1063/1.

1336564

61. Avrami M. Kinetics of Phase Change. I General Theory. The Journal of Chemical Physics. 1939; 7(12):

1103–1112. https://doi.org/10.1063/1.1750380

62. Avrami M. Kinetics of Phase Change. II Transformation—Time Relations for Random Distribution of

Nuclei. The Journal of Chemical Physics. 1940; 8(2):212–224. https://doi.org/10.1063/1.1750631

63. Avrami M. Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III. The Journal

of Chemical Physics. 1941; 9(2):177–184. https://doi.org/10.1063/1.1750872

Models for weathering degradation of PET polymer

PLOS ONE | https://doi.org/10.1371/journal.pone.0177614 May 12, 2017 17 / 17

http://www.astm.org/doiLink.cgi?E313
http://www.astm.org/doiLink.cgi?D1003
http://www.astm.org/doiLink.cgi?D1003
http://dx.doi.org/10.1117/12.893451
https://www.openintro.org/stat/textbook.php?stat_book=os
http://www-bcf.usc.edu/gareth/ISL/index.html
http://www-bcf.usc.edu/gareth/ISL/index.html
http://link.springer.com/10.1007/978-0-387-84858-7
http://link.springer.com/10.1007/978-0-387-84858-7
http://lme4.0.r-forge.r-project.org/lMMwR/lrgprt.pdf
http://lme4.0.r-forge.r-project.org/lMMwR/lrgprt.pdf
https://doi.org/10.1105/tpc.106.041616
http://www.ncbi.nlm.nih.gov/pubmed/16968907
https://doi.org/10.1080/00401706.1971.10488811
https://doi.org/10.1080/00401706.1974.10489157
http://www.mathstat.ualberta.ca/wiens/stat568/misc%20resources/Faraway-PRA.pdf
http://www.mathstat.ualberta.ca/wiens/stat568/misc%20resources/Faraway-PRA.pdf
https://doi.org/10.1002/anie.196801821
https://doi.org/10.1016/0009-2509(86)85070-9
https://doi.org/10.1016/0009-2509(86)85070-9
https://doi.org/10.1111/j.1151-2916.1998.tb02364.x
https://doi.org/10.1063/1.1336564
https://doi.org/10.1063/1.1336564
https://doi.org/10.1063/1.1750380
https://doi.org/10.1063/1.1750631
https://doi.org/10.1063/1.1750872
https://doi.org/10.1371/journal.pone.0177614

	Predictive Models of Poly(Ethylene-Terephthalate) Film Degradation under Multi-Factor Accelerated Weathering Exposures
	Recommended Citation
	Authors

	Predictive models of poly(ethylene-terephthalate) film degradation under multi-factor accelerated weathering exposures

