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X-ray characterization of 
mesophases of human telomeric 
G-quadruplexes and other DNA 
analogues
Selcuk Yasar1, Jacob B. Schimelman2, M. Alphan Aksoyoglu1, Nicole F. Steinmetz2,3,4,5,6, 
Roger H. French2,3,5,7, V. Adrian Parsegian1 & Rudolf Podgornik1,5,8,9

Observed in the folds of guanine-rich oligonucleotides, non-canonical G-quadruplex structures are 
based on G-quartets formed by hydrogen bonding and cation-coordination of guanosines. In dilute 
5′-guanosine monophosphate (GMP) solutions, G-quartets form by the self-assembly of four GMP 
nucleotides. We use x-ray diffraction to characterize the columnar liquid-crystalline mesophases in 
concentrated solutions of various model G-quadruplexes. We then probe the transitions between 
mesophases by varying the PEG solution osmotic pressure, thus mimicking in vivo molecular 
crowding conditions. Using the GMP-quadruplex, built by the stacking of G-quartets with no covalent 
linking between them, as the baseline, we report the liquid-crystalline phase behaviors of two other 
related G-quadruplexes: (i) the intramolecular parallel-stranded G-quadruplex formed by the 22-mer 
four-repeat human telomeric sequence AG3(TTAG3)3 and (ii) the intermolecular parallel-stranded 
G-quadruplex formed by the TG4T oligonucleotides. Finally, we compare the mesophases of the 
G-quadruplexes, under PEG-induced crowding conditions, with the corresponding mesophases of the 
canonical duplex and triplex DNA analogues.

Human telomeric sequences AG3(TTAG3)n can form four-stranded G-quadruplexes1 by folding on themselves 
and matching the G3 segments, enabling the formation of G-quartets2. Polymorphic G-quadruplex structures have 
been implicated in several biological processes, such as telomere formation in aging and in disease development3.  
In particular, G-quadruplex conformations of the four-repeat human telomere AG3(TTAG3)3 in the presence of 
K+ ions have been an important research focus1,4: The parallel-stranded conformation is observed in the crys-
talline state5 and in K+ solutions6,7 in the presence of polyethylene glycol (PEG). G-quadruplexes formed by the 
four-repeat human telomere have been shown8 to be thermally more stable than the structures formed by the 
longer telomeric sequences, implying that the four-repeat telomere is the likely candidate for G-quadruplex for-
mation in human cells9. Here, the parallel-stranded intramolecular G-quadruplex formed by AG3(TTAG3)3 will 
be referred to as the 22-mer HT-quadruplex. This quadruplex5 (PDB: 1KF1) contains a central core formed by the 
stacking of three G-quartets supported by four parallel sugar-phosphate strands and TTA linkers that connect 
the adjacent strands by forming side-loops (Fig. 1a,b). Mimicking molecular crowding conditions in vivo, that 
critically affect the structure of G-quadruplexes10, by systematically varying the osmotic pressure exerted by the 
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bathing PEG solutions and combining it with the x-ray structural probe in an osmotic stress experiment11, we 
examine the liquid-crystalline phase behavior of the 22-mer HT-quadruplex in order to assess its likely state under 
similar conditions in the cellular environment.

The G-quartet is a planar structure formed by the cyclic arrangement of four hydrogen-bonded guanine  
residues. We first examine the liquid-crystalline phases of the G-quartets that are made of four GMP monomers12 
(Fig. 1c). The columnar structure built by the stacking of such G-quartets (abbreviated GMP-quadruplex) is a 
simple model of biologically relevant G-quadruplexes. Helical stacking of G-quartets (Fig. 1d) in the crystal-
line state was proposed based on fiber diffraction13. Formation of columnar structures was detected also in the 
non-crystalline GMP solutions in the presence of K+ ions14. By varying the osmotic pressure of the solution set by 
the concentration of PEG, we investigate the first-order transition from a loosely linked and disordered G-quartet 
column formed in K+ solution to the highly-ordered GMP-quadruplex driven by the osmotic pressure changes in 
the regime mimicking the biologically relevant molecular crowding conditions. This osmotic-pressure-induced 
change in order along the columnar axis consequently permits tighter packing of the GMP-quadruplex array 
between the columns, with progressively longer-ranged hexagonal order in the plane perpendicular to the colum-
nar axis.

The columnar liquid-crystalline mesophases of planar disc-shaped structures are known and understood15. 
In these phases, disc-shaped structures are stacked on top of each other and form columns, which in turn 
self-assemble into arrays. As with other columnar assemblies16, the nature of intra- and intercolumnar ordering 
can vary, depending on solution conditions. The disordered columnar phases (Φdc) exhibit fluid-like positional 
intracolumnar order, while in the ordered columnar phases (Φoc) there is long-range positional order within each 
column. This leads to column-column positional and orientational correlations and consequently to long-range 
intercolumnar order16,17. In this respect, the mesophase transition of GMP-quadruplex is similar to the Φdc → Φoc  
transitions observed in the columnar aggregates of other disc-shaped structures built from the molecules with 
aromatic rings15,17,18.

Recent experiments demonstrated that the formation of higher-order G-quadruplex motifs in the human tel-
omere is sensitive to the phase in the cell-cycle9, which, on the other hand, is related to macromolecular crowding, 
that can fine-tune the gene circuit response19. Thus, the Φdc → Φoc transition of the GMP-quadruplex induced by 
changing molecular-crowding conditions is relevant for the higher-order G-quadruplex structure formation built 
from the 22-mer HT-quadruplex repeats5,8. In this view, we also examined the columnar assemblies and the mes-
ophase behaviors of (i) the 22-mer HT-quadruplex and (ii) the intermolecular parallel-stranded G-quadruplex 

Figure 1.  Schematic representations of the structures. (a) Top view of the parallel-stranded 22-mer 
HT-quadruplex (PDB: 1KF1) formed by the sequence AG3(TTAG3)3. In this conformation (observed in 
the crystalline state5 as well as in the non-crystalline state under molecular crowding conditions6,7), four 
parallel GGG runs form a stack of three planar G-quartets in the central core and TTA segments fold into 
loops projecting outwards. (b) Side view of the 22-mer HT-quadruplex. K+ ions (purple) reside inside the 
G-quadruplexes and they are positioned between the adjacent G-quartets. (c) G-quartet made of four GMP 
monomers. Thin black lines represent the hydrogen bonds holding nucleotides together in a planar cyclic 
arrangement. (d) Top view of the GMP-quadruplex in ordered columnar phase, where stacking is helical with  
an azimuthal rotation of 30° between adjacent G-quartets13. G-quartets in c & d are modeled from 22-mer  
HT-quadruplex (PDB: 1KF1) shown in a & b.
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formed by four TG4T oligonucleotides20 (PDB:244D). The latter (abbreviated TG4T-quadruplex) is shown in 
Fig. 2a. This quadruplex was selected because of its resemblance to the 22-mer HT-quadruplex. In both structures, 
parallel sugar-phosphate backbones interconnect the stacked G-quartets. Contrary to the 22-mer HT-quadruplex, 
the TG4T-quadruplex is also missing the flexible side loops.

The Φdc → Φoc transition of the GMP-quadruplex is also analogous to the mesophase transitions in duplex 
(Fig. 2b) and triplex (Fig. 2c) DNA arrays under similar crowding conditions. For duplexes, this transition is 
described as the cholesteric-columnar hexagonal transition for short DNA21 and as the cholesteric-hexatic transi-
tion for long DNA22,23. While the columnar hexagonal phase of the DNA triplexes has been observed before24, the 
triplex mesophase transition was not measured. The changes observed in the x-ray diffraction patterns at the mes-
ophase transitions of the duplex, triplex, and G-quadruplex are essentially similar. At these transitions, both the 
intra- and the intercolumnar order change significantly and abruptly. We discuss the mesophase transitions of the 
analogue DNA structures with or without sugar-phosphate backbones and with different numbers of bases con-
tributing to the stacking units (i.e., base-pair for duplex, base-triplet for triplex, and G-quartet for G-quadruplex). 
We then assess the relevance of these transitions for the observed mesophase behaviors.

Finally, 22-mer HT-quadruplex has a propeller-like shape5 though not as pronounced as when 22-mer 
HT-quadruplex blocks are stacked in a column with TTA linkers between them1,5. In this particular model for the 
columnar stacking of G-quadruplex blocks (that are formed by four-repeat telomeric sequences), TTA segments 
connect the consecutive blocks that in turn would form an ordered G-quadruplex column with quasi-continuous 
helical characteristics. Here, we investigate the columnar mesophase behavior of 22-mer HT-quadruplex blocks 
when they are unlinked. These are similar to the unlinked very-short duplex DNA fragments25, except that the 
strong stacking interactions between the exposed hydrophobic cores of the duplex DNA fragments25 are missing 
in the 22-mer HT-quadruplex case. If anything, because of the relatively weak end-to-end stacking interactions, 
the 22-mer HT-quadruplex blocks could be more prone to repel each other then to attract. This would force the 
columns of 22-mer HT-quadruplex blocks to be highly disordered.

Results
Under sufficient molecular crowding, as mimicked by the PEG-induced osmotic pressure (see Methods), 
duplex and quadruplex (GMP-quadruplex, TG4T-quadruplex, and 22-mer HT-quadruplex) DNA structures 
self-assemble into stable aggregates in the presence of K+ ions without any other ions being added. These aggre-
gates are transferred into PEG solutions of various concentrations for equilibration against known external 
osmotic pressures. PEG (molecular weight 8000 Daltons) is excluded from the DNA arrays during equilibration. 
Temperature-dependent osmotic pressures produced by the solutions of PEG at various concentrations are from 
ref. 11. Unless otherwise stated, all the measurements are at [KCl] = 0.3 M.

The osmotic pressures required for inducing DNA-analogue mesophase transitions strongly depend on solu-
tion ionic conditions. At [K+] = 0.3 M, in the absence of any multivalent salts, the transition osmotic pressures for 
duplex and GMP-quadruplex are about the same, varying nearly from 6 to 8 atm (corresponding to from ≈19 to 
≈22 wt% PEG 8000 concentration at 20 °C). Increasing K+ concentration (under fixed external pressure) results 
in compression in the arrays of duplexes and G-quadruplexes. This observation can be explained as the screening 
of the electrostatic interactions between intercolumnar phosphate charges.

Figure 2.  Schematic representations of the other DNA structures considered in this manuscript. 
(a) Side view of the intermolecular parallel-stranded TG4T-quadruplex (PDB: 244D) made of four TG4T 
oligonucleotides. In this quadruplex20, G-quartets are formed by hydrogen-bonding of the four parallel GGGG 
runs. Unlike the GMP-quadruplex, in the TG4T-quadruplex, G-quartets are connected via four sugar-phosphate 
strands. Similar to the other quadruplex structures (shown in Fig. 1), K+ ions (purple) reside inside the TG4T-
quadruplex. (b) Side view of the duplex DNA in its B-form. (c) Side view of the triplex DNA (PDB: 134D). We 
used Poly(AT*T)-triplex made of 50 bases long Poly(A) and Poly(T) oligonucleotides31 in the presence of Mg2+ 
(explained in the text). In this figure, we used non-standard color-coding for the bases in order to differentiate 
between different strands of the structures.
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In this section, we describe and present the experimental data systematically, by giving the priority to 
G-quadruplex DNA structures (GMP-quadruplex, TG4T-quadruplex, and 22-mer HT-quadruplex) and by using 
the duplex and triplex DNA data as additional information. The osmotic-pressure induced mesophase transitions 
for duplex DNA in the presence of monovalent NaCl has been observed recently22, while in this paper we addi-
tionally present the duplex DNA mesophase transition data in the presence of monovalent KCl. Furthermore, the 
triplex mesophase transition was not measured elsewhere. Although the main focus of this work is to present and 
discuss the mesophase behavior of the G-quadruplex structures, we also present duplex DNA data (in the pres-
ence of KCl) and the triplex mesophase transition that was measured the for the first time. We then compare the 
observed G-quadruplex DNA mesophases with duplex and triplex DNA mesophases. We used “long” wild-type 
DNA (~1 micron long) in the duplex DNA measurements. See below for details on the triplexes.

GMP-quadruplex.  Increasing order continuously with increasing osmotic compression in the disordered 
columnar mesophase (Φdc) is followed by a sudden collapse into the ordered columnar mesophase (Φoc) with 
remarkable changes in the intercolumnar distance (dint) and the radial order (Fig. 3b). At the Φdc → Φoc transition 
of the GMP-quadruplex, in particular, the change in the intercolumnar distance (Δdint) is about 6.5–7 Å (Fig. 4a). 
This change in the packing density corresponds to about 0.3–0.4 nm3 volume change per GMP nucleotide. It 
occurs concurrently with a significant lowering of the packing disorder. The radial disorder in the Φdc phase, 
due to lateral displacements of loosely stacked G-quartets around the mean columnar axis, is evident in the 
Gaussian-shaped broad diffraction radial intensity peaks. By comparison, the Lorentzian peak shape in the Φoc 
phase attests to the long-range nature of positional order. The correlation length in the ordered phase (equal to the 
inverse of the full-width-at-half-maximum of a Lorentzian function fitted to the x-ray diffraction radial intensity 
peak) is 5-to-6 neighbor separations for duplex DNA and 9-to-10 neighbor separations for GMP-quadruplex.

The slight temperature sensitivity of the Φdc → Φoc transition is shown for GMP-quadruplex (open circles in 
Fig. 4a). Temperature has no detectable effect on the packing density in the Φoc phase. The transition osmotic 

Figure 3.  (a) Schematic illustration of the hexagonal columnar liquid-crystalline phases of G-quartets: In the Φdc  
phase (left), G-quartets in each column are displaced laterally around average columnar axes. In the Φoc phase 
(right), both G-quartet correlations within each column and column-column correlations are long-range. At the 
Φdc → Φoc transition, intercolumnar spacings between the neighboring columns (dint) decrease by 6.5–7 Å.  
(b) 1D intensity profiles (i.e., x-ray scattering intensities vs. momentum transfer in the radial direction) from 
GMP-quadruplex arrays at [KCl] = 0.3 M, showing the Φdc → Φoc transition: Essentially similar patterns were 
obtained with the intermolecular quadruplex (Fig. 2a), duplex (Fig. 2b), and triplex (Fig. 2c) (see SI Appendix). 
In the course of the Φdc → Φoc transition, the shape of the diffraction peak changes dramatically while the peak 
center is shifted to a higher qr value. Two distinct types of peaks in the intensity profile coexist over a small 
range of Π, i.e., a phase-coexistence region. The procedure for x-ray diffraction peak fits is described in SI 
Appendix. Insets: X-ray images of the GMP-quadruplex arrays in the Φdc (left) and Φoc (right) phases. Higher 
order diffraction rings in the x-ray images of the Φoc phase confirm hexagonal packing (see SI Appendix). (c) 1D 
intensity profiles from 22-mer HT-quadruplex (Fig. 1a,b) arrays at [KCl] = 0.3 M.
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pressure (Πtr) increases by about 1 atm upon increasing temperature from 20 to 40 °C. The effects of temperature 
on Πtr (as well as the effect of temperature on the DNA density at a fixed osmotic pressure Π) are appreciably 
smaller for other DNA structures and not shown. The transition for the GMP-quadruplex system is fairly sharp, 
and the integrated diffraction intensity (area under the diffraction peak) does not change through the transition. 
The integrated diffraction intensities from the same sample in the Φdc and Φoc phases are nearly the same (Fig. 3b). 
Phase-coexistence is pronounced over a significantly narrower range of osmotic pressures in the transitions of the 
duplex and GMP-quadruplex than in the transitions of the other structures. In particular, for GMP-quadruplex, 
the width of the phase-coexistence region is about 0.5 atm osmotic pressure.

TG4T-quadruplex.  When we followed the same procedure with the intermolecular TG4T-quadruplex, we 
observed first-order transitions similar to the Φdc → Φoc transition of the GMP-quadruplex. This suggests an 
abrupt change in the columnar organization of the short intermolecular TG4T-quadruplex, similar to the change 
in the columnar organization of the G-quartets at the Φdc → Φoc transition of the GMP-quadruplex. When this 
change in order is tuned by varying the osmotic pressure, we observe a much broader coexistence-region in the 
Φdc → Φoc transition for TG4T-quadruplex than for the GMP-quadruplex. For clarity, in Fig. 4a we show the inter-
columnar spacings for the TG4T-quadruplex only at the upper and lower boundaries of the coexistence-region 
(inverted triangles). Intercolumnar spacings are about the same in the Φoc phases of the TG4T-quadruplex and 
GMP-quadruplex arrays under the same pressure.

22-mer HT-quadruplex.  With the aim of obtaining ordered columnar phases of the 22-mer HT-quadruplex 
arrays (similar to the Φoc phase of simpler model GMP-quadruplex), we increased the osmotic pressure compress-
ing the disordered arrays of 22-mer HT-quadruplex and measured their x-ray diffraction patterns. The radial 
packing order increases with increasing osmotic compression. However, the very sharp changes observed in the 
radial intensity profiles at the first-order Φdc → Φoc transition of the GMP-quadruplex are not seen in the radial 
intensity profiles of 22-mer HT-quadruplex arrays (Fig. 3c).

When equilibrated under osmotic pressures less than the Φdc → Φoc transition osmotic pressure of the 
GMP-quadruplex, the measured positional disorder in 22-mer HT-quadruplex array is smaller than the disor-
der in GMP-quadruplex array at the same pressure (Fig. 5), which can be argued to be a consequence of the 
constrained lateral motion of the G-quartets, connected by the sugar-phosphate backbone. This connectivity 
increases the stability of 22-mer HT-quadruplex relative to the GMP-quadruplex and decreases its positional as 
well as stacking disorder. This is obviously true despite the TTA loops of the 22-mer HT-quadruplex that extend 
laterally from the core G-quartets5, and could be conceived as promoting and not suppressing the disorder of the 
columns. However, when equilibrated under osmotic pressures greater than that of the Φdc → Φoc transition of 
GMP-quadruplex, dint is 2–3 Å bigger for 22-mer HT-quadruplex than for GMP-quadruplex at the same pressure 
(Fig. 4a). Under these conditions, the radial disorder in the 22-mer HT-quadruplex array remains almost the 
same as in the disordered phase, while that of the GMP-quadruplex array drops significantly (Fig. 5, blue circles), 
possibly signaling the reverse action of laterally extended TTA loops in this case, amounting to a simple increase 
of the effective diameter of the columns.

Figure 4.  (a) Osmotic pressure vs. intercolumnar (interaxial) spacings (dint) for all structures that are shown in 
Figs 1 and 2: Duplex (triangle), Poly(AT*T)-triplex (square), GMP-quadruplex (circle), 22-mer HT-quadruplex 
(filled circle), TG4T-quadruplex (inverted triangle). Horizontal lines show the Φdc → Φoc transitions. The lines are 
drawn approximately between the two dint values determined from the centers of the coexisting two peaks in the 
phase-coexistence region (see Fig. 3). Poly(AT*T)-triplex measurements are performed under [MgCl] = 5 mM 
and [KCl] = 0.3 M. The measurements with other DNA structures are at [KCl] = 0.3 M in the absence of any 
other ions. The effect of temperature is shown only for GMP-quadruplex (where black and red symbols show 
the measurements at 20 and 40 °C, respectively, when the osmotic pressures are corrected for temperature). The 
slight temperature dependence of the transition pressure for the GMP-quadruplex is discussed in the text. For 
other structures data at T = 20 °C are shown only. (b) Osmotic pressure vs. surface-to-surface separation (dss) 
for duplex, Poly(AT*T)-triplex, and GMP-quadruplex DNA. Here, dss = dint − 2a, where a is the molecular (or 
columnar) radius ≈10 Å, 10.4 Å, 12.5 Å for duplex26, Poly(AT*T)-triplex32, and GMP-quadruplex13, respectively.
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Poly(AT*T)-triplex.  Poly(AT*T)-triplex samples are prepared in the presence of 5 mM Mg2+. The role of 
Mg2+ in the stability of DNA triplexes has been investigated24, and stable Poly(AT*T)-triplex at [Mg2+] = 5 mM is 
reported. Under sufficient osmotic pressures in presence of 5 mM Mg2+, Poly(AT*T)-triplexes self assemble into 
columnar aggregates (see Methods). Addition of 0.3 M K+, while keeping [Mg2+] = 5 mM, causes the following 
changes in the Poly(AT*T)-triplex arrays (under fixed pressure): (i) in the Φoc phase, expansion in the lateral direc-
tion (see SI Appendix) and (ii) in the Φdc phase, destabilization of the Poly(AT*T)-triplex. The osmotic pressure 
required to prevent the destabilization of the Poly(AT*T)-triplex depends on the concentrations of K+ and Mg2+. 
At the Φdc → Φoc mesophase transition of the Poly(AT*T)-triplex (in the presence of 0.3 M K+ and 5 mM Mg2+) dint 
changes from about 37 Å to 33 Å (Fig. 4a). The changes were reversible for dint less than ≈38 Å. At larger spacings, 
once the Poly(AT*T)-triplexes disassociate, the triplex formation cannot be reestablished by simply increasing 
the osmotic pressure. Thus, the dint values for the Poly(AT*T)-triplex that we report in Table 1 are near the biggest 
distances where the transition can be observed at [K+] = 0.3 M.

Discussion
Fiber diffraction data provide substantive evidence of helical stacking of the G-quartets13 in GMP-quadruplex, 
as well as helical stacking of the base-pairs26 in duplex DNA, at relative humidities corresponding to the osmotic 
pressures produced by the bathing PEG solutions that induced Φoc phases of these structures. These helical details 
are expected to be pronounced only in the presence of strong correlations between repeating units (base-pair 
for duplex and G-quartet for GMP-quadruplex) along the columnar axes. Based on this, one can argue that the 
helical nature of the base-stacking in DNA structures plays a key role in the Φdc → Φoc transitions of the DNA 
arrays. Transitions occur when the intercolumnar spacings (dint) are comparable to the helical pitch length (P), 
i.e., the axial distance per helical turn along the columnar axis (see Table 1). This implies that the formation of 
long-range translational and helical order along the columnar axis leads to long-range intercolumnar order in 

Figure 5.  FWHM of the x-ray diffraction radial intensity peaks from the arrays of DNA structures: Symbols 
and structures are the same as in Fig. 4a,b. In the less-ordered phases (Φdc), packing disorder decreases 
with increasing osmotic pressure for all structures. Further compression leads to Φdc → Φoc transitions with 
discontinuous changes in the packing order in duplex and GMP-quadruplex arrays, which occur concurrently 
with discontinuous changes in the packing densities (shown in Fig. 4a,b). The latter is not observed in the 22-
mer HT-quadruplex arrays (discussed in the text). Phase-coexistence is shown only for the TG4T-quadruplex 
(shaded area). Phase-coexistence is observed over significantly narrower ranges of osmotic pressures for the 
duplex and GMP-quadruplex compared with the TG4T-quadruplex. The error in the determination of FWHM 
is as big as ≈0.1 nm−1 in the case of broad Gaussian peaks (in the disordered phases). The errors in FWHM are 
smaller for the sharp Lorentzian peaks in the ordered phases (see SI Appendix).

a(nm) λ(e/nm) σ(e/nm2) P(nm) Change in dint Δdint(nm) ΔAcell(nm2) ΔVpn(nm3)

Duplex 1 6 0.95 3.4 ≈3.7-to-3.5 nm 0.19–0.21 0.11–0.12 0.19–0.20

Poly(AT*T)-triplex 1.04 9 1.38 3.4 ≈3.7-to-3.3 nm 0.35–0.40 0.19–0.22 0.22–0.24

GMP-quadruplex 1.25 12 1.53 4.1 ≈4.2-to-3.5 nm 0.65–0.70 0.43–0.46 0.36–0.39

Table 1.   Quantitative information regarding the structure and the Φdc → Φoc transitions of duplex, 
Poly(AT*T)-triplex, and GMP-quadruplex DNA. The structural parameters, radius (a) and helical pitch 
length (P), are from refs 13,26 and 32. The distances dint are measured in 0.3 M K+ solutions for duplex and 
GMP-quadruplex. These distances for duplex and GMP-quadruplex decrease without a significant change in 
Δdint with increasing K+ concentration. The Poly(AT*T)-triplex measurements are carried out in the presence 
of 0.3 M K+ and 5 mM Mg2+. Lowering Mg2+ concentration any further (less than 5 mM), while keeping the K+ 
concentration fixed at 0.3 M, results in the disassociation of the triplexes (see SI Appendix). Acell is the hexagonal 
cross-sectional area surrounding the duplex, triplex, or GMP-quadruplex. ΔAcell is the change in the Wigner-
Seitz cell area at the transition. ΔVpn is the change in the volume per nucleotide at the transition. The change 
in the volume per stacking unit (i.e., base-pair for duplex, base-triplet for triplex, and G-quartet for GMP-
quadruplex) is equal to ΔAcell multiplied by the base-stacking height (see SI Appendix). The overall uncertainty 
in the determination of ΔVpn is about 10%.
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the Φoc phase. Additionally, the strength of the attraction, as seen in the volume change per nucleotide (ΔVpn) in 
Table 1, increases with increasing number of strands in the structure. Counterintuitively, the attraction induced 
at the transition increases with increasing linear or surface charge density (λ and σ, respectively). This scenario 
has been elaborated27,28 theoretically but is difficult to corroborate experimentally.

We examined the Φdc → Φoc mesophase transitions of duplex, triplex, and quadruplex DNA structures. In 
particular, the spontaneous formations of highly-ordered G-quadruplex columns (GMP-quadruplex and 
TG4T-quadruplex) under biologically relevant molecular crowding conditions are significant for their analogies 
with the stacking organization of G-quadruplex structures in the human telomere. A quasi-continuous helix that 
runs along the columnar axis by the stacking of G-quartets within the TG4T-quadruplex columns20 (similar to the 
helical stacking of the G-quartets in GMP-quadruplex) is possible with azimuthal rotations and arrangements of 
the TG4T-quadruplex blocks relative to the adjacent blocks.

The formation of uniaxially ordered columnar liquid crystals has been observed also in the case of the stack-
ing of very-short-fragment (6 base-pairs long) DNA duplexes25. This stacking behavior was explained by the 
end-to-end adhesion of the exposed hydrophobic cores of the short DNA segments. From the observed Φdc → Φoc 
first-order mesophase transition of the TG4T-quadruplex arrays, as seen in the discontinuous change in the x-ray 
diffraction patterns tuned by varying molecular crowding conditions, it is possible to argue that the high-planarity 
of the G-quartets in the TG4T-quadruplex blocks makes the end-to-end stacking favorable. However, one could 
claim that the presence of the thymine bases at the ends of TG4T-quadruplex blocks would likely weaken the 
stacking interactions and in turn make the uniaxial helical ordering unfavorable. The broad range of osmotic 
pressures where the phase coexistence is observed in TG4T-quadruplex arrays (Fig. 5) might be attributed to the 
increased disorder due to the thymine bases at the ends.

In order to investigate the formation of ordered G-quadruplex columns in the telomere, the 22-mer 
HT-quadruplex was specifically chosen for two reasons: (i) the four-repeat sequence AG3(TTAG3)3 is the likely 
candidate for the G-quadruplex formation in vivo and (ii) G-quadruplex conformation of this sequence under 
molecular crowding conditions is known. However, to the best of our knowledge, there is no direct evidence that 
the 22-mer HT-quadruplex blocks would be organized into a columnar assembly in the non-crystalline state. 
Our osmotic stress experiments were designed to detect any sudden changes in the packing density and order, 
similar to the observed first-order mesophase transitions of the other model G-quadruplexes (GMP-quadruplex 
and TG4T-quadruplex). However, at all osmotic pressures 22-mer HT-quadruplex blocks (when they are unlinked) 
were observed to make only disordered columns, characterized by almost unchanged radial disorder (Fig. 5), 
implying also a pronounced stacking disorder. At large osmotic pressures it appears as if the disordered col-
umns would have an effective diameter augmented by the contribution of the dangling TTA loops, while at small 
osmotic pressures the phosphate backbone connectivity of the 22-mer HT-quadruplex blocks enhances their 
stability. The robust disordered columnar assembly would possibly be the outcome of the attenuated stacking 
interactions between the G-quartet cores of the 22-mer HT-quadruplex blocks, compared with the very pro-
nounced stacking interactions within the highly-ordered columnar phases of the GMP-quadruplex and the 
TG4T-quadruplex. This preserves the fluid-like order in the 22-mer HT-quadruplex columns at all crowding con-
ditions. In fact, this could well be important in the in vivo context.

Another feature of the ordered phases of the DNA structures is revealed by comparison of the characteristic 
decay lengths in the Π vs. dint curves (Fig. 4a) of duplex, triplex, and GMP-quadruplex DNA. On theoretical 
grounds one can quantify the intercolumnar distance dependence of the osmotic pressure of the array in terms 
of a short-range hydration characteristic length and a longer-ranged Debye screening length29. This approach 
describes the hydration and the electrostatic components of the total interaction between the columnar struc-
tures in an ordered array. In the case of duplex DNA in monovalent salt solutions, at large separations in the 
ordered phase, the apparent decay length from the Π vs. dint curve is close to the Debye length, suggesting that 
the electrostatic interactions dominate at these separations22. When the surface-to-surface separation is smaller 
than about 7–8 Å, the Π vs. dint curves for all ionic concentrations converge to a single curve, suggesting also a 
universal short-range hydration repulsion that is independent of ionic strength (for details see ref. 22). Similarly, 
triplex DNA exhibits the same interaction regimes, with comparable Debye lengths at large interaxial separations, 
except that the hydration decay length in the high density regime is smaller than in the case of duplex DNA. In 
this respect the triplex DNA lies in between the behavior exhibited by the duplex DNA and the G-quadruplexes. 
In fact, in the case of G-quadruplexes, neither the Debye length nor the expected characteristic length for the 
short-range hydration interactions (on the order of the size of a water molecule) are as anomalously small as 
the apparent lengths reported here (~1 Å). The nature of these extremely short range interactions observed in 
G-quadruplex arrays thus remains to be elucidated.

As a side note, the radial disorder in the Φdc phase is more pronounced in the GMP-quadruplex arrays than in 
the duplex, 22-mer HT-quadruplex, and TG4T-quadruplex arrays (Fig. 5). In the disordered phases, the repeating 
units along the columnar (or molecular) axes are constrained by (i) the relatively weak base-stacking interactions 
and (ii) the sugar-phosphate links between the adjacent units. The data in Fig. 5 point to the increased molecular 
stability by the sugar-phosphate backbone in duplex, 22-mer HT-quadruplex, and TG4T-quadruplex relative to 
the GMP-quadruplex. Nonetheless, the base-stacking interactions between the G-quartets are obviously strong 
enough and lead to the formation of disordered GMP-quadruplex columns at osmotic pressures as low as ≈3–4 
atm (corresponding to ≈15 wt% PEG 8000 concentration).

Molecular crowding - as quantified by its proxy, the PEG solution osmotic pressure - certainly plays an 
important role in the stabilization of different DNA structures and regulation of their respective functions10. By 
explicitly showing and analyzing how the solution PEG osmotic pressure controls the DNA density, the related 
molecular order, and the phase transitions between differently ordered dense DNA-analogue arrays, we can take 
an additional step in understanding how the complicated in vivo environment regulates different functionalities 
of nucleic acids.
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Methods
Sample preparation.  DNA oligonucleotide samples were ordered from Integrated DNA Technologies and 
were stored in a freezer until the time of measurements. Below we describe the methods of preparations of each 
DNA structure considered in this manuscript.

GMP-quadruplex.  We prepared the GMP solutions (1 mg/ml) at [KCl] = 0.3 M with stirring at room temperature 
for about 2–3 hours. We then mixed 1 ml samples of the prepared GMP-solution with 4 ml 25 wt% PEG 8000 solu-
tions (containing 0.3 M K+), i.e., the final solution contains ~1 mg of GMP under 20 wt% PEG 8000 and 0.3 M K+.  
Under these conditions, GMP precipitates and pellets are formed by centrifugation. We transferred the collected 
pellets into new PEG 8000 solutions (at various wt% concentrations) for the x-ray diffraction experiments.

TG4T-quadruplex.  Quadruplex formation was induced by heating TG4T oligonucleotide solution at 80 °C for 
5 min and then cooling to room temperature at [KCl] = 0.1 M. The oligonucleotide concentration in the annealing 
solution was ~0.1 mg/ml. TG4T-quadruplex is extensively studied in the literature. Their conformation in K+ solu-
tions is well-known30. We measured the CD spectra of the TG4T solutions before and after the heat incubation to 
confirm the parallel-stranded intermolecular TG4T-quadruplex formation (see SI Appendix).

22-mer HT-quadruplex.  Quadruplexes were formed by heating the four-repeat telomeric sequence 
AG3(TTAG3)3 solution at 95 °C and [KCl] = 50 mM for 5 min and then cooling to room temperature. The oli-
gonucleotide concentration in the annealing solution was ~0.1 mg/ml. We measured the CD spectra of the sam-
ples to ensure the formation of the structure (see SI Appendix). We then equilibrated the quadruplexes in PEG 
8000 solutions (40 wt%). The structural conversion of the AG3(TTAG3)3 sequence to parallel-stranded 22-mer 
HT-quadruplex conformation in PEG solutions was seen6,7. 22-mer HT-quadruplex arrays aggregated in the 
40 wt% PEG 8000 solutions were collected by centrifugation. The concentrated pellet was then transferred into 
new solutions of PEG 8000 (at various wt% concentrations) and [KCl] = 0.3 M for equilibration (~48 hours). 
Before the x-ray diffraction experiments, the solutions were centrifuged for long hours (~20–30 hours) at 4 °C and 
30,000 g. The pellets (~1 mg of weight) were held under the same solution conditions (0.3 M K+ and the desired 
PEG wt%) during the diffraction measurements.

Poly(AT*T)-triplex.  Poly(AT*T)-triplex structures are made of 50 bases long Poly(A) and Poly(T) sequences, by 
heating the solutions of Poly(A) and Poly(T) (mixed at 1:2 ratio) to 90 °C and slowly cooling to room temperature. 
The oligonucleotide concentration in the annealing solution (containing 5 mM Mg2+) was ~0.1 mg/ml. Following 
the annealing, we measured the CD spectra of the samples to ensure that the Poly(AT*T)-triplexes were formed (see 
SI Appendix). We then concentrated the Poly(AT*T)-triplex solution to about 1 mg/ml oligonucleotide concen-
tration. The Poly(AT*T)-triplex arrays are formed in PEG 8000 solutions: We mixed 1 ml samples of the 1 mg/ml  
Poly(AT*T)-triplex solution with 1 ml 50 wt% PEG 8000 (both containing 5 mM Mg2+). Thus the final solution 
contained ~1 mg of Poly(AT*T)-triplex under 25 wt% PEG 8000. Self-aggregated Poly(AT*T)-triplex arrays are 
equilibrated in the 25 wt% PEG 8000 solutions for about 48 hours and then collected by centrifuging for ~20 hours 
at 4 °C and 30,000 g. We then transferred the collected pellets into large volumes (~5 ml) of PEG 8000 bathing solu-
tions at various wt% concentrations (also containing the desired ionic conditions, i.e., 5 mM Mg2+ and 0.3 M K+).  
We performed the x-ray diffraction measurements after equilibrating the Poly(AT*T)-triplex arrays in the bathing 
solutions for about 48 hours.

Data collection.  X-ray diffraction measurements are made using the in-house setup at the UMass Amherst 
Physics Department. Brief explanations of the x-ray diffraction data analysis are given in the caption to Fig. 3. See 
also SI Appendix for more details. CD spectra measurements are carried out in the School of Medicine at Case 
Western Reserve University.

Osmotic pressure data.  Temperature-dependent osmotic pressure data of PEG (molecular weight 8000 
Daltons) solutions are from ref. 11. The osmotic pressure of PEG, as well as the temperature dependence of the 
osmotic pressure of PEG, are not new. They have been reproduced by a variety of experimental methods (e.g., 
vapor pressure osmometer, membrane osmometer).
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