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Equivalence à la Mundici for commutative
lattice-ordered monoids

Marco Abbadini

Abstract. We provide a generalization of Mundici’s equivalence between
unital Abelian lattice-ordered groups and MV-algebras: the category of
unital commutative lattice-ordered monoids is equivalent to the category
of MV-monoidal algebras. Roughly speaking, unital commutative lattice-
ordered monoids are unital Abelian lattice-ordered groups without the
unary operation x �→ −x. The primitive operations are +, ∨, ∧, 0, 1, −1.
A prime example of these structures is R, with the obvious interpretation
of the operations. Analogously, MV-monoidal algebras are MV-algebras
without the negation x �→ ¬x. The primitive operations are ⊕, �, ∨, ∧,
0, 1. A motivating example of MV-monoidal algebra is the negation-free
reduct of the standard MV-algebra [0, 1] ⊆ R. We obtain the original
Mundici’s equivalence as a corollary of our main result.

Mathematics Subject Classification. 06F05, 54F05, 03C05.

Keywords. Lattice-ordered monoids, Lattice-ordered groups, Categorical
equivalence, MV-algebras, Compact ordered spaces, Continuous order-
preserving functions.

1. Introduction

In [16], Mundici proved that the category of unital Abelian lattice-ordered
groups (unital Abelian �-groups, for short) is equivalent to the category of
MV-algebras. In Theorem 8.21, our main result, we establish the following
generalization: The category of unital commutative lattice-ordered monoids is
equivalent to the category of MV-monoidal algebras.

Roughly speaking, unital commutative lattice-ordered monoids (unital
commutative �-monoids, for short) are unital Abelian �-groups without the
unary operation x �→ −x, whereas MV-monoidal algebras are MV-algebras
without the negation x �→ ¬x (precise definitions will be given in Section 2).
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The operations of unital commutative �-monoids are +, ∨, ∧, 0, 1, −1, whereas
the operations of MV-monoidal algebras are ⊕, �, ∨, ∧, 0, 1. A motivating
example of unital commutative �-monoid is R, with the obvious interpretation
of the operations, whereas a motivating example of MV-monoidal algebra is the
negation-free reduct of the standard MV-algebra [0, 1]. Furthermore, for every
topological space X equipped with a preorder, the set of bounded continuous
order-preserving functions from X to R is an example of a unital commutative
�-monoid, whereas the set of continuous order-preserving functions from X
to [0, 1] is an example of an MV-monoidal algebra. The author’s interest for
unital commutative �-monoids originated from these last examples, as we now
illustrate in some detail.

Given a compact Hausdorff space X, the set C(X,R) of continuous func-
tions from X to R is a divisible Archimedean unital Abelian �-group, com-
plete in the uniform metric. In fact, we have a duality between the category
CompHaus of compact Hausdorff spaces and continuous maps and the cate-
gory G of divisible Archimedean metrically complete unital Abelian �-groups
(see [21,20]). Similarly, we may consider on the set C(X, [0, 1]) of continuous
functions from X to [0, 1] pointwise-defined operations inherited from [0, 1]; for
example, the operations of MV-algebras. Developing this idea, one can show
that CompHaus is dually equivalent to a variety Δ of (infinitary) algebras (see
[9,11,14]). These algebras can be thought of as MV-algebras with an additional
operation of countably infinite arity satisfying some additional axioms. In fact,
we have an equivalence between G and Δ, which is essentially a restriction of
the equivalence between unital Abelian �-groups and MV-algebras.

A compact ordered space is a compact space X endowed with a partial
order � on X so that the set { (x, y) ∈ X × X | x � y } is closed in X × X
with respect to the product topology. This notion was introduced by Nach-
bin [17]. If we replace compact Hausdorff spaces by compact ordered spaces
in the aforementioned discussion involving CompHaus, Δ and G, then we may
accordingly replace Mundici’s equivalence with our Theorem 8.21. Given a
compact ordered space X, let us consider the set C�(X, [0, 1]) of continuous
order-preserving functions from X to [0, 1]: we can endow C�(X, [0, 1]) with
pointwise-defined operations ⊕, �, ∨, ∧, 0, 1 (which are the operations of
MV-monoidal algebras). Pursuing a similar idea, in [10] it was proved that
the category of compact ordered spaces and continuous order-preserving maps
is dually equivalent to a quasi-variety of infinitary algebras ([1,3] show that
this quasi-variety actually is a variety). However, the operations are somewhat
unwieldy, and one might want to investigate the set C�(X,R) of continuous
order-preserving real-valued functions, instead. In fact, C�(X,R) is a unital
commutative �-monoid. The main motivation of this paper is to make the con-
nection between C�(X,R) (unital commutative �-monoids) and C�(X, [0, 1])
(MV-monoidal algebras) explicit.

There are both pros and cons in working with unital commutative �-
monoids or MV-monoidal algebras. On the one hand, it is easier to work with
the axioms of unital commutative �-monoids rather than those of MV-monoidal
algebras. On the other hand, the category of MV-monoidal algebras is a variety



Vol. 82 (2021) Equivalence à la Mundici for commutative lattice-ordered monoids Page 3 of 42 45

of finitary algebras axiomatized by a finite number of equations, so the tools of
universal algebra apply. The equivalence established here allows transferring
the pros of one category to the other one.

Our result specializes to Mundici’s equivalence between unital Abelian
�-groups and MV-algebras (Appendix A). We remark that, in contrast to the
proof of Mundici’s equivalence in [16], we do not use the axiom of choice
to prove the equivalence between unital commutative �-monoids and MV-
monoidal algebras.

We sketch the proof of our main result, Theorem 8.21. To obtain an
equivalence

u�M MVM
Γ̃

Ξ̃

between the category u�M of unital commutative �-monoids and the cat-
egory MVM of MV-monoidal algebras, we show that we have two equivalences

u�M u�M+ MVM.

Γ̃

(−)+ U

T G

Ξ̃

Here u�M+ is the category of ‘positive-unital commutative �-monoids’
(Definition 4.1), which are the positive cones of unital commutative �-monoids.
The functor Γ̃ maps a unital commutative �-monoid M to its ‘unit interval’
Γ̃(M) (Section 3). We construct a quasi-inverse in two steps. As a first step,
given an MV-monoidal algebra A, we define the set G(A) of ‘good sequences
in A’ (Section 5), and we equip this set with the structure of a positive-unital
commutative �-monoid (Section 7). As a second step, we consider translations
of the elements of G(A) by negative integers; in this way we obtain a unital
commutative �-monoid TG(A), where T : u�M+ → u�M is a functor (Section
4). To show that the composition of these two steps provides a quasi-inverse
of Γ̃, we write Γ̃ as the composite of two functors (−)+ and U. The functor
(−)+ associates to M its ‘positive cone’ M+; the functor U associates to M+

its unit interval. We will show that (−)+ and T are quasi-inverses (Section 4),
and that U and G are quasi-inverses (Section 8); from this, it follows that Γ̃
and Ξ̃:=TG are quasi-inverses, and hence the categories of unital commutative
�-monoids and MV-monoidal algebras are equivalent (Theorem 8.21).

By the time of publication of the present paper, the main result (Theorem
8.21) has appeared also in the author’s Ph.D. thesis [2, Chapter 4]. However,
the proofs are different. In [2], the author uses Birkhoff’s subdirect represen-
tation theorem, which simplifies the arguments but relies on the axiom of
choice. Moreover, while in this paper we construct a quasi-inverse of Γ̃ as the
composite of two functors, in [2] a one-step construction is adopted.
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In Appendix B we show that subdirectly irreducible MV-monoidal al-
gebras are totally ordered, and in Appendix C we show that every good
sequence in a subdirectly irreducible MV-monoidal algebra is of the form
(1, . . . , 1, x, 0, 0, . . . ). Even if we do not use these last two results, we have
included them because they seem of interest.

2. The algebras

2.1. Unital commutative lattice-ordered monoids

The set R, endowed with the binary operations + (addition), ∨ (maximum),
∧ (minimum), and the constants 0, 1 and −1 is a prototypical example of a
unital commutative lattice-ordered monoid.

Definition 2.1. A commutative lattice-ordered monoid (shortened as commuta-
tive �-monoid) is an algebra 〈M ; +,∨,∧, 0〉 (arities 2, 2, 2, 0) with the following
properties.

(M1) 〈M ;∨,∧〉 is a distributive lattice.
(M2) 〈M ; +, 0〉 is a commutative monoid.
(M3) + distributes over ∨ and ∧.

Definition 2.2. A unital commutative lattice-ordered monoid (unital commu-
tative �-monoid, for short) is an algebra 〈M ; +,∨,∧, 0, 1,−1〉 (arities 2, 2, 2,
0, 0, 0) with the following properties.

(U0) 〈M ; +,∨,∧, 0〉 is a commutative �-monoid.
(U1) −1 + 1 = 0.
(U2) 0 � 1.
(U3) For every x ∈ M there exists n ∈ N such that

(−1) + · · · + (−1)
︸ ︷︷ ︸

n times

� x � 1 + · · · + 1
︸ ︷︷ ︸

n times

.

The element 1 is called the positive unit, and the element −1 is called the
negative unit.

We warn the reader that some authors do not assume the lattice to be
distributive, nor that + distributes over both ∧ and ∨.

We denote with u�M the category of unital commutative �-monoids with
homomorphisms. We write z − 1 for z + (−1). Given n ∈ N, we write n for
1 + · · · + 1
︸ ︷︷ ︸

n times

and −n for (−1) + · · · + (−1)
︸ ︷︷ ︸

n times

.

Remark 2.3. Given a unital commutative �-monoid 〈M ; +,∨,∧, 0, 1,−1〉, we
define the operation x · y:=x − 1 + y. This operation does not coincide on R

with the usual multiplication. However, we still use this notation because the
equations x · 1 = x = 1 · x hold. In fact, unital commutative �-monoids admit
a term-equivalent description in the signature {+, ·,∨,∧, 0, 1}, from which the
constant −1 can be recast as 0 · 0. In this signature, Axioms U0 and U1 are
equivalent to:
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(E1) 〈M ;∨,∧〉 is a distributive lattice.
(E2) 〈M ; +, 0〉 and 〈M ; ·, 1〉 are commutative monoids.
(E3) Both the operations + and · distribute over both ∨ and ∧.
(E4) (x · y) + z = x · (y + z).
(E5) (x + y) · z = x + (y · z).
(Note that Axioms E4 and E5 are equivalent, given the commutativity

of + and ·.) The addition of Axiom U2 equals the addition of the following
axiom.

(E5) 0 � 1.
The addition of Axiom U3 equals the addition of the following axiom.
(E6) For every x ∈ M there exists n ∈ N such that

0 · · · · · 0
︸ ︷︷ ︸

n times

� x � 1 + · · · + 1
︸ ︷︷ ︸

n times

.

The class of algebras satisfying Axioms E1–E6 is term-equivalent to the
class of unital commutative �-monoids. One interesting thing about Axioms
E1–E6 is that their symmetries resemble the ones in the definition of MV-
monoidal algebras below. We will use Axioms E1–E6 to explain the axioms
of MV-monoidal algebras below; besides this usage, we will stick to Axioms
U0–U3 throughout the paper.

Example 2.4. For every topological space X equipped with a preorder, the
set of bounded continuous order-preserving functions from X to R is a unital
commutative �-monoid.

2.2. MV-monoidal algebras

In the following, we define the variety MVM of MV-monoidal algebras, which
are finitary algebras axiomatised by a finite number of equations. Our main
result is that the categories u�M and MVM are equivalent. Without giving
the details now, we anticipate the fact that the equivalence is given by the
functor Γ̃ : u�M → MVM that maps a unital commutative �-monoid M to the
set {x ∈ M | 0 � x � 1 }, endowed with the operations ⊕, �, ∧, ∨, 0 and 1,
where ∧, ∨, 0 and 1 are defined by restriction, and ⊕ and � are defined by
x ⊕ y:=(x + y) ∧ 1 and x � y:=(x + y − 1) ∨ 0.

On [0, 1], consider the elements 0 and 1 and the operations x∨y:= max{x, y},
x ∧ y:= min{x, y}, x ⊕ y:= min{x + y, 1}, and x � y:= max{x + y − 1, 0}. This
gives a prime example of what we call an MV-monoidal algebra.

Definition 2.5. An MV-monoidal algebra is an algebra 〈A;⊕,�,∨,∧, 0, 1〉 (ar-
ities 2, 2, 2, 2, 0, 0) satisfying the following equational axioms.

(A1) 〈A;∨,∧〉 is a distributive lattice.
(A2) 〈A;⊕, 0〉 and 〈A;�, 1〉 are commutative monoids.
(A3) Both the operations ⊕ and � distribute over both ∨ and ∧.
(A4) (x ⊕ y) � ((x � y) ⊕ z) = (x � (y ⊕ z)) ⊕ (y � z).
(A5) (x � y) ⊕ ((x ⊕ y) � z) = (x ⊕ (y � z)) � (y ⊕ z).
(A6) (x � y) ⊕ z = ((x ⊕ y) � ((x � y) ⊕ z)) ∨ z.
(A7) (x ⊕ y) � z = ((x � y) ⊕ ((x ⊕ y) � z)) ∧ z.
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Before commenting on the axioms, we remark that Axioms A4 and A5
are equivalent, given the commutativity of ⊕ and �. We have included both so
to make it clear that, if 〈A;⊕,�,∨,∧, 0, 1〉 is an MV-monoidal algebra, then
also the ‘dual’ algebra 〈A;�,⊕,∧,∨, 1, 0〉 is an MV-monoidal algebra.

Axioms A1–A3 coincide with Axioms E1–E3 in Remark 2.3. So, in a
sense, the difference between MV-monoidal algebras and unital commutative
�-monoids lies in the difference bewteen the conjunction of Axioms A4–A7 and
the conjunction of Axioms E4–E6. We mention here that 0 and 1 are bounds
of the underlying lattice of an MV-monoidal algebra (Lemma 6.5); this fact
is not completely obvious, given that the proof makes use of almost all the
axioms of MV-monoidal algebras.

Axiom A4 is a sort of associativity, which resembles Axiom E4, i.e. (x ·
y) + z = x · (y + z). In particular, one verifies that the interpretation on [0, 1]
of both the left-hand and right-hand side of Axiom A4 equals

((x + y + z − 1) ∨ 0) ∧ 1. (2.1)

Notice that the element x + y + z − 1 appearing in (2.1) coincides, using the
definition of · from Remark 2.3, with the interpretation on R of (x · y) + z and
x · (y + z). In fact, Axiom A4 is essentially the condition (x ·y)+ z = x · (y + z)
expressed at the unital level, i.e.:

(((x · y) + z) ∨ 0) ∧ 1 = ((x · (y + z)) ∨ 0) ∧ 1. (2.2)

Indeed, the presence of the term x ·y in the left-hand side of (2.2) corresponds
to the presence of the terms x⊕y and x�y in the left-hand side of Axiom A4,
and the presence of the term y + z in the right-hand side of (2.2) corresponds
to the presence of the terms y ⊕ z and y � z in the right-hand side of Axiom
A4.

Analogously, Axiom A5 corresponds to Axiom E5, i.e. (x + y) · z = x +
(y · z).

Axiom A6 expresses how the term (x�y)⊕z differs from its non-truncated
version (x · y) + z: essentially, the axiom can be read as

(x � y) ⊕ z = ((x · y) + z) ∨ z.

Analogously, Axiom A7 can be read as

(x ⊕ y) � z = ((x + y) · z) ∧ z.

We remark that MV-monoidal algebras form a variety of algebras whose
primitive operations are finitely many and of finite arity, and which is axioma-
tised by a finite number of equations. We let MVM denote the category of
MV-monoidal algebras with homomorphisms.

Remark 2.6. Bounded distributive lattices form a subvariety of the variety of
MV-monoidal algebras, obtained by adding the axioms x ⊕ y = x ∨ y and
x � y = x ∧ y.
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3. The unit interval functor

In this section we define a functor Γ̃ from the category of unital commutative
�-monoids to the category of MV-monoidal algebras; the main goal of the paper
is to show that Γ̃ is an equivalence. For a unital commutative �-monoid M , we
set Γ̃(M):={x ∈ M | 0 � x � 1 }. We will endow Γ̃(M) with a structure of an
MV-monoidal algebra. Clearly, 0, 1 ∈ Γ̃(M). Moreover, we define ∨ and ∧ on
Γ̃(M) by restriction. Finally, for x, y ∈ Γ̃(M), we set

x ⊕ y:=(x + y) ∧ 1

and

x � y:=(x + y − 1) ∨ 0,

To see that ⊕ and � are internal operations on Γ̃(M), we make use of the
following.

Lemma 3.1. Let M be a commutative �-monoid. For all x, y, x′, y′ ∈ M such
that x � x′ and y � y′, we have x + y � x′ + y′.

Proof. Since + distributes over ∨, we have (x+y)∨(x+y′) = x+(y∨y′) = x+y′.
Therefore, x+y � x+y′; analogously, x+y′ � x′ +y′. Hence, x+y � x+y′ �
x′ + y′. �

By Lemma 3.1, ⊕ and � are internal operations on Γ̃(M): indeed, the condition
x⊕y ∈ Γ̃(M) holds because x+y � 0+0 = 0, and the condition x�y ∈ Γ̃(M)
holds because x + y − 1 � 1 + 1 − 1 = 1.

Our next goal—met in Proposition 3.6 below—is to show that Γ̃(M) is
an MV-monoidal algebra. We need some lemmas.

Lemma 3.2. Let M be a unital commutative �-monoid, and let x, y, z ∈ Γ̃(M).
Then

(x � y) ⊕ z = ((x + y + z − 1) ∨ z) ∧ 1,

and

(x ⊕ y) � z = ((x + y + z − 1) ∧ z) ∨ 0.

Proof. We have

(x � y) ⊕ z = ((x � y) + z) ∧ 1 (def. of ⊕)

= (((x + y − 1) ∨ 0) + z) ∧ 1 (def. of �)

= ((x + y + z − 1) ∨ z) ∧ 1 (+ distr. over ∧)

and

(x ⊕ y) � z = ((x ⊕ y) + z − 1) ∨ 0 (def. of �)

= (((x + y) ∧ 1) + z − 1) ∨ 0 (def. of ⊕)

= ((x + y + z − 1) ∧ z) ∨ 0. (+ distr. over ∧) �
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Lemma 3.3. For all x and y in a commutative �-monoid we have

(x ∧ y) + (x ∨ y) = x + y.

Proof. We recall the proof, available in [6], of the two inequalities:

(x ∧ y) + (x ∨ y) = ((x ∧ y) + x) ∨ ((x ∧ y) + y)

� (y + x) ∨ (x + y) = x + y;

(x ∧ y) + (x ∨ y) = (x + (x ∨ y)) ∧ (y + (x ∨ y))

� (x + y) ∧ (y + x) = x + y. �

Lemma 3.4. Let M be a unital commutative �-monoid, and let x, y ∈ Γ̃(M).
Then

(x ⊕ y) + (x � y) = x + y.

Proof. We have

(x ⊕ y) + (x � y) = ((x + y) ∧ 1) + ((x + y − 1) ∨ 0) (def. of ⊕ and �)

= ((x + y) ∧ 1) + ((x + y) ∨ 1) − 1 (+ distr. over ∨)

= x + y + 1 − 1 (Lemma 3.3)
= x + y. �

Lemma 3.5. Let M be a unital commutative �-monoid. For all x, y, z ∈ Γ̃(M),
the elements (x⊕y)�((x�y)⊕z), (x�y)⊕((x⊕y)�z), (x�(y⊕z))⊕(y�z),
and (x ⊕ (y � z)) � (y ⊕ z) coincide with

(x + y + z − 1) ∨ 0) ∧ 1.

Proof. We have

(x ⊕ y) � ((x � y) ⊕ z)

= (((x ⊕ y) + (x � y) + z) ∧ (x ⊕ y)) ∨ 0 (Lemma 3.2)

= ((x + y + z − 1) ∧ (x ⊕ y)) ∨ 0 (Lemma 3.4)

= ((x + y + z − 1) ∧ (x + y) ∧ 1) ∨ 0 (def. of ⊕)

= ((x + y + z − 1) ∧ 1) ∨ 0 (x + y + z − 1 � x + y)

= ((x + y + z − 1) ∨ 0) ∧ 1.

and

(x � (y ⊕ z)) ⊕ (y � z)

= ((x + (y ⊕ z) + (y � z)) ∨ (y � z)) ∧ 1 (Lemma 3.2)

= ((x + y + z − 1) ∨ (y � z)) ∧ 1 (Lemma 3.4)

= ((x + y + z − 1) ∨ (y + z − 1) ∨ 0) ∧ 1 (def. of �)

= ((x + y + z − 1) ∨ 0) ∧ 1. (x + y + z − 1 � y + z − 1)

The fact that also (x � y) ⊕ ((x ⊕ y) � z) and (x ⊕ (y � z)) � (y ⊕ z)
coincide with (x + y + z − 1) ∨ 0) ∧ 1 follows from the commutativity of ⊕ and
� (which is easily seen to hold) and the commutativity of +. �



Vol. 82 (2021) Equivalence à la Mundici for commutative lattice-ordered monoids Page 9 of 42 45

Proposition 3.6. Let M be a unital commutative �-monoid. Then Γ̃(M) is an
MV-monoidal algebra.

Proof. Axioms A1–A3 are obtained by straightforward computations. Axioms
A4 and A5 hold by Lemma 3.5. Axioms A6 and A7 hold by Lemmas 3.2 and
3.5. �

Given a morphism of unital commutative �-monoids f : M → N , we de-
note with Γ̃(f) its restriction Γ̃(f) : Γ̃(M) → Γ̃(N). This establishes a functor

Γ̃ : u�M → MVM.

Our main goal is to show that Γ̃ is an equivalence of categories.

4. Positive cones

In [7, Chapter 2], the authors proceed in two steps to prove that, for an MV-
algebra A, there exists a unital Abelian �-group that envelops A. First, a
partially ordered monoid MA is constructed from A. Then a unital Abelian
�-group GA is defined (in a way that is analogous to the definition of Z from
N). In this paper, we proceed analogously: the role of A is played by MV-
monoidal algebras, the role of GA is played by unital commutative �-monoids,
and the role of MA is played by what we call positive-unital commutative �-
monoids. Roughly speaking, if we think of a unital commutative �-monoid
as the interval (−∞,∞), then an MV-monoidal algebra is the interval [0, 1],
whereas a positive-unital commutative �-monoid is the interval [0,∞).

To prove that Γ̃ is an equivalence, we show that Γ̃ is the composite of
two equivalences

u�M u�M+ MVM,
(−)+ U

where u�M+ is the category—yet to be defined—of positive-unital commutative
�-monoids. The idea is that, for M ∈ u�M, we have M+:={x ∈ M | x � 0 },
and for N ∈ u�M+, we have U(N):={x ∈ N | x � 1 }, so that U(M+) = {x ∈
M | 0 � x � 1 } = Γ̃(M). In this section, we define the functor (−)+, and we
exhibit a quasi-inverse T. We remark that one could construct a quasi-inverse
functor for Γ̃ just in one step: see the author’s Ph.D. thesis [2, Chapter 4] for
the employment of this approach.

Given a unital commutative �-monoid M , we set M+:={x ∈ M | x � 0 }.
With the following definition, we aim to capture the structure of M+ for M a
unital commutative �-monoid.

Definition 4.1. By a positive-unital commutative �-monoid we mean an algebra
〈M ; +,∨,∧, 0, 1,−� 1〉 (arities 2, 2, 2, 0, 0, 1) such that, for every x ∈ M , the
following properties hold.

(P0) 〈M ; +,∨,∧, 0〉 is a commutative �-monoid.
(P1) x � 0.
(P2) (x + 1) � 1 = x.
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(P3) (x � 1) + 1 = x ∨ 1.
(P4) There exists n ∈ N such that x � 1 + · · · + 1

︸ ︷︷ ︸

n times

.

We denote with u�M+ the category of positive-unital commutative �-
monoids with homomorphisms. Given n ∈ N, we write n for 1 + · · · + 1

︸ ︷︷ ︸

n times

.

In this section, we show that u�M and u�M+ are equivalent.

Lemma 4.2. Let M be a positive-unital commutative �-monoid. For all x, y ∈
M and every n ∈ N, if x + n = y + n then x = y.

Proof. The proof proceeds by induction on n ∈ N. The case n = 0 is trivial.
Suppose the statement holds for n ∈ N. If x + (n + 1) = y + (n + 1), then

x + n
Axiom P2= (x + n + 1) � 1 = (y + n + 1) � 1 Axiom P2= y + n,

and then, by the inductive hypothesis, x = y. �

Remark 4.3. Let x and y be elements of a positive-unital commutative �-
monoid. Then

y = x � 1 Lemma 4.2⇐⇒ y + 1 = (x � 1) + 1 Axiom P3⇐⇒ y + 1 = x ∨ 1.

Moreover,

y = 0 Lemma 4.2⇐⇒ y + 1 = 1.

This shows that the unary operation − � 1 and the constant 0 can be explic-
itly defined from {∨,∧, 1,+}. Therefore, every function f : M → N between
positive-unital commutative �-monoids that preserves +, ∨, ∧ and 1 preserves
also − � 1 and 0, and hence it is a homomorphism.

Given a unital commutative �-monoid M , we endow M+ with the op-
erations +, ∨, ∧, 0, 1 defined by restriction and with − � 1 defined by
x � 1:=(x − 1) ∨ 0. The restriction of + on M+ is well-defined by Lemma
3.1; it is immediate that ∨, ∧ and − � 1 are well-defined, and that 0, 1 ∈ M+.

Proposition 4.4. For every unital commutative �-monoid M , the algebra M+

is a positive-unital commutative �-monoid.

Proof. The algebra 〈M+; +,∨,∧, 0〉 is a commutative �-monoid because it is a
subalgebra of the commutative �-monoid 〈M ; +,∨,∧, 0〉; so, Axiom P0 holds.
Axiom P1 holds by definition of M+. Axiom P2 holds because, for every x ∈
M+, we have

(x + 1) � 1 = (x + 1 − 1) ∨ 0 = x ∨ 0 = x.

Axiom P3 holds because, for every x ∈ M+, we have

(x � 1) + 1 = ((x − 1) ∨ 0) + 1 = x ∨ 1.

Axiom P4 holds because, by Axiom U3, for every x ∈ M+ there exists n ∈ N

such that x � n. �
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Given a morphism f : M → N of unital commutative �-monoids, f re-
stricts to a function f+ from M+ to N+. Moreover, f preserves +, ∨, ∧ and
1 and so, by Remark 4.3, f+ is a morphism of positive-unital commutative
�-monoids. This establishes a functor (−)+ : u�M → u�M+ that maps M to
M+, and maps a morphism f : M → N to its restriction f+ : M+ → N+. We
will prove that (−)+ is an equivalence of categories (Theorem 4.16 below). To
do so, we exhibit a quasi-inverse T : u�M+ → u�M.

Let M be a positive-unital commutative �-monoid. We want to construct
a unital commutative �-monoid T(M) such that, if N is a unital commutative �-
monoid and N+ ∼= M , then T(M) ∼= N . Every element of a unital commutative
�-monoid N can be expressed as x − n for some x ∈ N+ and n ∈ N. Roughly
speaking, we will obtain T(N+) ∼= N by translating the elements of N+ by
negative integers. (In fact, T stands for ‘translations’.)

Therefore, given a unital commutative �-monoid M , we consider the rela-
tion ∼ defined on M×N as follows: (x, n) ∼ (y,m) if, and only if, x+m = y+n.
Using Lemma 4.2, it is not difficult to show that ∼ is an equivalence relation.
The equivalence class of an element (x, n) of M × N is denoted by [(x, n)], or
simply [x, n]. We set T(M):=M×N

∼ , and we endow T(M) with the operations
of a unital commutative �-monoid:

0 := [0, 0];

1 := [1, 0];

−1 := [0, 1];

[x, n] + [y,m] := [x + y, n + m];

[x, n] ∨ [y,m] := [(x + m) ∨ (y + n), n + m];

[x, n] ∧ [y,m] := [(x + m) ∧ (y + n), n + m].

Straightforward computations show that these operations are well-defined.

Remark 4.5. For every element x of a positive-unital commutative �-monoid
and all n,m ∈ N we have (x, n) ∼ (x + m,n + m).

Lemma 4.6. Let M be a positive-unital commutative �-monoid. For all x, y ∈
M and every n ∈ N we have

[x, n] ∨ [y, n] = [x ∨ y, n],

and

[x, n] ∧ [y, n] = [x ∧ y, n].

Proof. We have

[x, n] ∨ [y, n] = [(x + n) ∨ (y + n), n + n]

= [(x ∨ y) + n, n + n] (+ distr. over ∨)

= [x ∨ y, n], (Remark 4.5)

and analogously for ∧. �
Proposition 4.7. For every positive-unital commutative �-monoid M , T(M) is
a unital commutative �-monoid.
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Proof. The fact that T(M) is a commutative monoid follows from the fact
that M and N are commutative monoids. Checking that T(M) is a distribu-
tive lattice is facilitated by Remark 4.5 and Lemma 4.6. Let us prove that +
distributes over ∨:

[x, n] + ([y,m] ∨ [z,m]) = [x, n] + [y ∨ z,m] (Lemma 4.6)

= [x + (y ∨ z), n + m]

= [(x + y) ∨ (x + z), n + m]

= [x + y, n + m] ∨ [x + z, n + m] (Lemma 4.6)

= ([x, n] + [y,m]) ∨ ([x, n] + [z,m]).

Analogously for ∧. The axioms for 1 and −1 are easily seen to hold. �

For a morphism of positive-unital commutative �-monoids f : M → N ,
we set

T(f) : T(M) −→ T(N)

[x, n] �−→ [f(x), n].

The function T(f) is well-defined: indeed, if (x, n) ∼ (y,m), then x + m =
y + n, and then f(x) + m = f(x + m) = f(y + n) = f(y) + n, and therefore
(f(x), n) ∼ (f(y),m). Moreover, T(f) is a morphism of unital commutative
�-monoids. We show only that + is preserved:

T(f)([x, n] + [y,m]) = T(f)([x + y, n + m])

= [f(x + y), n + m]

= [f(x) + f(y), n + m]

= [f(x), n] + [f(y),m].

One easily verifies that T : u�M+ → u�M is a functor.
For each unital commutative �-monoid, we consider the function

ε0
M : T(M+) −→ M

[x, n] �−→ x − n.

The function ε0
M is well-defined: indeed, if [x, n] = [y,m], then x + m = y + n

and therefore x − n = y − m.

Proposition 4.8. For every unital commutative �-monoid M , the function ε0
M :

T(M+) → M is a morphism of unital commutative �-monoids.

Proof. The function ε0
M preserves 0, 1, and −1 because ε0

M ([0, 0]) = 0−0 = 0,
ε0
M ([1, 0]) = 1 − 0 = 1 and ε0

M ([0, 1]) = 0 − 1 = −1. For all x, y ∈ M+ and
n ∈ N we have

ε0
M ([x, n] + [y,m]) = ε0

M ([x + y, n + m])

= (x + y) − (n + m)

= (x − n) + (y − m)

= ε0
M ([x, n]) + ε0

M ([y,m]).
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Hence, ε0
M preserves +. Moreover, for all x, y ∈ M+ and n,m ∈ N, we

have

ε0
M ([x, n] ∨ [y,m]) = ε0

M ([(x + m) ∨ (y + n), n + m])

= ((x + m) ∨ (y + n)) − (n + m)

= (x + n) ∨ (y + m). (+ distr. over ∨)

Hence, ε0
M preserves ∨. Analogously, ε0

M preserves ∧. �
Proposition 4.9. ε0 : T(−)+→̇1u�M is a natural transformation, i.e., for every
morphism of unital commutative �-monoids f : M → N , the following diagram
commutes.

T(M+) M

T(N+) N

T(f+)

ε0
M

f

ε0
N

Proof. For every x ∈ M+ and every n ∈ N we have

ε0
N (T(f+)([x, n])) = ε0

N ([f+(x), n])

= ε0
N ([f(x), n])

= f(x) − n

= f(x − n)

= f(ε0
M ([x, n])). �

Proposition 4.10. For every unital commutative �-monoid M , the function
ε0
M : T(M+) → M is bijective.

Proof. To prove injectivity, let x, y ∈ M+, let n,m ∈ N, and suppose we have
ε0
M ([x, n]) = ε0

M ([y,m]). Then,

x − n = ε0
M ([x, n]) = ε0

M ([y,m]) = y − m;

hence x + m = y + n, and thus [x, n] = [y,m]; this proves injectivity. To prove
surjectivity, for x ∈ M , choose n ∈ N such that −n � x; then ε0

M ([x+n, n]) =
x + n − n = x. �

For each positive-unital commutative �-monoid M , we consider the func-
tion

η0
M : M −→ (T(M))+

x �−→ [x, 0].

Proposition 4.11. For every positive-unital commutative �-monoid M , the func-
tion η0

M : M → (T(M))+ is a morphism of positive-unital commutative �-
monoids.

Proof. It is easy to see that η0
M preserves 1, +, ∨ and ∧. Then, by Remark 4.3,

the function η0
M is a morphism of positive-unital commutative �-monoids. �
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Proposition 4.12. η0 : 1u�M+→̇(−)+T is a natural transformation, i.e., for ev-
ery morphism of positive-unital commutative �-monoids f : M → N , the fol-
lowing diagram commutes.

M (T(M))+

N (T(N))+

f

η0
M

(T(f))+

η0
N

Proof. For every x ∈ M , we have

(T(f))+(η0
M (m)) = (T(f))+([x, 0]) = T(f)([x, 0])

= [f(x), 0] = η0
N (f(x)). �

Notation 4.13. Let M be a positive-unital commutative �-monoid. We define,
inductively on n ∈ N, a function ( · ) � n : M → M .

x � 0:=x;

(for n � 1) x � n = (x � (n − 1)) � 1.

Lemma 4.14. Let M be a positive-unital commutative �-monoid. For every x ∈
M and every n ∈ N, we have

(x � n) + n = x ∨ n.

Proof. We prove the statement by induction. The case n = 0 is trivial. Suppose
the statement holds for n − 1 ∈ N, and let us prove it for n. We have

(x � n) + n = ((x � (n − 1)) � 1) + n (ind. def. of − �n)

= ((x � (n − 1)) � 1) + 1 + (n − 1)

= ((x � (n − 1)) ∨ 1) + (n − 1) (Axiom P3)

= ((x � (n − 1)) + (n − 1)) ∨ n (+ distr. over ∨)

= x ∨ (n − 1) ∨ n (ind. hyp.)
= x ∨ n. �

Proposition 4.15. For every positive-unital commutative �-monoid M , the func-
tion η0

M : M → (T(M))+ is bijective.

Proof. First, we prove that η0
M is injective. Let x, y ∈ M , and suppose η0

M (x) =
[x, 0] = [y, 0] = η0

M (y). Then, x + 0 = y + 0, and so x = y. Second, we prove
that η0

M is surjective. Let [x, n] ∈ (T(M))+. Then,

[x, n] = [x, n] ∨ [0, 0] ([x, n] ∈ (T(M))+)

= [x ∨ n, n]

= [(x � n) + n, n] (Lemma 4.14)

= [x � n, 0] (Remark 4.5)

= η0
M (x � n). �
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We recall that two functors F : A → B and G : B → A are called quasi-
inverses if the functors GF : A → A and FG : B → B are naturally isomorphic
to the identity functors on A and B respectively. Two categories A and B
are equivalent if, and only if, there exist two quasi-inverses F : A → B and
G : B → A [12, Chapter IV, Section 4].

Theorem 4.16. The functors (−)+ : u�M → u�M+ and T : u�M+ → u�M are
quasi-inverses.

Proof. The functors 1u�M+ : u�M+ → u�M+ and (−)+T : u�M+ → u�M+ are
naturally isomorphic by Propositions 4.11, 4.12 and 4.15. The functors 1u�M :
u�M → u�M and T(−)+ : u�M → u�M are naturally isomorphic by Propositions
4.8 to 4.10. �

5. Good sequences

Definition 5.1. Let A be an MV-monoidal algebra. A good pair in A is a pair
(x0, x1) of elements of A such that x0 ⊕ x1 = x0 and x0 � x1 = x1. A good
sequence in A is a sequence (x0, x1, x2, . . . ) of elements of A which is eventually
0 and such that, for each n ∈ N, (xn, xn+1) is a good pair.

Instead of (x0, . . . , xn, 0, 0, 0, . . . ) we shall often write, more concisely,
(x0, . . . , xn). Thus, if 0m denotes an m-tuple of zeros, the good sequences
(x1, . . . , xn) and (x0, . . . , xn, 0m) are identical. For each x ∈ A, the sequence
(x, 0, 0, 0, . . . ) (which is always good) will be denoted by (x).

Remark 5.2. In our definition of good pair we included both the condition
x0 ⊕ x1 = x0 and the condition x0 � x1 = x1 because, in general, they are not
equivalent. As an example, one can take the MV-monoidal algebra consisting
of three elements {0, a, 1}, where a ⊕ a = a, and a � a = 0.

To prove the equivalence between the categories of MV-algebras and uni-
tal Abelian �-groups (see [16] or [7]), Mundici used the facts that subdirectly
irreducible MV-algebras are totally ordered and that good sequences in totally
ordered MV-algebras are of the form (1, . . . , 1, x, 0, 0, . . . ).

In this paper we do not make use of the Subdirect Representation Theo-
rem (in fact, we do not make use of the axiom of choice) to establish the equiv-
alence between u�M and MVM. The reason why this is done is that, initially,
the author was unable to prove that, in subdirectly irreducible MV-monoidal
algebras, good sequences are of the form (1, . . . , 1, x, 0, 0, . . . ). Eventually, such
a proof was found, and the result is given in Corollary C.6. However, the result
is not used in the present paper, for the following reasons. First, in this way,
the proof that we provide for the equivalence between u�M and MVM may
be applied in similar settings, where the structure of subdirectly irreducible
algebras is not known. Secondly, the proof we give does not rely on the axiom
of choice. In particular, up to proving without the axiom of choice that the
axioms of MV-monoidal algebras hold in any MV-algebra, we obtain a proof
of the equivalence between unital Abelian �-groups and MV-algebras that does
not make use of the axiom of choice.
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For a proof of our main result that does take advantage of the Subdirect
Representation Theorem, the reader is invited to consult the author’s Ph.D.
thesis [2, Chapter 4].

6. Basic properties of MV-monoidal algebras

Remark 6.1. Inspection of the axioms that define MV-monoidal algebras shows
that, for each MV-monoidal algebra 〈A;⊕,�,∨,∧, 0, 1〉, the ‘dual’ algebra
〈A;�,⊕,∧,∨, 1, 0〉 is also an MV-monoidal algebra.

We give a name to the right- and left-hand terms of Axioms A4 and
A5; we will then prove that their interpretations in an MV-monoidal algebra
coincide.

Notation 6.2. We set

σ1(x, y, z) := (x ⊕ y) � ((x � y) ⊕ z);

σ2(x, y, z) := (x � y) ⊕ ((x ⊕ y) � z);

σ3(x, y, z) := (x � (y ⊕ z)) ⊕ (y � z);

σ4(x, y, z) := (x ⊕ (y � z)) � (y ⊕ z).

Note that Axiom A5 can be written as σ1(x, y, z) = σ3(x, y, z), Axiom
A6 can be written as σ2(x, y, z) = σ4(x, y, z), Axiom A6 can be written as
(x � y) ⊕ z = σ1(x, y, z) ∨ z, and Axiom A7 can be written as (x ⊕ y) � z =
σ2(x, y, z) ∧ z.

Lemma 6.3. Let A be an MV-monoidal algebra. For all i, j ∈ {1, 2, 3, 4}, every
permutation ρ : {1, 2, 3} → {1, 2, 3} and all x1, x2, x3 ∈ A we have

σi(x1, x2, x3) = σj(xρ(1), xρ(2), xρ(3)).

In other words, the terms σ1, σ2, σ3, σ4 in the theory of MV-monoidal algebras
are all invariant under permutations of variables, and they coincide.

Proof. By commutativity of ⊕ and �, in the theory of MV-monoidal algebras
σ1 is invariant under transposition of the first and the second variables, and
σ3 is invariant under transposition of the second and the third ones. More-
over, by Axiom A4, we have σ1(x, y, z) = σ3(x, y, z). Since any two distinct
transpositions in the symmetric group on three elements generate the whole
group, it follows that σ1 and σ3 are invariant under any permutation of the
variables. By commutativity of ⊕ and �, we have σ1(x, y, z) = σ4(z, y, x), and,
by Axiom A5, we have σ2(x, y, z) = σ4(x, y, z). We conclude that σ1, σ2, σ3,
σ4 are invariant under permutations of variables, and they coincide. �

In particular, Lemma 6.3 guarantees that we have

σ1(x, y, z) = σ2(x, y, z) = σ3(x, y, z) = σ4(x, y, z).

Notation 6.4. For x, y, z in an MV-monoidal algebra, we let σ(x, y, z) denote
the common value of σ1(x, y, z), σ2(x, y, z), σ3(x, y, z) and σ4(x, y, z).
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Lemma 6.5. For every x in an MV-monoidal algebra we have 0 � x � 1.

Proof. We have

x = (x � 1) ⊕ 0 (Axiom A2)

= σ1(x, 1, 0) ∨ 0 (Axiom A6)

= σ3(x, 1, 0) ∨ 0 (Axiom A4)

= ((x � (1 ⊕ 0)) ⊕ (1 � 0)) ∨ 0 (def. of σ3)

= ((x � 1) ⊕ 0) ∨ 0 (Axiom A2)

= x ∨ 0. (Axiom A2)

Thus, 0 � x. Dually, x � 1. �

Lemma 6.6. For every x in an MV-monoidal algebra, we have x ⊕ 1 = 1 and
x � 0 = 0.

Proof. We have

0 = 1 � 0 (Axiom A2)

= (1 ∨ x) � 0 (Lemma 6.5)

= (1 � 0) ∨ (x � 0) (Axiom A3)

= 0 ∨ (x � 0) (Axiom A2)

= x � 0. (Lemma 6.5)

Dually, x ⊕ 1 = 1. �

Lemma 6.7. The following properties hold for all x, y, z, x′, y′ in an MV-monoidal
algebra.
(1) If x � x′ and y � y′, then x ⊕ y � x′ ⊕ y′.
(2) If x � x′ and y � y′, then x � y � x′ � y′.
(3) x � y ⇒ x ⊕ z � y ⊕ z
(4) x � y ⇒ x � z � y � z.
(5) x � x ⊕ y.
(6) x � x � y.

Proof. Let us call A the MV-monoidal algebra of the statement. Item (1) is
guaranteed by the application of Lemma 3.1 to the commutative �-monoid
〈A;⊕,∨,∧, 0〉. Item (2) is dual to item (1). Item (3) holds by item (1) together
with the fact that z � z. Item (4) is dual to item (3). From 0 � y we obtain,
by item (3), x ⊕ 0 � x ⊕ y. By Lemma 6.6, we have x ⊕ 0 = x. Therefore,
x � x ⊕ y, and so item (5) is proved. Item (6) is dual to item (5). �

Lemma 6.8. For all x, y, z in an MV-monoidal algebra we have

x � (y ⊕ z) � (x � y) ⊕ z.

Proof. Using Axioms A4–A7, we obtain

x � (y ⊕ z) = x ∧ σ(x, y, z) � σ(x, y, z) � σ(x, y, z) ∨ z = (x � y) ⊕ z. �



45 Page 18 of 42 M. Abbadini Algebra Univers.

Lemma 6.9. Let A be an MV-monoidal algebra, let (x0, x1) be a good pair in A,
and let y ∈ A. Then

x0 � (x1 ⊕ y) = x1 ⊕ (x0 � y),

and both these elements coincide with σ(x0, x1, y).

Proof. We have

x0 � (x1 ⊕ y) = (x0 ⊕ x1) � ((x0 � x1) ⊕ y) ((x0, x1) is good)

= σ1(x0, x1, y) (def. of σ1)

= σ2(x0, x1, y) (Lemma 6.3)

= (x0 � x1) ⊕ ((x0 ⊕ x1) � y) (def. of σ2)

= x1 ⊕ (x0 � y). ((x0, x1) is good) �

Lemma 6.10. For all x and y in an MV-monoidal algebra, the pair (x⊕y, x�y)
is good.

Proof. We have

(x ⊕ y) ⊕ (x � y) = (1 � (x ⊕ y)) ⊕ (x � y) (Axiom A2)

= σ3(1, x, y) (def. of σ3)

= σ4(1, x, y) (Lemma 6.3)

= (1 ⊕ (x � y)) � (x ⊕ y) (def. of σ4)

= 1 � (x ⊕ y) (Lemma 6.6)

= x ⊕ y. (Axiom A2)

Dually, (x ⊕ y) � (x � y) = x � y. �

7. Operations on the set of good sequences

We denote with G(A) the set of good sequences in an MV-monoidal algebra
A. (In fact, G stands for ‘good’.) We will endow G(A) with the structure of
a positive-unital commutative �-monoid. We let 0 denote the good sequence
(0, 0, 0, . . . ), and we let 1 denote the good sequence (1, 0, 0, 0, . . . ). For good
sequences a = (a0, a1, a2, . . . ) and b = (b0, b1, b2, . . . ), we set

a ∨ b:=(a0 ∨ b0, a1 ∨ b1, a2 ∨ b2, . . . ),

and

a ∧ b:=(a0 ∧ b0, a1 ∧ b1, a2 ∧ b2, . . . ).

Proposition 7.2 below asserts that a ∨ b and a ∧ b are good sequences. To
prove it, we establish the following lemmas.

Lemma 7.1. For all good pairs (x0, x1) and (y0, y1) in an MV-monoidal alge-
bra, the pairs (x0 ∨ y0, x1 ∨ y1) and (x0 ∧ y0, x1 ∧ y1) are good.
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Proof. We prove that (x0 ∨ y0, x1 ∨ y1) is a good pair. We have

(x0 ∨ y0) ⊕ (x1 ∨ y1)

= (x0 ⊕ x1) ∨ (x0 ⊕ y1) ∨ (y0 ⊕ x1) ∨ (y0 ⊕ y1) (⊕distr. over ∨)

= x0 ∨ (x0 ⊕ y1) ∨ (y0 ⊕ x1) ∨ y0 ((x0, x1), (y0, y1) good)

= (x0 ⊕ y1) ∨ (y0 ⊕ x1) (Lemma 6.7.((5)))

= (x0 ⊕ (y0 � y1)) ∨ (y0 ⊕ (x0 � x1)) ((x0, x1), (y0, y1) good)

= x0 ∨ σ(x0, y0, y1) ∨ y0 ∨ σ(x0, x1, y0) (Axiom A6)

= x0 ∨ ((x0 ⊕ y1) � y0) ∨ y0 ∨ (x0 � (x1 ⊕ y0)) (Lemma 6.9)

= (x0 ∨ (x0 � (x1 ⊕ y0))) ∨ (((x0 ⊕ y1) � y0) ∨ y0)

= x0 ∨ y0. (Lemma 6.7.((6)))

Moreover, we have

(x0 ∨ y0) � (x1 ∨ y1)

= (x0 � x1) ∨ (x0 � y1) ∨ (y0 � x1) ∨ (y0 � y1) (⊕ distr. over ∨)

= x1 ∨ (x0 � y1) ∨ (y0 � x1) ∨ y1 ((x0, x1), (y0, y1) good)

= x1 ∨ y1. (Lemma 6.7.((6)))

Hence, (x0 ∨ y0, x1 ∨ y1) is good. Dually, (x0 ∧ y0, x1 ∧ y1) is good. �
Proposition 7.2. For all good sequences a and b in an MV-monoidal algebra,
the sequences a ∨ b and a ∧ b are good.

Proof. By Lemma 7.1. �
Proposition 7.3. Let A be an MV-monoidal algebra. Then, 〈G(A);∨,∧〉 is a
distributive lattice.

Proof. 〈G(A);∨,∧〉 is a distributive lattice, because ∨ and ∧ are applied com-
ponentwise, and 〈A;∨,∧〉 is a distributive lattice. �
For A an MV-monoidal algebra, we have a partial order � on G(A), induced by
the lattice operations. Since the lattice operations are defined componentwise,
we have the following.

Remark 7.4. Let A be an MV-monoidal algebra. For all good sequences a =
(a0, a1, a2, . . . ) and b = (b0, b1, b2, . . . ) in A, we have a � b if, and only if, for
all n ∈ N, an � bn.

Now we want to define the sum of good sequences. Given two good se-
quences a = (a0, a1, a2, . . . ) and b = (b0, b1, b2, . . . ) in an MV-monoidal alge-
bra, there are two natural ways to define a sequence c = (c0, c1, c2, . . . ) as the
sum of a and b. The first one is

cn := (a0 ⊕ bn) � (a1 ⊕ bn−1) � · · · � (an−1 ⊕ b1) � (an ⊕ b0),

and the second one is

cn := bn ⊕ (a0 � bn−1) ⊕ (a1 � bn−2) ⊕ · · · ⊕ (an−2 � b1) ⊕ (an−1 � b0) ⊕ an.

Our first aim, reached in Lemma 7.8 below, is to show that these two ways
coincide.
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Lemma 7.5. Let x0, . . . , xn, y0, . . . , ym be elements of an MV-monoidal algebra
and suppose that, for every i ∈ {0, . . . , n} and every j ∈ {0, . . . , m}, the pair
(xi, yj) is good. Then, the pair

(x0 � · · · � xn, y0 ⊕ · · · ⊕ ym)

is good.

Proof. The statement is trivial for (n,m) = (0, 0). The statement is true for
(n,m) = (1, 0) because

(x0 � x1) ⊕ y0
Lemma 6.9= x0 � (x1 ⊕ y0) = x0 � x1,

and

(x0 � x1) � y0 = x0 � (x1 � y0) = x0 � y0 = y0.

The case (n,m) = (0, 1) is analogous. Let (n,m) ∈ N×N\{(0, 0), (0, 1), (1, 0)},
and suppose that the statement is true for each (h, k) ∈ N×N such that (h, k) �=
(n,m), h � n and k � m. We prove that the statement holds for (n,m). At
least one of the two conditions n �= 0 and m �= 0 holds. Suppose, for example,
n �= 0. Then, by inductive hypothesis, the pairs (x0 �· · ·�xn−1, y0 ⊕· · ·⊕ym)
and (xn, y0 ⊕ · · · ⊕ ym) are good. Now we apply the statement for the case
(1, 0), and we obtain that (x0 � · · · � xn, y0 ⊕ · · · ⊕ ym) is a good pair. The
case m �= 0 is analogous. �

Lemma 7.6. Let A be an MV-monoidal algebra. For every good pair (x, y) in
A and every u ∈ A, the pairs (x ⊕ u, y) and (x, y � u) are good.

Proof. The pair (x⊕u, y) is good because we have (x⊕u)⊕ y = (x⊕ y)⊕u =
x⊕u, and, by Lemma 6.7, we have y = x� y � (x⊕u)� y � y, which implies
(x ⊕ u) � y = y. Dually, (x, y � u) is good. �

Lemma 7.7. If (x, y) and (y, z) are good pairs in an MV-monoidal algebra,
then (x, z) is a good pair.

Proof. We have

x ⊕ z = (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) = x ⊕ y = x,and

x � z = x � (y � z) = (x � y) � z = y � z = z. �

Lemma 7.8. Let A be an MV-monoidal algebra, let m ∈ N and let (a0, . . . , am)
and (b0, . . . , bm) be good sequences in A. Then

(a0 � bm) ⊕ · · · ⊕ (am � b0) = a0 � (a1 ⊕ bm) � · · · � (am ⊕ b1) � b0,

and

(a0 ⊕ bm) � · · · � (am ⊕ b0) = bm ⊕ (a0 � bm−1) ⊕ · · · ⊕ (am−1 � b0) ⊕ am.
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Proof. We prove the first equality by induction on m ∈ N. The case m = 0 is
trivial. Let m ∈ N\{0} and suppose that the statement holds for n−1. By the
inductive hypothesis, we have

(a0�bm)⊕· · ·⊕(am �b0) = (a0�(a1⊕bm)�· · ·�(am−1⊕b2)�b1)⊕(am �b0).
(7.1)

By Lemma 7.6, the pair (b0, a0 � (a1 ⊕ bm) � · · · � (am−1 ⊕ b2) � b1) is
good. Therefore, by Lemma 6.9, we have

(a0 � (a1 ⊕ bm) � · · · � (am−1 ⊕ b2) � b1) ⊕ (am � b0)
= ((a0 � (a1 ⊕ bm) � · · · � (am−1 ⊕ b2) � b1) ⊕ am) � b0. (7.2)

By Lemma 7.7, the pairs (a0, am), (a1, am), . . . (am−2, am), (am−1, am)
are good. By Lemma 7.6, the pairs (a0, am), (a1⊕bm, am), . . . , (am−2⊕b3, am),
(am−1 ⊕ b2, am) are good. By Lemma 7.5, the pair

(a0 � (a1 ⊕ bm) � · · · � (am−1 ⊕ b2), am)

is good. Thus, by Lemma 6.9, we have

((a0 � (a1 ⊕ bm) � · · · � (am−1 ⊕ b2) � b1) ⊕ am) � b0

= ((a0 � (a1 ⊕ bm) � · · · � (am−1 ⊕ b2)) � (b1 ⊕ am)) � b0. (7.3)

The chain of equalities established in Eqs. (7.1)–(7.3) settles the first
equality of the statement. The second one is dual. �

Given two good sequences a = (a0, a1, a2, . . . ) and b = (b0, b1, b2, . . . ) in
an MV-monoidal algebra, we set

a + b:=(c0, c1, c2, . . . ),

where

cn:=(a0 ⊕ bn) � (a1 ⊕ bn−1) � · · · � (an−1 ⊕ b1) � (an ⊕ b0),

or, equivalently (by Lemma 7.8),

cn:=bn ⊕ (a0 � bn−1) ⊕ (a1 � bn−2) ⊕ · · · ⊕ (an−2 � b1) ⊕ (an−1 � b0) ⊕ an.

In Proposition 7.10 below, we show that a + b is a good sequence. In
preparation for it, we establish the following lemma.

Lemma 7.9. Let (a0, . . . , an) and (b0, . . . , bn) be good sequences in an MV-
monoidal algebra. Then, the pair

((a0 ⊕ bn) � · · · � (an ⊕ b0), (a0 � bn) ⊕ · · · ⊕ (an � b0))

is good.

Proof. By Lemma 7.5, it is enough to show that, for i, j ∈ {0, . . . , m}, the
pair (ai ⊕ bm−i, aj � bm−j) is good. The case i = j is covered by Lemma
6.10. If i < j, then, by Lemma 7.7, the pair (ai, aj) is good; by Lemma 7.6,
the pair (ai ⊕ bm−i, aj � bm−j) is good. If i > j, then, by Lemma 7.7, the
pair (bm−i, bm−j) is good; by Lemma 7.6, the pair (ai ⊕ bm−i, aj � bm−j) is
good. �
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Proposition 7.10. For all good sequences a and b in an MV-monoidal algebra,
the sequence a + b is good.

Proof. Let a = (a0, . . . , am) and b = (b0, . . . , bm). Set c:=a + b, and write
c = (c0, c1, c2, . . . ). Then, for j > 2m we have cj = 0. For all n ∈ N we have

cn = (a0 ⊕ bn) � · · · � (an ⊕ b0)

= (1 ⊕ bn+1) � (a0 ⊕ bn) � · · · � (an ⊕ b0) � (an+1 ⊕ 1),

and

cn+1 = (1 � bn+1) ⊕ (a0 � bn) ⊕ · · · ⊕ (an � b0) ⊕ (an+1 � 1).

By Lemma 7.9, the pair (cn, cn+1) is good. �

Proposition 7.11. Addition of good sequences is commutative.

Proof. By commutativity of ⊕ and �, we have

a + b = (a0 ⊕ bn) � · · · � (an ⊕ b0) = (b0 ⊕ an) � · · · � (bn ⊕ a0) = b + a. �

Remark 7.12. Let A be an MV-monoidal algebra, and let a ∈ G(A). Then,
a + 0 = a.

Now, we show that, for all good sequences x, y, z in an MV-monoidal
algebra, we have (x+ y) + z = x+ (y + z). A direct verification, which seems
difficult in general, becomes treatable when y is of the form (y0, 0, 0, . . . ).
Light’s associativity test guarantees that this is enough to imply associativity,
thanks to the fact that the elements of the form (y0, 0, 0, . . . ) generate G(A).
In the following, we carry out the details.

Lemma 7.13. For every good sequence (a0, . . . , an) in an MV-monoidal algebra
we have

(a0, . . . , an) = (a0, . . . , an−1) + (an).

Proof. Set (b0, b1, b2, . . . ):=(a0, . . . , an−1) + (an). For k ∈ {0, . . . , n − 1}, we
have

bk = a0 � a1 � · · · � ak−1 � (ak ⊕ an) = a0 � a1 � · · · � ak−1 � ak = ak.

Moreover, bn = a0 �a1 �· · ·�an−1 �an = an, and, for k > n, we have bk = 0.
In conclusion, (a0, . . . , an) = (b0, b1, b2, . . . ) = (a0, . . . , an−1) + (an). �

Notation 7.14. A magma 〈X; ·〉 consists of a set X and a binary operation ·
on X. Given a subset T of a magma X, we define, inductively on n ∈ N>0, the
subset Tn; we set T1:=T , and, for n ∈ N>0, Tn:={ tz | t ∈ T, z ∈ Tn−1 }∪{ zt |
t ∈ T, z ∈ Tn−1 }. Roughly speaking, Tn is the set of elements of X that can
be obtained with at most n occurrences of elements of T via application of the
operation ·. We say that T generates X if

⋃

n∈N>0
Tn = X.

Lemma 7.15. For every MV-monoidal algebra A, the set { (x) ∈ G(A) | x ∈
A } generates the magma 〈G(A);+〉.
Proof. By induction, using Lemma 7.13. �
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Lemma 7.16. (Light’s associativity test) Let 〈X; ·〉 be a magma, and let T be
a subset of X that generates X. Suppose that, for every x, z ∈ X and t ∈ T ,
we have (xt)z = x(tz). Then, the operation · is associative.

Proof. Since T generates X, we have
⋃

n∈N>0
Tn = X. We prove, by induction

on n ∈ N>0, that, for every y ∈ Tn, and every x, y ∈ X, we have (xy)z = x(yz).
The case n = 1 is ensured by hypothesis. Let n � 2, and suppose that the
cases 1, . . . , n − 1 hold. Then, either y = ty′ or y = y′t, for some t ∈ T and
y′ ∈ Tn. Suppose, for example, y = ty′. Then, we have

(xy)z = (x(ty′))z = ((xt)y′)z = (xt)(y′z) = x(t(y′z)) = x((ty′)z) = x(yz).

The case y = y′t is analogous. �

Lemma 7.17. Let A be an MV-monoidal algebra, let (a0, a1) and (b0, b1) be
good pairs in A, and let x ∈ A. Then

(a0 ⊕ (x � b0) ⊕ b1) � (a1 ⊕ x ⊕ b0) = (a0 ⊕ x ⊕ b1) � (a1 ⊕ (a0 � x) ⊕ b0),

and both sides coincide with a1 ⊕ σ(a0, x, b0) ⊕ b1.

Proof. Since the pair (a0, a1) is good, it follows from Lemma 7.6 that the pair
(a0 ⊕ (x � b0) ⊕ b1, a1) is good. Since the pair (b0, b1) is good, it follows from
Lemma 7.6 that the pair (x ⊕ b0, b1) is good. Therefore, we have

(a0 ⊕ (x � b0) ⊕ b1) � (a1 ⊕ x ⊕ b0)

= a1 ⊕ ((a0 ⊕ (x � b0) ⊕ b1) � (x ⊕ b0)) (Lemma 6.9)

= a1 ⊕ ((a0 ⊕ (x � b0)) � (x ⊕ b0)) ⊕ b1 (Lemma 6.9)

= a1 ⊕ σ(a0, x, b0) ⊕ b1.

Analogously, (a0 ⊕ x ⊕ b1) � (a1 ⊕ (a0 � x) ⊕ b0) = a1 ⊕ σ(a0, x, b0) ⊕ b1. �

Lemma 7.18. Let A be an MV-monoidal algebra, let n ∈ N>0, let (a0, . . . , an)
and (b0, . . . , bn) be good sequences in A, and let x ∈ A. Then

n
⊙

i=0

ai ⊕ (x � bn−i−1) ⊕ bn−i =
n

⊙

i=0

ai ⊕ (ai−1 � x) ⊕ bn−i.

Proof. We prove the statement by induction on n ∈ N>0. The case n = 1 is
Lemma 7.17. Now let n ∈ N\{0, 1}, and suppose that the statement holds for
n − 1. In the following chain of equalities, the second equality is obtained by
an application of Lemma 7.17 with respect to the good pairs (an−1, an) and
(b0, b1), and the third equality is obtained by an application of the inductive
hypothesis with respect to the good sequences (a0, . . . , an−1) and (b1, . . . , bn).

n
⊙

i=0

ai ⊕ (x � bn−i−1) ⊕ bn−i

=

(

n−2
⊙

i=0

ai ⊕ (x � bn−i−1) ⊕ bn−i

)

� (an−1 ⊕ (x � b0) ⊕ b1)

� (an ⊕ x ⊕ b1)
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=

(

n−2
⊙

i=0

ai ⊕ (x � bn−i−1) ⊕ bn−i

)

� (an−1 ⊕ x ⊕ b1)

� (an ⊕ (an−1 � x) ⊕ b1)

=

(

n
⊙

i=0

ai ⊕ (ai−1 � x) ⊕ bn−i

)

� (an ⊕ (an−1 � x) ⊕ b1)

=
n

⊙

i=0

ai ⊕ (ai−1 � x) ⊕ bn−i. �

Lemma 7.19. Let A be an MV-monoidal algebra, let a and b be good sequences
in A, and let x ∈ A. Then,

(a + (x)) + b = a + ((x) + b).

Proof. Set d:=a + (x) and e:=(x) + b. For every n ∈ N, we have dn = an ⊕
(an−1�x) and en = (x�bn−1)⊕bn. We set f :=(a+(x))+b and g:=a+((x)+b).
For every n ∈ N, we have

fn =
n

⊙

i=0

di ⊕ bn−i

=
n

⊙

i=0

ai ⊕ (ai−1 � x) ⊕ bn−i

=
n

⊙

i=0

ai ⊕ (x � bn−i−1) ⊕ bn−i (Lemma 7.18)

=
n

⊙

i=0

ai ⊕ en−i

= gn. �

Proposition 7.20. Addition of good sequences is associative.

Proof. By Lemmas 7.15, 7.16 and 7.19. �

Our next aim—reached in Proposition 7.23 below—is to show that good
sequences satisfy a + (b ∨ c) = (a + b) ∨ (a + c). We need some lemmas.

Lemma 7.21. Let A be an MV-monoidal algebra, let (x0, x1) and (y0, y1) be
good pairs in A and let z ∈ A. Then

((z ⊕ x1) � x0) ∨ ((z ⊕ y1) � y0) = (z ⊕ (x1 ∨ y1)) � (x0 ∨ y0).

Proof. We have

(z ⊕ (x1 ∨ y1)) � (x0 ∨ y0)

= ((z ⊕ x1) ∨ (z ⊕ y1)) � (x0 ∨ y0)

= ((z ⊕ x1) � (x0 ∨ y0)) ∨ ((z ⊕ y1) � (x0 ∨ y0))

= ((z ⊕ x1) � x0) ∨ ((z ⊕ x1) � y0) ∨ ((z ⊕ y1) � x0) ∨ ((z ⊕ y1) � y0)
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= σ(z, x1, x0) ∨ ((z ⊕ x1) � y0) ∨ ((z ⊕ y1) � x0) ∨ σ(z, y1, y0), (7.4)

where the last equality follows from Lemma 6.9. We have

(z ⊕ x1) � y0 = (z ⊕ (x1 � x0)) � y0 ((x0, x1) is good)

= (z ∨ σ(z, x1, x0)) � y0 (Axiom A6)

= (z � y0) ∨ (σ(z, x1, x0) � y0) (� distr. over ∨)

� ((z ⊕ y1) � y0) ∨ σ(z, x1, x0) (Lemma 6.7)

= σ(z, y1, y0) ∨ σ(z, x1, x0). (Lemma 6.9)

Analogously, (z ⊕ y1) � x0 � σ(z, x1, x0) ∨ σ(z, y1, y0). Therefore, (7.4)
equals σ(z, x1, x0) ∨ σ(z, y1, y0), i.e. ((z ⊕ x1) � x0) ∨ ((z ⊕ y1) � y0). �

Lemma 7.22. Let A be an MV-monoidal algebra, let a ∈ A and let b and c be
good sequences in A. Then, (a) + (b ∨ c) = ((a) + b) ∨ ((a) + c).

Proof. We set d:=(a) + (b ∨ c). Then,

dn = (a ⊕ (bn ∨ cn)) � (bn−1 ∨ cn−1) � · · · � (b0 ∨ c0)
= (a ⊕ (bn ∨ cn)) � (bn−1 ∨ cn−1).

We set f :=(a) + b, g:=(a) + c and h:=f ∨ g = ((a) + b) ∨ ((a) + c). We have

fn = (a ⊕ bn) � bn−1 � · · · � b0 = (a ⊕ bn) � bn−1,

gn = (a ⊕ cn) � cn−1 � · · · � c0 = (a ⊕ cn) � cn−1,

and

hn = fn ∨ gn

= ((a ⊕ bn) � bn−1) ∨ ((a ⊕ cn) � cn−1)

= (a ⊕ (bn ∨ cn)) � (bn−1 ∨ cn−1) (Lemma 7.21)
= dn. �

Proposition 7.23. For all good sequences a,b, c in an MV-monoidal algebra,
we have

a + (b ∨ c) = (a + b) ∨ (a + c),

and

a + (b ∧ c) = (a + b) ∧ (a + c).

Proof. Let us prove the first equality: the second one is analogous. Let A be
the MV-monoidal algebra of the statement. Set Â:={ (x) ∈ G(A) | x ∈ A }. By
Lemma 7.15, Â generates the magma 〈G(A);+〉. Following Notation 7.14, for
n ∈ N>0, we let Ân denote the set of elements of G(A) which can be obtained
with at most n occurrences of elements of Â via application of +. We prove
by induction on n ∈ N>0 that, for all a ∈ Ân, and b, c ∈ G(A), we have
a + (b ∨ c) = (a + b) ∨ (a + c). The case n = 1 is Lemma 7.22. Suppose that
the statement holds for n ∈ N>0, and let us prove it for n + 1. Let a ∈ Ân+1,
and let b, c ∈ G(A). Then, there exists a′ ∈ Ân and x ∈ Â such that a = a′+x
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or a = x + a′. Since addition is commutative by Proposition 7.11, these two
conditions are equivalent. So,

a + (b ∨ c) = x + a′ + (b ∨ c)

= x + ((a′ + b) ∨ (a′ + c)) (ind. hyp.)

= (x + a′ + b) ∨ (x + a′ + c) (Lemma 7.22)

= (a + b) ∨ (a + c). �

For a good sequence a = (a0, a1, a2, . . . ) in an MV-monoidal algebra, set
a � 1 := (a1, a2, a3, . . . ). The sequence a � 1 is a good sequence.

Proposition 7.24. For every MV-monoidal algebra A, the algebra G(A) is a
positive-unital commutative �-monoid.

Proof. By Proposition 7.3, G(A) is a distributive lattice. By Propositions 7.11
and 7.20 and Remark 7.12, G(A) is a commutative monoid. By Proposition
7.23, + distributes over ∧ and ∨. Thus, G(A) is a commutative �-monoid
(Axiom P0). Since the order in G(A) is pointwise (Remark 7.4), and 0 is the
least element of A, we have Axiom P1, i.e., 0 is the least element of G(A). It
is easy to see that (a0, a1, a2, . . . ) + 1 = (1, a0, a1, a2, . . . ). Therefore, we have
Axiom P2, i.e., for all a ∈ G(A), a + 1 � 1 = a. For all a ∈ G(A), we have
(a � 1) + 1 = a ∨ 1, which establishes Axiom P3. By induction, one proves
n1 = (1, . . . , 1

︸ ︷︷ ︸

n times

, 0, 0, 0 . . . ). Since 1 is the maximum of A, we have Axiom P4,

i.e., for all a ∈ G(A), there exists n ∈ N such that a � n1. �

Given a morphism of MV-monoidal algebras f : A → B, we set

G(f) : G(A) −→ G(B)

(x0, x1, x2, . . . ) �−→ (f(x0), f(x1), f(x2), . . . ).

Lemma 7.25. For every morphism f of MV-monoidal algebras, the function
G(f) is a morphism of positive-unital commutative �-monoids.

Proof. Let us prove that G(f) preserves +. Set z:=x+y, u:=f(z), and w:=f(x)+
f(y). Let z = (z0, z1, z2, . . . ), u = (u0, u1, u2, . . . ) and w = (w0, w1, w2, . . . ).
We shall show u = w. For each n ∈ N, we have

zn = (x0 ⊕ yn) � · · · � (xn ⊕ y0).

Thus,

un = f((x0 ⊕ yn) � · · · � (xn ⊕ y0))

= (f(x0) ⊕ f(yn)) � · · · � (f(xn) ⊕ f(y0))

= f((x0 ⊕ yn) � · · · � (xn ⊕ y0))
= wn.

Therefore, G(f) preserves +. Straightforward computations show that G(f)
preserves also 0, 1, ∨, ∧ and �. �

It is easy to see that G : MVM → u�M+ is a functor.
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8. MV-monoidal algebras and positive cones are equivalent

8.1. The unit interval functor from positive cones

Let M be a positive-unital commutative �-monoid. We set U(M):={x ∈ M |
x � 1 }; U stands for ‘unit interval’. We endow M with the operations of
MV-monoidal algebra. The operations ∨, ∧, 0, 1 are defined by restriction.
For x, y ∈ U(M), we set x ⊕ y := (x + y) ∧ 1 and x � y := (x + y) � 1. By the
equivalence between u�M+ and u�M (Theorem 4.16), and since Γ̃(M ′) is an
MV-monoidal algebra for every unital commutative �-monoid M ′ (Proposition
3.6), U(M) is an MV-monoidal algebra. Given a morphism f : M → N of
positive-unital commutative �-monoids, we set U(f) : U(M) → U(N) as the
restriction of f . This assignment establishes a functor U : u�M+ → MVM.

8.2. The unit

For each MV-monoidal algebra A, consider the function

η1
A : A −→ UG(A)

x �−→ (x).

Proposition 8.1. For every MV-monoidal algebra A, the function η1
A : A →

G(A) is an isomorphism of MV-monoidal algebras.

Proof. The facts that η1
A is a bijection and that it preserves 0, 1, ∨, ∧ are

immediate. Let x, y ∈ A. Then, (x) + (y) = (x ⊕ y, x � y). Therefore

η1
A(x) ⊕ η1

A(y) = (x) ⊕ (y) = ((x) + (y)) ∧ 1

= (x ⊕ y, x � y) ∧ 1 = (x ⊕ y) = η1
A(x ⊕ y), and

η1
A(x) � η1

A(y) = (x) � (y) = ((x) + (y)) � 1

= (x ⊕ y, x � y) � 1 = (x � y) = η1
A(x � y). �

Proposition 8.2. η1 : 1MVM→̇UG is a natural transformation, i.e., for every
morphism of MV-monoidal algebras f : A → B, the following diagram com-
mutes.

A UG(A)

B UG(B)

η1
A

f UG(f)

η1
B

Proof. For every x ∈ A we have

UG(f)(η1
A(x)) = UG(f)((x)) = G(f)((x)) = (f(x)) = η1

B(f(x)). �
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8.3. The counit

For each positive-unital commutative �-monoid, we consider the function

ε1
M : GU(M) −→ M

(x0, . . . , xn) �−→ x0 + · · · + xn.

Our next goal, met in Proposition 8.13, is to prove that ε1
M is bijective; this

will show that a positive-unital commutative �-monoid M is in bijection with
the set of good sequences in its unit interval U(M).

Lemma 8.3. Let M be a positive-unital commutative �-monoid. For every x ∈
M and every n ∈ N, we have

x = (x ∧ n) + (x � n).

Proof. We have

(x ∧ n) + (x � n) + n
Lemma 4.14= (x ∧ n) + (x ∨ n) Lemma 3.3= x + n.

Since n is cancellative by Lemma 4.2, it follows that (x ∧ n)+(x � n)=x. �

Lemma 8.4. Let M be a positive-unital commutative �-monoid, let x ∈ M and
let n ∈ N. If x � n, then x � n = 0.

Proof. By Lemma 4.14, we have

(x � n) + n = x ∨ n = n = 0 + n.

By Lemma 4.2, the element n is cancellative: it follows that x � n = 0. �

Lemma 8.5. Let M be a positive-unital commutative �-monoid, let x ∈ M , and
let n, k ∈ N. Then,

(x � n) ∧ k = (x ∧ (n + k)) � n.

Proof. We have

((x � n) ∧ k) + n = ((x � n) + n) ∧ (k + n) (+ distr. over ∧)

= (x ∨ n) ∧ (k + n) (Lemma 4.14)

= (x ∧ (k + n)) ∨ n

= ((x ∧ (k + n)) � n) + n. (Lemma 4.14)

Since n is cancellative by Lemma 4.2, we have (x�n)∧k=(x∧(n+k))�n. �

Lemma 8.6. For every x in a positive-unital commutative �-monoid, we have

(x ∧ 1) + ((x � 1) ∧ 1) = x ∧ 2.

Proof. We have

(x ∧ 1) + ((x � 1) ∧ 1) + 1

= (x ∧ 1) + ((x � 1) + 1) ∧ 2) (+distr. over ∧)

= (x ∧ 1) + ((x ∨ 1) ∧ 2) (Axiom P3)

= ((x ∧ 1) + (x ∨ 1)) ∧ ((x ∧ 1) + 2) (+ distr. over ∧)



Vol. 82 (2021) Equivalence à la Mundici for commutative lattice-ordered monoids Page 29 of 42 45

= (x + 1) ∧ (x + 2) ∧ 3 (Lemma 3.3,+ distr. over ∧)

= (x + 1) ∧ 3

= (x ∧ 2) + 1. (+ distr. over ∧)

Since 1 is cancellative by Lemma 4.2, we have (x∧1)+((x�1)∧1)=x∧2. �
Lemma 8.7. Let M be a positive-unital commutative �-monoid, and let x ∈ M .
Then, (x � 0, x � 1, x � 2, . . . ) is a good sequence in U(M).

Proof. For n ∈ N, set xn:=x � n. Since x � n for some n ∈ N, the sequence
(x0, x1, x2, . . . ) is eventually 0 by Lemma 8.4. We have

xn + xn+1 = ((x � n) ∧ 1) + (((x � n) � 1) ∧ 1) Lemma 8.6= (x � n) ∧ 2. (8.1)

Therefore,

xn ⊕ xn+1 = (xn + xn+1) ∧ 1
Eq. (8.1)

= ((x � n) ∧ 2) ∧ 1 = (x � n) ∧ 1 = xn.

Moreover,

(xn � xn+1) + 1 = ((xn + xn+1) � 1) + 1

= (xn + xn+1) ∨ 1 (Axiom P3)

= ((x � n) ∧ 2) ∨ 1 (Eq. (8.1))

= ((x � n) ∨ 1) ∧ 2

= (((x � n) � 1) + 1) ∧ 2 (Axiom P3)

= ((x � (n + 1)) ∧ 1) + 1
= xn+1 + 1.

The element 1 is cancellative by Lemma 4.2; thus xn � xn+1 = xn+1. �
Lemma 8.8. For every m ∈ N and every element x of a positive-unital com-
mutative �-monoid such that x � m, we have

x =
∑

n∈{0,...,m−1}
(x � n) ∧ 1.

Proof. We prove the statement by induction on m ∈ N. If m = 0, then x = 0,
and the assertion holds. Let us suppose that it holds for a fixed m, and let
us prove that it holds for m + 1. We recall that, by Lemma 8.5, we have
(x � n) ∧ 1 = (x ∧ (n + 1)) � n. We have

x = (x ∧ m) + (x � m) (Lemma 8.3)

= (x ∧ m) + ((x ∧ (m + 1)) � n) (x � m + 1)

=

⎛

⎝

∑

n∈{0,...,m−1}
((x ∧ m) ∧ (n + 1)) � n

⎞

⎠

+ ((x ∧ (m + 1)) � n) (ind. hyp.)

=

⎛

⎝

∑

n∈{0,...,m−1}
(x ∧ (n + 1)) � n

⎞

⎠
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+ ((x ∧ (m + 1)) � n)

=
∑

n∈{0,...,m}
(x ∧ (n + 1)) � n.

�

Remark 8.9. Let M be a positive-unital commutative �-monoid, and let x0, x1 ∈
U(M). The pair (x0, x1) is a good pair in U(M) if, and only if, (x0+x1)∧1 = x0

and (x0 + x1) � 1 = x1. This is just unrolling the definitions.

Lemma 8.10. Let M be a positive-unital commutative �-monoid. For every m ∈
N and every good sequence (x0, . . . , xm) in U(M), we have

(x0 + · · · + xm) ∧ 1 = x0.

Proof. We prove the statement by induction on m ∈ N. The case m = 0 is
trivial. The case m = 1 holds by Remark 8.9. Suppose the statement holds for
m ∈ N>0, and let us prove it holds for m + 1. We have the following chain of
equalities, the first of which is justified by the fact that x0+ · · ·+xm−1+1 � 1.

(x0 + · · · + xm+1) ∧ 1

= (x0 + · · · + xm+1) ∧ (x0 + · · · + xm−1 + 1) ∧ 1

= (x0 + · · · + xm−1 + ((xm + xm+1) ∧ 1)) ∧ 1 (+distr. over ∧)

= (x0 + · · · + xm−1 + xm) ∧ 1 (Remark 8.9)

= x0. (ind. hyp.) �

Lemma 8.11. Let M be a positive-unital commutative �-monoid. For every k ∈
N and every good sequence (x0, . . . , xk) in U(M), we have

(x0 + · · · + xk) � 1 = x1 + · · · + xk. (8.2)

Proof. We prove this statement by induction on k ∈ N. Equation (8.2) is
equivalent to

((x0 + · · · + xk) � 1) + 1 = 1 + x1 + · · · + xk,

i.e.,

(x0 + · · · + xk) ∨ 1 = 1 + x1 + · · · + xk.

The case k = 0 is trivial. Let us suppose that the statement holds for a fixed
k ∈ N, and let us prove that it holds for k + 1. We have

1 + x1 + · · · + xk+1 = (1 + x1 + · · · + xk) + xk+1

= ((x0 + · · · + xk) ∨ 1) + xk+1 (ind. hyp.)

= (x0 + · · · + xk + xk+1) ∨ (1 + xk+1)

= (x0 + · · · + xk+1) ∨ ((xk + xk+1) ∨ 1)

= ((x0 + · · · + xk+1) ∨ (xk + xk+1)) ∨ 1

= (x0 + · · · + xk+1) ∨ 1. �
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Lemma 8.12. Let M be a positive-unital commutative �-monoid, let m ∈ N,
and let (x0, . . . , xm) and (y0, . . . , ym) be good sequences in U(M). If

x0 + · · · + xm = y0 + · · · + ym,

then, for all i ∈ {0, . . . , m}, xi = yi.

Proof. We prove the statement by induction on m. The case m = 0 is trivial.
Suppose that the statement holds for a fixed m ∈ N, and let us prove it for
m + 1. By Lemma 8.10, we have

x0 = (x0 + · · · + xm+1) ∧ 1 = (y0 + · · · + ym+1) ∧ 1 = y0.

By Lemma 8.11, we have

x1 + · · · + xm+1 = (x0 + x1 + · · · + xm+1) � 1

= (y0 + y1 + · · · + ym+1) � 1
= y1 + · · · + ym+1.

By inductive hypothesis, for all i ∈ {1, . . . ,m + 1}, xi = yi. �

Proposition 8.13. Let M be a positive-unital commutative �-monoid, and let
x ∈ M . Then, there exists exactly one good sequence (x0, . . . , xm) in U(M)
such that x = x0 + · · · + xm, given by

xn = (x � n) ∧ 1.

In particular, the function ε1
M : GU(M) → M is bijective.

Proof. Lemmas 8.7 and 8.8 show that xn = (x � n) ∧ 1 works. Uniqueness is
ensured by Lemma 8.12. �

Our next goal is to prove that ε1
M is a morphism of positive-unital com-

mutative �-monoids (Proposition 8.18 below). We need some lemmas.

Lemma 8.14. Let M be a positive-unital commutative �-monoid. For all good
sequences (x0, . . . , xm) and (y0, . . . , ym) in U(M), we have

(((x0 + · · · + xm) ∨ (y0 + · · · + ym)) � n) ∧ 1 = xn ∨ yn, (8.3)

and

(((x0 + · · · + xm) ∧ (y0 + · · · + ym)) � n) ∧ 1 = xn ∧ yn. (8.4)

Proof. Let us prove Eq. (8.3). Set x:=x0 + · · · + xn, and y:=y0 + · · · + yn. By
Proposition 8.13, we have xn = (x � n) ∧ 1 and yn = (y � n) ∧ 1. Adding n on
both sides of Eq. (8.3), we obtain the equivalent statement

(x ∨ y ∨ n) ∧ (n + 1) = ((x ∨ n) ∧ (n + 1)) ∨ ((y ∨ n) ∧ (n + 1)),

which holds by the distributivity laws. The proof of Eq. (8.4) is analogous.
�

Lemma 8.15. Let M be a positive-unital commutative �-monoid, and let x, y ∈
M with y � 1. Set x0:=x ∧ 1 and x1:=(x � 1) ∧ 1. Then,

((x + y) � 1) ∧ 1 = x0 � (x1 ⊕ y).
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Proof. We have

x0 + x1 = (x ∧ 1) + ((x � 1) ∧ 1)

= ((x ∧ 1) + (x � 1)) ∧ ((x ∧ 1) + 1) (+ distr. over ∧)

= x ∧ (x + 1) ∧ 2 (Lemma 8.3)
= x ∧ 2.

Therefore, we have

x0 � (x1 ⊕ y) = (x0 + ((x1 + y) ∧ 1)) � 1 (def. of ⊕ and �)

= ((x0 + x1 + y) ∧ (x0 + 1)) � 1 (+ distr. over ∧)

= ((x + y) ∧ ((x ∧ 1) + 1)) � 1

= ((x + y) ∧ (x + 1) ∧ 2) � 1 (+ distr. over ∧)

= ((x + y) ∧ 2) � 1

= ((x + y) � 1) ∧ 1. (Lemma 8.5) �

Lemma 8.16. Let x and y be elements of a positive-unital commutative �-
monoid, let n ∈ N\{0}, and suppose y � 1. Then,

(x + y) � n = (x � (n − 1) + y) � 1.

Proof. We have

(x � (n − 1) + y) � 1 + n

= (x � (n − 1) + y) � 1 + 1 + (n − 1)

= (x � (n − 1) + y) ∨ 1 + (n − 1)

= (x � (n − 1) + y + (n − 1)) ∨ n

= ((x ∨ (n − 1)) + y) ∨ n

= (x + y) ∨ (y + (n − 1)) ∨ n

= (x + y) ∨ n (y � 1)

= ((x + y) � n) + n. (Lemma 4.14) �

Lemma 8.17. Let M be a positive-unital commutative �-monoid, and let x, y ∈
M with y � 1. For every n ∈ N>0, we have

((x + y) � n) ∧ 1 = ((x � (n − 1)) ∧ 1) � (((x � n) ∧ 1) ⊕ y).

Proof. We have

((x + y) � n) ∧ 1

= (x � (n − 1) + y) � 1 (Lemma 8.16)

= ((x � (n − 1)) ∧ 1) � ((((x � (n − 1)) � 1) ∧ 1) ⊕ y) (Lemma 8.15)

= ((x � (n − 1)) ∧ 1) � (((x � n) ∧ 1) ⊕ y). �

Proposition 8.18. For every positive-unital commutative �-monoid M , the func-
tion ε1

MGU(M) → M is a morphism of positive-unital commutative �-monoids.



Vol. 82 (2021) Equivalence à la Mundici for commutative lattice-ordered monoids Page 33 of 42 45

Proof. Clearly, ε1
M preserves 1. Let us prove that ε1

M preserves ∨. Let x =
(x0, . . . , xm) and y = (y0, . . . , ym) be good sequences in U(M). We shall prove

(x0 + · · · + xm) ∨ (y0 + · · · + ym) = (x0 ∨ y0) + · · · + (xm ∨ ym).

By Proposition 7.2, (x0 ∨ y0, . . . , xm ∨ ym) is a good sequence. By Proposition
8.13, it is enough to show that, for every n ∈ N,

(((x0 + · · · + xm) ∨ (y0 + · · · + ym)) � n) ∧ 1 = xn ∨ yn.

This holds by Lemma 8.14. Analogously, ε1
M preserves ∧.

Let us prove that ε1
M preserves +. We prove, by induction on n ∈ N,

that, for all m ∈ N, and for all (x0, . . . , xm) and (y0, . . . , yn) good sequences
in U(M), we have

ε1
M ((x0, . . . , xm) + (y0, . . . , yn)) = x0 + · · · + xm + y0 + · · · + yn.

Let us prove the base case n = 0. Let m ∈ N, let (x0, . . . , xm) be a
good sequence in U(M), and let y ∈ U(M). Then, from the definition of sum
of good sequences, we obtain that (x0, . . . , xm) + (y) is the good sequence
(z0, . . . , zm+1) where, for every k ∈ {0, . . . ,m + 1}, zk = xk−1 � (xk ⊕ y)
(where, by convention, we set x−1 = 1). By Lemma 8.17 and Proposition 8.13,
for every k ∈ N, we have

((x0 + · · · + xm + y) � k) ∧ 1 = xk−1 � (xk ⊕ y) = zk.

By Proposition 8.13, we have z0 + · · · + zm+1 = x0 + · · · + xm + y; this settles
the base case.

Let us suppose that the case n holds, for a fixed n ∈ N, and let us prove
the case n + 1. Let m ∈ N, and let (x0, . . . , xm) and (y0, . . . , yn+1) be good
sequences in U(M). Then

ε1
M ((x0, . . . , xm) + (y0, . . . , yn+1))

= ε1
M ((x0, . . . , xm) + (y0, . . . , yn) + (yn+1)) (Lemma 7.13)

= ε1
M ((x0, . . . , xm) + (y0, . . . , yn)) + ε1

M ((yn+1)) (base case))

= ε1
M (x0, . . . , xm) + ε1

M (y0, . . . , yn) + yn+1 (ind. hyp.)
= x0 + · · · + xm + y0 + · · · + yn + yn+1. �

Proposition 8.19. ε1 : GU→̇1u�M+ is a natural transformation, i.e., for every
morphism of positive-unital commutative �-monoids f : M → N , the following
diagram commutes.

GU(M) M

GU(N) N

GU(f)

ε1
M

f

ε1
N



45 Page 34 of 42 M. Abbadini Algebra Univers.

Proof. Let (x0, . . . , xm) ∈ GU(M). Then

ε1
N (GU(f)(x0, . . . , xm)) = ε1

N (U(f)(x0), . . . ,U(f)(xm))

= ε1
N (f(x0), . . . , f(xm))

= f(x0) + · · · + f(xm)

= f(x0 + · · · + xm)

= f(ε1
M (x0, . . . , xm)). �

8.4. The equivalence

Theorem 8.20. The functors U : u�M+ → MVM and G : MVM → u�M+ are
quasi-inverses. Thus, the categories of unital commutative �-monoids and MV-
monoidal algebras are equivalent.

Proof. By Propositions 8.1 and 8.2, the functors 1MVM : MVM → MVM and
UG : MVM → MVM are naturally isomorphic. By Propositions 8.13, 8.18 and
8.19, the functors 1u�M+ : u�M+ → u�M+ and GU : u�M+ → u�M+ are natu-
rally isomorphic. �

We are ready to prove the main result of the paper.

Theorem 8.21. The functor Γ̃ : u�M → MVM is an equivalence of categories.

Proof. The functor Γ̃ is the composite of (−)+ and U, which are equivalences
by Theorems 4.16 and 8.20. �
Notice that, by Theorems 4.16 and 8.20, a quasi-inverse of Γ̃ is given by the
composite TG.

u�M u�M+ MVM.

Γ̃

(−)+ U

T G

Ξ̃

9. Further research

Some results about commutative �-monoids in the literature suggest similar
ones for algebras in the language {⊕,�,∨,∧, 0, 1}. For example, in [18] it
is shown that the variety generated by 〈R; +,∨,∧〉 does not admit a finite
equational basis, and a countable basis is given in the same paper. Building on
these results, the content of the present paper may possibly serve to obtain a
nice equational basis for the variety generated by 〈[0, 1];⊕,�,∨,∧, 0, 1〉 which,
we conjecture, is not finitely based; in particular, we conjecture that the variety
of MVM-algebras is not generated by [0, 1].

We suspect that, from the results in the present paper, one may deduce
a nice axiomatization of the quasi-variety generated by 〈[0, 1];⊕,�,∨,∧, 0, 1〉
and of the class of {⊕,�,∨,∧, 0, 1}-subreducts of MV-algebras (conjecturally,
these two classes coincide).
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Appendix A. The equivalence restricts to lattice-ordered groups
and MV-algebras

In this section, we shortly hint at the fact that Mundici’s equivalence follows
from our main result.

We recall that a unital Abelian lattice-ordered group (unital Abelian �-
group, for short) is an algebra 〈G; +,∨,∧, 0,−, 1〉 (arities 2, 2, 2, 0, 1, 0) such
that 〈G;∨,∧〉 is a distributive lattice, 〈G; +, 0,−〉 is an Abelian group, +
distributes over ∨ and ∧, 0 � 1, and, for all x ∈ M , there exists n ∈ N

such that x � n1. We let u�G denote the category of unital Abelian �-groups
with homomorphisms. For all basic notions and results about lattice-ordered
groups, we refer to [4]. In every unital Abelian �-group one defines the constant
−1 as the additive inverse of 1.

Remark A.1. It is not difficult to prove that the {+,∨,∧, 0, 1,−1}-reducts of
unital Abelian �-groups are precisely the unital commutative �-monoids in
which every element has an inverse. Moreover, the forgetful functor from u�G
to the category of {+,∨,∧, 0, 1,−1}-algebras is full and faithful.

We recall that an MV-algebra 〈A;⊕,¬, 0〉 is a set A equipped with a
binary operation ⊕, a unary operation ¬ and a constant 0 such that 〈A;⊕, 0〉

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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is a commutative monoid, ¬0⊕x = ¬0, ¬¬x = x and ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕
x) ⊕ x. We let MV denote the category of MV-algebras with homomorphisms.
For all basic notions and results about MV-algebras we refer to [7]. Via ⊕, ¬,
0, one defines the operations 1:=¬0, x � y:=¬(¬x ⊕ ¬y), x ∨ y:=(x � ¬y) ⊕ y,
and x ∧ y:=x � (¬x ⊕ y).

Lemma A.2. Given an MV-algebra 〈A;⊕,¬, 0〉, the algebra 〈A;⊕,�,∨,∧, 0, 1〉
is an MV-monoidal algebra.

Proof. Since [0, 1] generates the variety of MV-algebras [7, Theorem 2.3.5], it
suffices to check that Axioms A1–A7 hold in [0, 1]. This is the case because R

is easily seen to be a unital commutative �-monoid and thus, by Proposition
3.6, the unit interval [0, 1] is an MV-monoidal algebra. �

Remark A.3. Using Lemma A.2, one proves that the {⊕,�,∨,∧, 0, 1}-reducts
of MV-algebras are the MV-monoidal algebras such that, for every x, there
exists y such that x ⊕ y = 1 and x � y = 0. Moreover, the forgetful functor
from MV to the category of {⊕,�,∨,∧, 0, 1}-algebras is full and faithful.

Using Remarks A.1 and A.3, it is not too difficult to obtain the following.

Theorem A.4. The equivalence Γ̃ : u�M → MVM restricts to an equivalence
between u�G and MV.

Remark A.5. In order to establish Theorem A.4 we used the axiom of choice.
Precisely, we used the choice-based fact that [0, 1] generates the variety of
MV-algebras to verify that every MV-algebra is an MV-monoidal algebra
(Lemma A.2). If one proved without the axiom of choice that the axioms
of MV-monoidal algebras are satisfied by every MV-algebra (and we suspect
this to be possible), one would have a choice-free proof of Mundici’s equiv-
alence. The properties of lattices, Axiom A2, the distributivity of � over ∨
and the distributivity of ⊕ over ∧ were part of the original axiomatization of
MV-algebras by Chang [5], which, as proved in [13] (see also [8, Section 2]),
is equivalent to the modern one, presented here. A direct proof of Axioms A6
and A7 has been obtained with the help of Prover9, but we have not obtained
proofs of the distributivity of the lattice, the distributivity of ⊕ over ∨, the
distributivity of � over ∧, and Axioms A4 and A5.

Appendix B. Subdirectly irreducible MV-monoidal algebras are
totally ordered

In this section, we prove that every subdirectly irreducible MV-monoidal al-
gebra is totally ordered (Theorem B.3). We proceed in analogy with [19, Sec-
tion 1]. Given an MV-monoidal algebra A, and a lattice congruence θ on A
such that |A/θ| = 2, we set

θ∗:={ (a, b) ∈ A × A | ∀x ∈ A (a ⊕ x, b ⊕ x) ∈ θ and (a � x, b � x) ∈ θ };
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moreover, with 0(θ) and 1(θ) we denote the classes of the lattice congruence θ
corresponding to smallest and greatest elements of the lattice A/θ. An MVM-
congruence on an MV-monoidal algebra A is an equivalence relation on A×A
that respects ⊕, �, ∨, ∧, 0, 1.

Lemma B.1. Let A be an MV-monoidal algebra, and let θ be any lattice con-
gruence on A such that |A/θ| = 2. Then, θ∗ is the greatest MVM-congruence
contained in θ.

Proof. It is not difficult to prove that θ∗ ⊆ θ and that θ∗ contains every
congruence contained in θ.

We prove that θ∗ is an MVM-congruence. The relation θ∗ is an equiva-
lence relation because θ is so.

In the following, let a, a′, b, b′ ∈ A, and suppose (a, a′), (b, b′) ∈ θ∗.
Let us prove (a ∨ b, a′ ∨ b′) ∈ θ∗. Let x ∈ A. Since (a ⊕ x, a′ ⊕ x) ∈ θ,

(b ⊕ x, b′ ⊕ x) ∈ θ, and θ is a lattice congruence, we have ((a ⊕ x) ∨ (b ⊕
x), (a′ ⊕ x) ∨ (b′ ⊕ x)) ∈ θ, i.e., ((a ∨ b) ⊕ x, (a′ ∨ b′) ⊕ x) ∈ θ. Analogously,
((a ∨ b) � x, (a′ ∨ b′) � x) ∈ θ. This proves (a ∨ b, a′ ∨ b′) ∈ θ∗. Analogously,
(a ∧ b, a′ ∧ b′) ∈ θ∗.

Let us prove (a ⊕ b, a′ ⊕ b′) ∈ θ∗. Let x ∈ A. We shall prove

(a ⊕ b ⊕ x, a′ ⊕ b′ ⊕ x) ∈ θ, (B.1)

and
((a ⊕ b) � x, (a′ ⊕ b′) � x) ∈ θ. (B.2)

Since (a, a′) ∈ θ∗, we have (a⊕ (b⊕x), a′ ⊕ (b⊕x)) ∈ θ. Since (b, b′) ∈ θ∗,
we have (b ⊕ (a′ ⊕ x), b′ ⊕ (a′ ⊕ x)) ∈ θ. Hence, by transitivity of θ, we have
(a ⊕ b ⊕ x, a′ ⊕ b′ ⊕ x) ∈ θ, and so Eq. (B.1) is proved.

Let us prove Eq. (B.2). By transitivity of θ, it is enough to prove

((a ⊕ b) � x, (a′ ⊕ b) � x) ∈ θ, (B.3)

and
((a′ ⊕ b) � x, (a′ ⊕ b′) � x) ∈ θ. (B.4)

Let us prove Eq. (B.3). Suppose, by way of contradiction, ((a⊕b)�x, (a′⊕
b)�x) /∈ θ. Then, without loss of generality, we may assume (a⊕ b)�x ∈ 0(θ)
and (a′ ⊕ b) � x ∈ 1(θ). We have 1(θ) � (a′ ⊕ b) � x � x; thus x ∈ 1(θ). We
have

(a ⊕ b) � x
︸ ︷︷ ︸

∈0(θ)

= σ(a, b, x) ∧ x
︸︷︷︸

∈1(θ)

,

and thus σ(a, b, x) ∈ 0(θ). We have

(a′ ⊕ b) � x
︸ ︷︷ ︸

∈1(θ)

= σ(a′, b, x) ∧ x
︸︷︷︸

∈1(θ)

,

and thus σ(a′, b, x) ∈ 1(θ). We have

0(θ) � σ(a, b, x) = (a � (b ⊕ x)) ⊕ (b � x) � a � (b ⊕ x),



45 Page 38 of 42 M. Abbadini Algebra Univers.

and thus a�(b⊕x) ∈ 0(θ). Since (a, a′) ∈ θ∗, it follows that a′ �(b⊕x) ∈ 0(θ).
We have

a′ � (b ⊕ x)
︸ ︷︷ ︸

∈0(θ)

= a′ ∧ σ(a′, b, x)
︸ ︷︷ ︸

∈1(θ)

.

Therefore, a′ ∈ 0(θ). We have

1(θ) � σ(a′, b, x) = (a′ ⊕ (b � x)) � (b ⊕ x) � a′ ⊕ (b � x),

and thus a′ ⊕(b�x) ∈ 1(θ). Since (a, a′) ∈ θ∗, it follows that a⊕(b�x) ∈ 1(θ).
We have

a ⊕ (b � x)
︸ ︷︷ ︸

∈1(θ)

= a ∨ σ(a, b, x)
︸ ︷︷ ︸

∈0(θ)

.

Therefore, a ∈ 1(θ). Thus, a ∈ 1(θ) and a′ ∈ 0(θ), and this contradicts
(a, a′) ∈ θ∗ ⊆ θ. In conclusion, Eq. (B.3) holds, and analogously for Eq. (B.4).
By transitivity of θ, Eq. (B.2) holds. Thus, (a ⊕ b, a′ ⊕ b′) ∈ θ∗. Analogously,
(a � b, a′ � b′) ∈ θ∗. �

We denote with Δ the identity relation { (s, s) | s ∈ A }.

Lemma B.2. If A is a subdirectly irreducible MV-monoidal algebra, then there
exists a lattice congruence θ on A such that |A/θ| = 2 and θ∗ = Δ.

Proof. Since A is distributive as a lattice, it can be decomposed into a subdirect
product of two-element lattices. Let {θi}i∈I be the set of lattice congruences
of A corresponding with such a decomposition. Then

⋂

i∈I θi = Δ. By Lemma
B.1, each θ∗

i is an MVM-congruence, and Δ ⊆ θ∗
i ⊆ θi. Therefore we have

⋂

i∈I θ∗
i = Δ, and the fact that A is subdirectly irreducible implies θ∗

j = Δ for
some j ∈ I. �

Theorem B.3. Every subdirectly irreducible MV-monoidal algebra is totally or-
dered.

Proof. Let A be a subdirectly irreducible MV-monoidal algebra. Lemma B.2
entails that there exists a lattice congruence θ on A such that |A/θ| = 2 and
such that θ∗ = Δ, i.e., for all distinct a, b ∈ A, there exists x ∈ A such that
(a ⊕ x, b ⊕ x) /∈ θ or (a � x, b � x) /∈ θ.

Let a, b ∈ A. We shall prove that either a � b or b � a holds. Suppose,
by way of contradiction, that this is not the case, i.e., a ∧ b �= a and a ∧ b �=
b. Since a ∧ b �= a, there exists x ∈ A such that ((a ∧ b) ⊕ x, a ⊕ x) /∈ θ
or ((a ∧ b) � x, a � x) /∈ θ. Since a ∧ b �= b, there exists y ∈ A such that
((a ∧ b) ⊕ y, b ⊕ y) /∈ θ or ((a ∧ b) � y, b � y) /∈ θ. We have four cases.
(1) Case ((a ∧ b) ⊕ x, a ⊕ x) /∈ θ and ((a ∧ b) ⊕ y, b ⊕ y) /∈ θ.

Since a ∧ b � a and a ∧ b � b, we have (a ∧ b) ⊕ x ∈ 0(θ), a ⊕ x ∈ 1(θ),
(a ∧ b) ⊕ y ∈ 0(θ), and b ⊕ y ∈ 1(θ). Then,

0(θ) � ((a ∧ b) ⊕ x) ∨ ((a ∧ b) ⊕ y)

= (a ∧ b) ⊕ (x ∨ y) (⊕ distr. over ∨)

= (a ⊕ (x ∨ y)) ∧ (b ⊕ (x ∨ y)) (⊕ distr. over ∧)
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� (a ⊕ x) ∧ (b ⊕ y) (Lemma 6.7)

∈ 1(θ),

which is a contradiction.
(2) The case ((a ∧ b) � x, a � x) /∈ θ and ((a ∧ b) � y, b � y) /∈ θ is analogous

to item 1.
(3) Case ((a ∧ b) ⊕ x, a ⊕ x) /∈ θ and ((a ∧ b) � y, b � y) /∈ θ.

Since a ∧ b � a, we have (a ∧ b) ⊕ x ∈ 0(θ), and a ⊕ x ∈ 1(θ). Therefore,

0(θ) � (a ∧ b) ⊕ x = (a ⊕ x)
︸ ︷︷ ︸

∈1(θ)

∧(b ⊕ x).

Hence b⊕x ∈ 0(θ), which implies b ∈ 0(θ), which implies (a∧b)�y ∈ 0(θ)
and b � y ∈ 0(θ), which contradicts ((a ∧ b) � y, b � y) /∈ θ.

(4) The case ((a ∧ b) � x, a � x) /∈ θ and ((a ∧ b) ⊕ y, b ⊕ y) /∈ θ is analogous
to item 3.
In any case, we are led to a contradiction. �

Appendix C. Good pairs in subdirectly irreducible
MV-monoidal algebras

The goal of this section—met in Corollary C.6—is to show that good se-
quences in a subdirectly irreducible MV-monoidal algebra are of the form
(1, . . . , 1, x, 0, 0, . . . ).

Notation C.1. Let A be an MV-monoidal algebra and let x ∈ A. For a, a′ ∈ A,
set a ∼x

⊥ a′ if, and only if, there exist n,m ∈ N such that

a ⊕ (x ⊕ · · · ⊕ x
︸ ︷︷ ︸

n times

) � a′, a′ ⊕ (x ⊕ · · · ⊕ x
︸ ︷︷ ︸

m times

) � a.

Moreover, set a ∼�
x a′ if, and only if, there exist n,m ∈ N such that

b � (x � · · · � x
︸ ︷︷ ︸

n times

) � b′, b′ � (x � · · · � x
︸ ︷︷ ︸

m times

) � b.

It is not difficult to prove the following.

Lemma C.2. For every MV-monoidal algebra A and every x ∈ A, the relation
∼x

⊥ is the smallest MVM-congruence ∼ on A such that x ∼ 0, and the relation
∼�

x is the smallest MVM-congruence ∼ on A such that x ∼ 1.

Lemma C.3. Let A be an MV-monoidal algebra, let (x0, x1) be a good pair in
A, and let a, b ∈ A be such that a � b ⊕ x1 and a � x0 � b. Then, a � b.

Proof. Let us first deal with the case b � a; under this hypothesis, we shall
prove a = b. Since a � b ⊕ x1, we have

a � x0 � (b ⊕ x1) � x0
Lemma 6.9= σ(b, x0, x1).

Since a � x0 � σ(b, x0, x1) and a � x0 � b, we have

a � x0 � b ∧ σ(b, x0, x1) = b � (x0 ⊕ x1) = b � x0.
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Since b � a, we have b � x0 � a � x0. Hence, a � x0 = b � x0. Analogously,
a ⊕ x1 = b ⊕ x1. Hence

σ(a, x0, x1)
Lemma 6.9= (a � x0) ⊕ x1 = (b � x0) ⊕ x1

Lemma 6.9= σ(b, x0, x1).

Set s:=σ(a, x0, x1) = σ(b, x0, x1). To prove a = b it is enough to prove a ∨ s =
b ∨ s and a ∧ s = b ∧ s. We have

a ∨ s = a ⊕ (x0 � x1) = a ⊕ x1 = b ⊕ x1 = b ⊕ (x0 � x1) = b ∨ s,

and

a ∧ s = a � (x0 ⊕ x1) = a � x0 = b � x0 = b � (x0 ⊕ x1) = b ∧ s.

Hence, a = b.
If we do not assume b � a, we may replace b with a ∧ b, because

a � (a ⊕ x1) ∧ (b ⊕ x1) = (a ∧ b) ⊕ x1,

and a � x0 � a ∧ b. Since a ∧ b � a, by the previous part we have a ∧ b = a,
i.e., a � b. �

Theorem C.4. Let A be a subdirectly irreducible MV-monoidal algebra. Then,
for all x, y ∈ A, either x ⊕ y = 1 or x � y = 0.

Proof. Set u:=x⊕y and v:=x�y. We claim ∼v
⊥ ∩∼�

u = Δ. Indeed, let a, b ∈ A
with a ∼v

⊥ b and a ∼�
u b. Then, there exist n,m ∈ N such that

a � b ⊕ (v ⊕ · · · ⊕ v
︸ ︷︷ ︸

m times

), a � (u � · · · � u
︸ ︷︷ ︸

n times

) � b.

Since (u, v) is a good pair by Lemma 6.10, then, by Lemma 7.5, also

(u � · · · � u, v ⊕ · · · ⊕ v)

is so. By Lemma C.3, a � b. Analogously, b � a, and therefore a = b. This
settles the claim ∼v

⊥ ∩ ∼�
u = Δ. By Lemma C.2, ∼x�y

⊥ and ∼�
x⊕y are MVM-

congruences, x�y ∼x�y
⊥ 0 and x⊕y ∼�

x⊕y 1. Since A is subdirectly irreducible,
either ∼v

⊥= Δ or ∼�
u = Δ. In the former case we have v = 0, i.e. x � y = 0; in

the latter one we have u = 1, i.e. x ⊕ y = 1. �

Corollary C.5. Let (x0, x1) be a good pair in a subdirectly irreducible MV-
monoidal algebra. Then, either x0 = 1 or x1 = 0.

Corollary C.6. Every good sequence in a subdirectly irreducible MV-monoidal
algebra is of the form (1, . . . , 1, x, 0, 0, . . . ).

Appendix D. Independence of the axioms

With the help of Mace4 [15], we verified that, once one of the equivalent
Axioms A4 and A5 is removed, the axioms of MV-monoidal algebras are in-
dependent. In particular, each of the following properties does not follow from
the conjunction of the other ones.
(1) ∨ and ∧ satisfy the axioms of a lattice.
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(2) ∨ left- and right-distributes over ∧ and ∧ left- and right-distributes over
∨.

(3) ⊕ is associative.
(4) � is associative.
(5) ⊕ is commutative.
(6) � is commutative.
(7) x ⊕ 0 = x and 0 ⊕ x = x.
(8) x � 1 = x and 1 � x = x.
(9) ⊕ left- and right-distributes over ∨.

(10) � left- and right-distributes over ∧.
(11) ⊕ left- and right-distributes over ∧.
(12) � left- and right-distributes over ∨.
(13) (x � y) ⊕ ((x ⊕ y) � z) = (x ⊕ (y � z)) � (y ⊕ z) and

(x ⊕ y) � ((x � y) ⊕ z) = (x � (y ⊕ z)) ⊕ (y � z).
(14) (x � y) ⊕ z = ((x ⊕ y) � ((x � y) ⊕ z)) ∨ z and

x ⊕ (y � z) = x ∨ ((x ⊕ (y � z)) � (y ⊕ z)).
(15) (x ⊕ y) � z = ((x � y) ⊕ ((x ⊕ y) � z)) ∧ z and

x � (y ⊕ z) = x ∧ ((x � (y ⊕ z)) ⊕ (y � z)).
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