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Introduction

0.1. Results

Let X be a GIT quotient W/ /G of an affine variety W by a reductive algebraic group G, 
satisfying the assumptions of [23]. Examples include toric varieties, partial flag varieties 
and complete intersections in these spaces. In addition, suppose X is a subvariety of 
V/ /G, where V is a vector space, and let D = D1 + · · ·+Dr be a simple normal crossings 
divisor on X pulled back from V/ /G. For many targets, for example toric varieties and 
partial flag varieties, V = W and hence this covers all simple normal crossings divisors. 
We build the theory of logarithmic quasimaps for (X, D).

Theorem 0.1. Fix non-negative integers g, n, an effective degree β and α = (αi,j)i,j a 
matrix of non-negative integers with 

∑n
j=1 αi,j = Di ·β. The moduli space Qlog

g,α(X|D, β)
parametrising logarithmic quasimaps to (X, D) of genus g, degree β with contact orders 
α is a proper Deligne–Mumford stack.

Given a quasimap to X from a curve C, each Di induces a line bundle-section pair on 
C, thought of as the pullback of the pair cutting out Di. The moduli space parametrises 
quasimaps to X together with a logarithmic enhancement (with contact order α) of the 
morphism C → [Ar/Gr

m] induced by these line bundle-section pairs. This compactifies 
the space of maps from smooth curves to X with contact order α along D. As is standard, 
the moduli space is not smooth admitting a fundamental class, but we show it admits a 
virtual fundamental class.

Theorem 0.2. The moduli space Qlog
g,α(X|D, β) admits a perfect obstruction theory over 

Mlog
g,α([Ar/Gr

m]) leading to a virtual fundamental class [Qlog
g,α(X|D, β)]vir.

In [9], the authors build a theory of relative quasimaps for a smooth projective toric 
variety relative to a smooth, very ample divisor in genus zero.

Theorem 0.3. For X a smooth projective toric variety, g = 0 and D smooth and very 
ample, this theory coincides with the theory of Battistella–Nabijou.

0.2. Why quasimaps?

Relative or logarithmic Gromov–Witten theory has had a tremendous influence on 
enumerative geometry in recent years. It has proved important for modern constructions 
in mirror symmetry [38], for determining ordinary Gromov–Witten invariants via the 
degeneration formula [4,6,17,44,49,61], and for providing insights about the moduli space 
of curves [33]. Quasimap theory provides an alternative curve counting framework [20,
23,52] when the target admits a certain GIT presentation, by incorporating basepoints. 
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The resulting quasimap invariants, have also proved important in the context of mirror 
symmetry, as well as for studying the moduli space of curves. One example is their 
use in determining relations in the κ ring [59]. Most crucially though, there are wall-
crossing formulas relating Gromov–Witten invariants and quasimap invariants [21,22,68]. 
We expect that a theory of logarithmic quasimaps will be able to produce new insights 
in logarithmic Gromov–Witten theory and its neighbouring areas.

Logarithmic wall-crossing

Computations in logarithmic Gromov–Witten theory are well sought after. The case 
of a smooth pair is well understood, yet explicit computations in the simple normal 
crossings case have proved to be more elusive. The few tools available use tropical ge-
ometry [50,55,60], scattering diagrams [14,34,36] and, more recently, rank reduction [54]. 
For ordinary (non-logarithmic) Gromov–Witten theory, almost all results that allow 
us to compute genus-zero Gromov–Witten invariants rely at heart on the wall-crossing 
formula [21,22,68], the comparison between quasimap invariants and Gromov–Witten 
invariants. Battistella and Nabijou have proposed a similar program of computing loga-
rithmic Gromov–Witten invariants by proving a wall-crossing formula relating logarith-
mic quasimaps and logarithmic Gromov–Witten invariants [9]. Furthermore, they found 
as evidence for their proposal that a certain generating function of genus zero quasimap 
invariants relative to a smooth divisor coincided with the relative I-function of [27], 
which in turn can be obtained from a generating function of relative Gromov–Witten 
invariants by a change of variables. A full theory of logarithmic quasimaps now allows 
this avenue to be pursued.

Mirror symmetry

Quasimaps have a fundamental connection to mirror symmetry. The wall-crossing 
formula is exactly the mirror map for Calabi-Yau threefolds [21], and so the quasimap 
invariants coincide on the nose with B-model invariants of the mirror. The (conjectural) 
holomorphic anomaly equation provides remarkable structure to the Gromov–Witten 
theory of a Calabi-Yau, coming from the B-model. The link between the quasimap and 
B-model invariants has been utilised to give a direct geometric proof of the holomorphic 
anomaly equation for local P 2 [46]. In another direction, the authors of [15] prove a 
holomorphic anomaly equation for the logarithmic Gromov–Witten theory of P 2 relative 
an elliptic curve. This provides interesting directions for holomorphic anomaly equations 
for logarithmic quasimaps.

Logarithmic-orbifold comparison

There is another approach to counting curves with tangency conditions, using orbifolds 
[16,64]. Here, one takes a pair (X, D1 + · · · + Dr) and replaces the divisor components 
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with roots of the divisor, introducing non-trivial isotropy groups. In this orbifold com-
pactification the tangency gets recorded in the group homomorphism between isotropy 
groups, using the technology of orbifold stable maps. If the divisor is smooth, then these 
two approaches give the same invariants in genus zero [1]. Roughly speaking, this equiva-
lence can be seen by taking the coarse moduli map of an orbifold stable map, and noting 
that there is a logarithmic lift.

This is no longer true in the simple normal crossings case [11,54]. The orbifold theory 
is more computable since it satisfies a product formula, but gives the wrong answers 
from the logarithmic perspective. In [10], noting that the logarithmic theory is invariant 
under logarithmic modifications [8] but that the orbifold theory is not, the authors show 
that after a certain blow-up the two theories coincide. A related approach is suggested 
in [67], where the indication is that structures in orbifold Gromov–Witten theory will be 
preserved under modification. These approaches can be summarised as fixing the moduli 
problem (Gromov–Witten theory) and altering the target. A complimentary strategy is 
to fix the target and alter the moduli problem to a situation where the orbifold and 
logarithmic theories coincide. In [54, Remark 5.4], the authors observe in examples, that 
the error terms occur in the presence of components of the moduli space consisting of 
stable maps with rational tails. Quasimap theory is designed to remove rational tails. If 
we consider quasimap theory as our moduli problem instead it is likely that there will be 
significantly fewer correction terms between the logarithmic and orbifold theories, the 
latter of which was developed in [19].

At least in genus zero, the proposed picture is

Logarithmic Gromov–Witten Orbifold Gromov–Witten

Logarithmic Quasimap Orbifold Quasimap

[1,10]

[19,68] (1)

This paper constructs the bottom left-hand corner of the diagram. The expected wall-
crossing formula relating logarithmic Gromov–Witten theory to logarithmic quasimap 
theory would be the left-hand vertical arrow; the bottom arrow would be the comparison 
between logarithmic and orbifold quasimap theory. We expect this last comparison to 
be simpler, and in certain situations, trivial, which we will show a particular instance of, 
see Example 3.3.

A parallel direction is the local-logarithmic correspondence [66], which exhibits some 
of the beautiful geometry in logarithmic Gromov–Witten theory of a smooth pair (X, D). 
There are counterexamples to a natural generalisation when D is a simple normal 
crossings divisor, which are the same counterexamples used in the logarithmic-orbifold 
comparison [54], since the local and orbifold theories coincide [11].
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Calculations in [63] indicate that these are no longer counterexamples in the quasimap 
setting. Therefore in an analogue comparison to the bottom arrow of Diagram (1), it 
is likely that the local-logarithmic correspondence will hold in greater generality in the 
quasimap setting.

0.3. Outline

We begin in Section 1 by recalling the definition of quasimaps and presenting a way 
to incorporate divisors using maps to [Ar/Gr

m].
In Section 2 we build the moduli space of logarithmic quasimaps and show it is a 

proper, Deligne–Mumford stack. The difficulty in the definition is that a priori it was 
not clear how the logarithmic structure should interact with the basepoints. The key 
is to recognise that in the Gromov–Witten setting a (stable) logarithmic map can be 
decomposed into the underlying stable map together with a logarithmic morphism to 
the Artin fan (or [Ar/Gr

m]). We use this decomposition as an analogy for defining a 
logarithmic quasimap. Moreover, this approach allows for a streamlined presentation of 
the theory, which relies on the existence and properties of the space of logarithmic maps 
to [Ar/Gr

m].
In Section 3 we present three examples of the moduli space for PN relative to a 

collection of hyperplanes and compare them to the Gromov–Witten setting. For a single 
hyperplane in genus zero, we note that both spaces are irreducible but that the boundary 
compactification is significantly simpler in the quasimap case. In the case of multiple 
hyperplanes in genus zero, we give a specific instance where wall-crossing accounts for the 
entire discrepancy between orbifold Gromov–Witten and logarithmic Gromov–Witten 
theory. The final example exhibits the fact that with respect to the full toric boundary 
in any genus, the logarithmic Gromov–Witten and quasimap moduli spaces coincide.

In Section 4 we construct the virtual fundamental class, first in generality and then 
noting how the construction simplifies when working with a smooth projective toric 
variety relative to a toric divisor.

Finally in Section 5, we prove that this theory of logarithmic quasimaps coincides 
with the Battistella–Nabijou theory of relative quasimaps from [9], where the latter is 
defined. We do this by proving the result for PN relative to a hyperplane and then using 
the very ample embedding to pull the result back.

0.4. History

Over the years there has been much interest in defining and computing relative 
Gromov–Witten invariants of a pair (X, D). When attempting to define a proper moduli 
space of curves with fixed contact orders to D one sees that in the limit whole com-
ponents of the curve can fall into D, at which point it is no longer clear what contact 
order means. This poses a major difficulty. A first solution was proposed by Gathmann 
[31] building on work of Vakil [65] for (very) ample smooth divisors in genus zero by 
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taking a closure inside the space of absolute stable maps. Jun Li [48] defined a theory of 
relative stable maps for any smooth divisor in all genus using expansions of the target. 
Since then, there have been various approaches to extend the theory to the simple nor-
mal crossings case. The first of these came from Abramovich, Chen, Gross and Siebert 
[2,18,37] using logarithmic structures which provide extra structure for defining contact 
order even if a component falls into D. There have also been approaches which com-
bine expansions with logarithmic structures [43,61]. Finally, there is the approach using 
orbifolds [16,64], which can give genuinely different invariants. In a different direction 
there have been extensions of these approaches [5,28,29] which allow for negative con-
tact orders with the divisor. There has also been a parallel story from the symplectic 
perspective of Gromov–Witten theory, which is more closely related to the ideas of Jun 
Li, see [41,47].

In the quasimap setting, building on Gathmann’s approach, Battistella and Nabijou 
[9] developed a theory of relative quasimaps in genus zero for smooth projective toric 
varieties relative a smooth (very) ample divisor by taking a closure inside the absolute 
quasimap space. This paper provides a quasimap theory relative a s.n.c. divisor D which 
removes these assumptions.
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1. Absolute quasimaps with divisors

Quasimaps are a variation on stable maps, where, roughly, one allows rational maps. 
In this section we recall the definition of absolute GIT quasimaps from [23] and explain 
how we will incorporate divisors. Let W = SpecA be an affine algebraic variety with the 
action by a reductive algebraic group G. Let θ be a character inducing a linearisation 
for the action. We insist that

• W s = W ss

• W s is nonsingular
• G acts freely on W s

• W has only l.c.i singularities

Then quasimaps to W/ /G are defined as follows.
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Definition 1.1. Fix non-negative integers g, n and β ∈ Hom(PicG W, Z). An n-marked 
stable quasimap of genus g and degree β to W/ /G is

((C, p1, . . . , pn), u)

where

(1) (C, p1, . . . , pn) is an n-marked prestable curve of genus g.
(2) u : C → [W/G] of class β (i.e. β(L) = degC u∗L for L ∈ PicG W ),

which satisfy

(1) (Non-degeneracy) there is a finite (possibly empty) set B ⊂ C, disjoint from the 
nodes and markings, such that ∀c ∈ C \B we have u(c) ∈ W s.

(2) (Stability) ωC(p1 + · · ·+ pn) ⊗ u∗Lε
θ is ample ∀ε ∈ Q>0, where Lθ is the line bundle 

on [W/G] associated to the trivial line bundle OW and the character θ.

There is a moduli space of stable quasimaps to X = W/ /G [23, Definition 4.1.1], 
which we denote Qg,n(X, β). If 2g − 2 + n ≥ 0 and β is effective with respect to Lθ [23, 
Definition 3.2.2], then this moduli space is a proper, Deligne–Mumford stack admitting 
a perfect obstruction theory leading to quasimap invariants [23, Theorem 4.1.2]. Our 
notation suppresses the dependence of the moduli space on the GIT presentation of X. 
If X is a smooth projective toric variety, unless specified otherwise, we implicitly assume 
the presentation comes from the fan of X (see Remark 1.4), agreeing with the theory of 
toric quasimaps in [20].

Now let X = W/ /G ↪→ V/ /G be a subvariety of a vector space quotient, defined with 
the same linearisation, coming from W ↪→ V (the prequotient embedding always exists 
[23, Proposition 2.5.2]), and let D be a smooth divisor on V/ /G, defined by a line bundle-
section pair (OV//G(D), sD), which pulls back to give a divisor on W/ /G, which we also 
denote D. In order to build a moduli space of quasimaps to (X, D) we need to make 
sense of the tangency of a quasimap to X along D. For a genuine morphism, tangency 
is the order of vanishing of the pullback of the section cutting out the divisor. Although 
a quasimap does not come with a morphism to the target X, one can still build an 
analogous line bundle-section pair.

Since V is a vector space, every line bundle is isomorphic to the trivial line bundle. Any 
character of G induces a line bundle on V/ /G and sections of this line bundle correspond 
to G-equivariant sections of the trivial bundle on V . Any such pair defines a line bundle 
and section on the stack [V/G]. We further impose that every such line bundle-section 
pair V/ /G corresponds uniquely to a line bundle-section pair on the stack [V/G]. This 
imposes a restriction not on the ambient vector space quotient variety, but on the choice 
of presentation of this ambient variety. This is satisfied, for example, if V/ /G is a toric 
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variety, with presentation induced by the fan, see Remark 1.4, or if V/ /G is a partial flag 
variety, with GIT presentation given by [24, Section 2.2.2].

Given a quasimap C → [W/G], we then get a line bundle-section pair (LD, uD) on C
via pullback from the composition C → [W/G] → [V/G].

Definition 1.2. Let (X, D) be as above and suppose we have a family of stable quasimaps 
over a scheme S from a family of curves C to X. Then we define the morphism induced 
by D to be the morphism

C → [A1/Gm] (2)

defined by the above line bundle-section pair on C.

Remark 1.3. If instead of a smooth divisor we have a simple normal crossings divisor 
D = D1 + · · ·+Dr, then we get r induced maps to [A1/Gm], one for each component of 
D. Together these give a morphism

C → [Ar/Gr
m] (3)

which we once again call the morphism induced by D.

Remark 1.4. If X is a smooth projective toric variety coming from a fan, then there 
is an induced presentation, X = AM/ /Gs

m, [25, Theorem 2.1]. In this case Pic(X) ∼=
Pic([AM/Gs

m]) ∼= Zs (see Section 4.3), and so every line bundle-section pair corresponds 
uniquely to a line bundle-section pair on the stack [AM/Gs

m].

Below we include an example where the Picard groups of V/ /G and [V/G] differ.

Example 1.5. Consider P 1 = A3/ /G2
m, where the action is given by (λ, μ) · (x0, x1, t) =

(λx0, λx1, μt) and the linearisation is given by the character (1, 1). Here, the presentation 
is not coming from the fan of P 1. If D = Z(x0) ⊂ P 1 then one can, for example, choose 
x0 · tn as the section of the line bundle corresponding to the character (1, n) on [A3/ /G2

m]
for any n ∈ N. This is reflective of the fact that Pic(P 1) = Z but Pic([A3/G2

m]) = Z2.

One can build a theory of logarithmic quasimaps in cases like the above example, 
but there is an additional choice of a line bundle-section pair on the ambient quotient 
stack. A canonical choice would just be the closure of D, which in the above example 
corresponds to n = 0.

2. Moduli space of logarithmic quasimaps

Let X = W/ /G ↪→ V/ /G be as above and D a simple normal crossings divisor on W/ /G
pulled back from V/ /G. In this section we will define the moduli space of logarithmic 
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quasimaps to (X, D). The key point will be that although there is no genuine map from 
a curve to X, we have the induced morphism (3) which contains all the data concerning 
tangency. It is this morphism which we will make logarithmic in order to compactify.

An alternative way to approach the problem is to equip the quotient stack containing 
X with the divisorial logarithmic structure with respect to the closure of D and form a 
moduli space of logarithmic maps to this quotient stack. This is essentially equivalent, but 
phrasing it as above allows us to take advantage of existing moduli spaces. Specifically, in 
this section we can take advantage of the moduli space of logarithmic maps to [Ar/Gr

m].
We will assume a familiarity with logarithmic geometry, for an introduction to the 

subject, see [3,35].

2.1. Moduli space of logarithmic maps to [Ar/Gr
m]

Definition 2.1. Let g, n be non-negative integers and let α be an r × n matrix of non-
negative integers α = (αi,j)i,j . A family of logarithmic maps to [Ar/Gr

m] over (S, MS), 
a fine and saturated logarithmic scheme, is a diagram

CS [Ar/Gr
m]

S pt

where CS → S is an n-marked family of genus g, logarithmic curves and CS → [Ar/Gr
m]

is a logarithmic morphism to [Ar/Gr
m] equipped with the divisorial logarithmic structure 

with respect to the coordinate hyperplanes, with contact orders α at the markings.

The natural base of a family above is a (fine and saturated) logarithmic scheme rather 
than a scheme. In order to have a well behaved moduli stack over schemes, one instead 
restricts to logarithmic maps which are universal with respect to pullback, called minimal
logarithmic maps, see, for example, [18, Proposition 4.1.1] and [32]. In the literature this 
is sometimes referred to as a basic logarithmic map [37, Definition 1.20].

Theorem 2.2 ([8, Proposition 3.1]). Minimal logarithmic maps form a logarithmic alge-
braic stack Mlog

g,α([Ar/Gr
m]).

Remark 2.3. The logarithmic structure on Mlog
g,α([Ar/Gr

m]) is the divisorial logarithmic 
structure with respect to the complement of the locus of maps to [Ar/Gr

m] from smooth 
curves which hit the boundary in finitely many points. With respect to this logarithmic 
structure Mlog

g,α([Ar/Gr
m]) is logarithmically smooth [8, Proposition 1.6.1].
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2.2. Moduli space of logarithmic quasimaps

Let g, n be non-negative integers, let β be an effective quasimap degree on X = W/ /G
and let D = D1 + · · ·+Dr be a s.n.c. divisor pulled back from V/ /G, with the simplifying 
assumption that the intersection of any subsets of the components of D is connected. Let 
α be an r × n matrix of non-negative integers α = (αi,j)i,j such that 

∑
j αi,j = Di · β.

Definition 2.4. Define Qlog
g,α(X|D, β) as the fibre product of stacks

Qlog
g,α(X|D,β) Mlog

g,α([Ar/Gr
m])

Qg,n(X,β) Mg,n([Ar/Gr
m]).

π2

π1

Here Qg,n(X, β) is the moduli space of stable quasimaps and Mg,n([Ar/Gr
m]) is the stack 

of maps from n-marked, genus g prestable curves to [Ar/Gr
m]. The morphism π1 is given 

by associating to a stable quasimap the induced map to [Ar/Gr
m] (3), and π2 is given 

by forgetting the logarithmic structure. This is a fibre product in both the category of 
ordinary stacks and in the fine and saturated category.

Remark 2.5. We equip Qlog
g,α(X|D, β) with the logarithmic structure defined by pullback 

via the morphism Qlog
g,α(X|D, β) → Mlog

g,α([Ar/Gr
m]).

Proposition 2.6. The moduli stack Qlog
g,α(X|D, β) is a Deligne–Mumford stack.

Proof. Since Qlog
g,α(X|D, β) is a fibre product of algebraic stacks it is automatically al-

gebraic. The fact that it is a Deligne–Mumford stack will follow from the fact that the 
morphism π2 is representable, which is true by [37, Proposition 1.25]. Given any cartesian 
diagram of algebraic stacks

X ×Z Y Y

X Z

π2

π1

with X Deligne–Mumford and π2 representable, then we can use the criterion [16, Lemma 
3.3.2] to show that any object (x, y, λ), where x ∈ Ob(X ), y ∈ Ob(Y), λ : π1(x) 	
π2(y) must have finitely many automorphisms (ϕx, ϕy) ∈ AutX (x) × AutY(y). There are 
finitely many automorphisms, ϕx, as X is Deligne–Mumford, but that fixes π2(ϕy) = λ ◦
π1(ϕx) ◦λ−1. On the other hand, π2 is representable so it is an injection on automorphism 
groups, which determines ϕy. �
Lemma 2.7. The moduli stack Qlog

g,α(X|D, β) is of finite type.
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Proof. By [8, proof of Proposition 3.2], Mlog
g,α([Ar/Gr

m]) is locally of finite type, so it 
suffices to show that Qlog

g,α(X|D, β) → Mlog
g,α([Ar/Gr

m]) factors through a finite type 
substack of Mlog

g,α([Ar/Gr
m]). But this follows from the fact that once we have fixed 

numerical data g, n, β, the number of components of the curve occurring in Qg,n(X, β)
is bounded, as well as the total degree of each of the r line bundles. �
Proposition 2.8. The moduli space Qlog

g,α(X|D, β) is proper.

Proof. Since Qg,n(X, β) is proper, to prove properness of Qlog
g,α(X|D, β) it suffices to 

prove properness of the morphism π2 : Mlog
g,α([Ar/Gr

m]) → Mg,n([Ar/Gr
m]). Properness 

of π2 follows from [37, proof of Theorem 4.1]. �
Proposition 2.9. The morphism Qlog

g,α(X|D, β) → Qg,n(X, β) is finite.

Proof. It suffices to show that Mlog
g,α([Ar/Gr

m]) → Mg,n([Ar/Gr
m]) is finite. This follows 

from [2, proof of Corollary 3.7]. �
The papers [2,18] construct the moduli space of stable logarithmic maps by first 

constructing the moduli space in the case where D is a smooth divisor, and then using 
this to build the moduli space when D is s.n.c. The same approach would have worked 
in the quasimap setting.

Lemma 2.10. Let αi denote the ith row of the r × n matrix α. Then the moduli space 
Qlog

g,α(X|D, β) fits into a cartesian diagram (in the fine and saturated category)

Qlog
g,α(X|D,β) Qlog

g,α1
(X|D1, β) × · · · × Qlog

g,αr
(X|Dr, β)

Qg,n(X,β) Qg,n(X,β) × · · · × Qg,n(X,β)Δ

(4)

where the logarithmic structure on Qg,n(X, β) is pulled back from Mg,n.

Proof. This is very similar to the argument in [10, 2.2]. Consider the diagram

Qlog
g,α(X|D,β)

∏r
i=1 M

log
g,αi

([A1/Gm]) ×Mr
g,n

Mg,n

∏r
i=1 M

log
g,αi

([A1/Gm])

Qg,n(X,β) Mg,n([A1/Gm])r ×Mr
g,n

Mg,n Mg,n([A1/Gm])r

Mg,n Mr
g,n.

Now, Mg,n([A1/Gm])r ×Mr
g,n

Mg,n = Mg,n([Ar/Gr
m]) and by [2, Theorem 2.6] we 

have that 
∏r

i=1 M
log
g,α ([A1/Gm]) ×Mr Mg,n = Mlog

g,α([Ar/Gr
m]). Note that the latter is 
i g,n
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only true in the fine and saturated category. We can conclude that the top left square is 
(and so all squares are) cartesian, in the fine and saturated category, by the definition 
of Qlog

g,α(X|D, β) as in Definition 2.4.
This tells us that the outer square in the following diagram is cartesian

Qlog
g,α(X|D,β)

r∏
i=1

Qlog
g,αi

(X|Di, β)
∏r

i=1 M
log
g,αi

([A1/Gm])

Qg,n(X,β) Qg,n(X,β)r Mg,n([A1/Gm])r.Δ

(5)

Since the right hand square is also cartesian, the result follows. �
Remark 2.11. The entire construction could have equally been used to build a moduli 
space parametrising logarithmic ε-quasimaps for any ε ∈ Q>0. This would involve re-
placing Qg,n(X, β) with Qε

g,n(X, β) in the definitions. Moreover, the construction of the 
virtual fundamental class, Theorem 4.11, also works for any ε. We will not make use of 
this here but it will be important in any future application for wall-crossing.

3. Examples

Having built these moduli spaces, we now examine their geometry in a few simple 
examples and compare them with the corresponding moduli spaces in Gromov–Witten 
theory. We will examine a smooth divisor example, a simple normal crossings divisor 
example and a higher genus example, all for projective space targets. The first example 
is strictly speaking covered by [9], but we include it here anyway to show that even in 
the cases where the moduli space is as nice as possible, the quasimap moduli spaces are 
less complex.

Example 3.1. Let X = PN , let D = H a hyperplane and suppose we are in genus 0, degree 
d. We let n = 2 be the number of markings and let α = (d, 0) i.e. we are considering degree 
d (quasi)maps to PN from rational curves with maximal tangency to the hyperplane H

at the first marking. We will compare Qlog
0,(d,0)(P

N |H, d) with Mlog
0,(d,0)(PN |H, d).

Mlog
0,(d,0)(PN |H, d) is irreducible of the expected dimension and we will see in 

Lemma 5.7 that Qlog
0,(d,0)(P

N |H, d) is irreducible of the same dimension for the same 

reason. More concretely, both spaces (or rather their images in M0,2(PN , d) (resp. 
Q0,2(PN , d)) are the closures of the locus of maps

(P 1, p1, p2) → PN

which are not mapped entirely into the hyperplane and hit H with maximal tangency 
at p1. Comparing these spaces with their images in the corresponding absolute spaces is 
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a reasonable thing to do as the morphisms of moduli spaces here are finite (Lemma 2.9) 
and generically injective. On the other hand, the quasimap spaces do not allow rational 
tails, curves with rational components with a single special point. Consequently, there 
will be fewer boundary divisors in Qlog

0,(d,0)(P
N |H, d) than in Mlog

0,(d,0)(PN |H, d). In both 
cases the boundary divisors are comb loci. These are loci where the source curve is of the 
form C0 ∪ · · · ∪Cr with Ci smooth, Ci ∩C0 is a single nodal point i = 0 and Ci ∩Cj = ∅
for i, j = 0. Moreover, C0 contains the non-trivial tangency marking and gets mapped 
entirely into H, whereas Ci only hits H at the connecting node for i = 0.

A comb locus in the quasimap space has domain curve containing at most two com-
ponents, indeed this is implied by stability condition in Definition 1.1. There is a divisor 
corresponding to when C = C0 which falls entirely into the hyperplane and d −1 distinct 
comb loci with two components C = C0 ∪ C1 corresponding to the different possible 
degrees on each branch. However, in the Gromov–Witten space there can be up to d +1
components on the source curve of a comb locus. Each external component Ci, i = 0
must have positive degree and so there is a comb locus where each of the d external 
components have degree 1 and the interior component carrying the maximal tangency 
marking is contracted. Below we include the number of boundary divisors in the quasimap 
and Gromov–Witten case to make the point that the quasimap spaces are much simpler.

d Qlog
0,(2,0)(P

N |H, d) Mlog
0,(2,0)(PN |H, d)

1 1 3
2 2 7
3 3 14
4 4 26
5 5 45
6 6 75

These numbers are computed by enumerating genus-zero degree-weighted balanced 
tropical maps to R≥0 which satisfy the appropriate stability condition. The connection 
to tropical maps can be found, for example in [4, Section 2.5] and [42, Theorem 1.1].

Remark 3.2. In [42], a formula is determined for the number of boundary divisors of 
Mlog

0,(d,0,...,0)(PN |H, d), i.e. the logarithmic Gromov–Witten moduli space for (PN , H)
with one maximal tangency marking and any number of redundant markings in any 
degree.

Example 3.3. We now move on to a simple normal crossings example. In the stable maps 
case this example comes from [54, Section 1.2] and the ideas come from [53, Chapter 3]. 
Let X = P 2 and D = H1 + H2 be the union of two hyperplanes. Let g = 0, d = 2 and 
let α be given by the matrix (

2 0
0 2

)
.
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In other words we are considering degree 2 (quasi)maps to P 2 with maximal tangency to 
H1 at the first marking and maximal tangency to H2 at the second marking. As in the 
previous example, Qlog

0,α(P 2|H1 + H2, 2) and Mlog
0,α(P 2|H1 + H2, 2) are irreducible of the 

same dimension but have differing numbers of boundary divisors. Instead of enumerating 
them we will make a different comparison. Recall that Qlog

0,α(P 2|H1 + H2, 2) is defined 
via the fibre product

Qlog
0,α(P 2|H1 + H2, 2) Qlog

0,α2
(P 2|H2, 2)

Qlog
0,α1

(P 2|H1, 2) Q0,2(P 2, 2)

where α1 = (2, 0) and α2 = (0, 2) (this is equivalent to (4)), in the category of fine and 

saturated logarithmic stacks. Similarly Mlog
0,α(P 2|H1 +H2, 2) can be defined as the fibre 

product (in the fine and saturated category) [2]

Mlog
0,α(P 2|H1 + H2, 2) Mlog

0,α2
(P 2|H2, 2)

Mlog
0,α1

(P 2|H1, 2) M0,2(P 2, 2).

Recall from the previous example that Mlog
0,αi

(P 2|Hi, 2) → M0,2(P 2, 2) is finite and 
generically injective. The (image of the) ordinary fibre product would be the intersection 

of (the images of) Mlog
0,α1

(P 2|H1, 2) and Mlog
0,α2

(P 2|H2, 2), each of which corresponded to 
the closure of the loci corresponding to maps from irreducible curves which don’t map 
into Hi. So the image of the ordinary fibre product in M0,2(P 2, 2) is the intersection of 
the closure of these loci. On the other hand Mlog

0,α(P 2|H1 +H2, 2) is also irreducible and 
maps finitely and generically injectively into M0,2(P 2, 2). This image is also the closure of 
the locus of maps from irreducible curves which don’t map entirely to either hyperplane. 
So comparing the ordinary fibre product and Mlog

0,α(P 2|H1 + H2, 2) amounts to the 
difference between the intersection of the closures and the closure of the intersection. In 
this case the ordinary fibre product is strictly larger than Mlog

0,α(P 2|H1 + H2, 2). By a 

dimension count Mlog
0,α(P 2|H1 + H2, 2) is 3-dimensional. On the other hand, there is a 

locus in the ordinary fibre product corresponding to source curves of the form C0∪C1∪C2, 
where C0 is attached to C1 and C2 at nodes, both markings lie on C0 and this component 
gets contracted to the point of intersection in H1 ∩H2. This locus has dimension 3 and 
forms the only other irreducible component of the ordinary fibre product. So in this case 
Mlog

0,α(P 2|H1 + H2, 2) is not the same as the ordinary fibre product.
We could instead compare Qlog

0,α(P 2|H1 + H2, 2) with the ordinary fibre product of 
Qlog

0,α1
(P 2|H1, 2) and Qlog

0,α1
(P 2|H2, 2) over Q0,2(P 2, 2). The dimension counts are all iden-

tical but due to the quasimap stability condition, even in the ordinary fibre product there 
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can be no component with source curve C0∪C1∪C2 with both markings on C0, because 
C1 and C2 contain only a single special point. The consequence is that unlike in the 
stable maps case, Qlog

0,α(P 2|H1 +H2, 2) is the same underlying space as the ordinary fibre 
product.

One reason for pointing out this difference is that the ordinary fibre product can be 
equipped with a ‘virtual’ class leading to invariants [54, Introduction, page 2]. These 
invariants are equal to the orbifold invariants of the multi root stack given by rooting P 2

along H1 and H2, for sufficiently large rooting parameters [11, Theorem B]. The orbifold 
Gromov–Witten invariants of a root stack coincide in genus-zero with the logarithmic 
Gromov–Witten invariants when the divisor is smooth [1], but differ when the divisor is 
simple normal crossings. In the case above the difference can be attributed to the excess 
component in the ordinary fibre product. On the other hand there is no difference in the 
quasimap setting, which suggests that the difference between logarithmic and orbifold 
quasimap invariants may be less pronounced.

Example 3.4. Let X be a smooth projective toric variety associated to a fan Σ and 
D = ∂X be the full toric boundary. Then for any valid discrete data g, n, β, α we have 
that Mlog

g,α(X|∂X, β) = Qlog
g,α(X|∂X, β). Stable maps without rational tails are stable 

quasimaps, and stable quasimaps without basepoints are stable maps, so it suffices 
to show that neither rational tails nor basepoints are possible here. Since any non-
constant morphism from a rational curve must hit the boundary in at least two points 
we must have that this rational component contains at least two special points, so a 
stable logarithmic map contains no rational tails. Now we show that any stable loga-
rithmic quasimap cannot have a basepoint. Any basepoint of a quasimap occurs when, 
for any primitive collection [26, Definition 5.1.5] of Σ, the corresponding sections of the 
line bundles for the toric boundary divisors vanish. For example, if X = PN then the 
only primitive collection is the union of all the rays, and a basepoint occurs only when 
all sections defining the quasimap vanish simultaneously. Any such primitive collection 
consists of rays where the intersection of the corresponding toric divisors is empty. In 
the case where X = PN the intersection of all coordinate hyperplanes is clearly empty. 
Consequently, the curve component containing any basepoint would have at least one 
section corresponding to a ray in the primitive collection which doesn’t vanish identi-
cally. On the other hand, a basepoint must occur at a point where this section vanishes, 
but since these points are either marked or nodes they cannot be basepoints.

4. Logarithmic quasimap invariants

Let Qlog
g,α(X|D, β) be the moduli space from Definition 2.4. We will produce a virtual 

fundamental class on this moduli space using the construction of Behrend and Fantechi 
[12].
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Lemma 4.1. Recall X = W/ /G ↪→ [W/G]. The divisor D induces a logarithmic structure 
on the quotient stack [W/G] pulled back from the toric logarithmic structure on [Ar/Gr

m]. 
Moreover, a logarithmic quasimap to (X, D) from a curve C induces a logarithmic struc-
ture on C and a logarithmic morphism C → [W/G].

Proof. We have a morphism

[W/G] → [Ar/Gr
m].

Moreover, this morphism is strict, so the map from the underlying curve of C to [W/G]
together with a logarithmic morphism

C → [Ar/Gr
m]

defines a logarithmic morphism to [W/G]. �
Therefore we have a diagram

CQ CM [W/G] [Ar/Gr
m]

Qlog
g,α(X|D,β) Mlog

g,α([Ar/Gr
m])

π

u

Here CQ and CM are the universal curves over the moduli spaces Qlog
g,α(X|D, β) and 

Mlog
g,α([Ar/Gr

m]), π is the projection CQ → Qlog
g,α(X|D, β) and u is the universal map 

defined in Lemma 4.1. Furthermore, the square is cartesian in both the fine, satu-
rated category and the ordinary category. We impose in this section that the morphism 
[W/G] → [Ar/Gr

m] be flat, used in the proof of Proposition 4.6, but we expect this 
assumption to usually hold.

4.1. Obstruction theory

In [56] the author introduces the stack of logarithmic structures. Namely, if (S, MS) is 
a fine logarithmic scheme, then there is a fibered category over (Sch)/S, called Log(S,MS), 
where the objects over a morphism of schemes T → S is an enhancement of this mor-
phism to fine logarithmic schemes (T, MT ) → (S, MS). The main result of [56] is that 
Log(S,MS) is an algebraic stack, locally of finite presentation. Using this, Olsson defines 
the logarithmic cotangent complex as follows.

Definition 4.2. [57, Definition 3.2] Let X → Y be a morphism of fine logarithmic schemes. 
Let X → LogY be the induced morphism. Define Llog

X/Y , the logarithmic cotangent com-
plex, to be the ordinary cotangent complex of this morphism.
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We will need an extension of this theory to certain algebraic stacks. In [37], the authors 
did this for Deligne–Mumford stacks by reducing to an étale cover. Our situation is 
slightly more general and we will just define the logarithmic cotangent complex in the 
same way.

Let Llog
[W/G] denote the logarithmic cotangent complex of [W/G]. This is defined as the 

ordinary cotangent complex of the morphism

[W/G] → LogC

where the latter denotes the stack of logarithmic structures for SpecC with the trivial 
logarithmic structure.

Remark 4.3. The morphism [W/G] → LogC factors through the morphism [W/G] →
[Ar/Gr

m]. Moreover, since [Ar/Gr
m] is logarithmically étale, the logarithmic cotangent 

complex is equal to the cotangent complex of

[W/G] → [Ar/Gr
m].

Remark 4.4. In our setup, in the case where the intersection of all of the divisor compo-
nents is non-empty, then [Ar/Gr

m] is nothing more than the artin fan of X [8]. In general, 
in our setup, there is a strict morphism from the artin fan to [Ar/Gr

m].

Lemma 4.5. There is a morphism in the derived category of Qlog
g,α(X|D, β)

φ : Rπ∗(Lu∗Llog
[W/G] ⊗ ωπ) → LQlog

g,α(X|D,β)/Mlog
g,α([Ar/Gr

m]).

Proof. By the functoriality properties of the cotangent complex [45, Theorem-Definition 
17.3 (2)], we get a morphism in the derived category

Lu∗Llog
[W/G] → LCQ/CM

.

On the other hand, base change properties of the cotangent complex [45, Theorem-
Definition 17.3 (4)] imply that

LCQ/CM

∼= Lπ∗LQ/M

where Q = Qlog
g,α(X|D, β) and M = Mlog

g,α([A1/Gm]). Tensoring this morphism with the 
relative dualising sheaf gives

Lu∗Llog
[W/G] ⊗ ωπ → Lπ∗LQ/M ⊗ ωπ

so, by applying Rπ∗ and using adjunction, we get a morphism in the derived category

φ : Rπ∗(Lu∗Llog ⊗ ωπ) → LQ/M. �
[W/G]
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Now we need to show two things:

(1) φ defines an obstruction theory.
(2) E• := Rπ∗(Lu∗Llog

[W/G] ⊗ ωπ) is of perfect amplitude contained in [−1, 0].

Proposition 4.6. The morphism φ defines an obstruction theory.

Proof. This argument follows exactly as in [37, Proposition 5.1]. Let T ↪→ T̄ be a square 
zero extension with ideal J and let h : T → Q be a morphism. Endow T and T̄ with 
logarithmic structures pulled back from M and pullback the universal curve to T and 
T̄ , which we will denote CT and CT̄ . We have a commutative diagram

CT CQ [W/G]

T Q

CT CM [Ar/Gr
m]

T M

h̃

p

uT

π

u

h

. (6)

Recall from [39, III 2.2.4] and [58, 2.21] that h extends to a morphism T̄ → Q if and 
only if ω(h) ∈ Ext1(Lh∗LQ/M, J) is 0 where ω(h) is defined by

Lh∗LQ/M → LT/T̄ → τ≥−1LT/T̄ = J [1]

To show that φ defines an obstruction theory we use [12, Proposition 4.53]. We show that 
an extension exists if and only if φ∗ω(h) = 0 and moreover if an extension exists, the 
set of isomorphism classes of extensions form a torsor under Hom(Lh∗E•, J). As in [37, 
Proposition 5.1], a lift exists if and only if uT extends logarithmically to CT̄ . But using 
[57, Theorem 5.9] there is a class o ∈ Ext1(Lu∗

TL
log
[W/G], p

∗J) which vanishes if and only 

if there is a lift. Moreover, the lifts form a torsor under Hom(Lu∗
TL

log
[W/G], p

∗J). However, 
just as in [37] we have

Extk(Lh∗Rπ∗(Lu∗Llog
[W/G] ⊗ ωπ), J)

=Extk(Lu∗Llog
[W/G] ⊗ ωπ,Lπ!Rh∗J)

=Extk(Lu∗Llog
[W/G],Rh̃∗p

∗J)

=Extk(Lu∗
TL

log
[W/G], p

∗J)
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which, when k = 1, sends φ∗ω(h) to the obstruction class o. �
Remark 4.7. We have used results from [57], in particular [57, Axiom 1.1 (ii), (iv), Theo-
rem 5.9], which are proved in the context of logarithmic schemes. We require these results 
to extend to certain algebraic stacks. The same proofs go through without change, be-
cause the results follow from the corresponding properties of the ordinary cotangent 
complex, which hold for such algebraic stacks. An alternative strategy would have been 
to show that the morphism

Qg,n(X,β) → Mg,n([Ar/Gr
m])

admits an obstruction theory as in [7, Proposition 3.1.1], which would have allowed us 
to not invoke the deformation theory of logarithmic maps.

4.2. Perfectness of the obstruction theory

Proposition 4.8. Rπ∗(Lu∗Llog
[W/G] ⊗ ωπ) is of perfect amplitude contained in [−1, 0].

Definition 4.9. Define the logarithmic tangent complex T log
[W/G] as the derived dual of 

Llog
[W/G].

Lemma 4.10. The logarithmic tangent complex T log
[W/G] has cohomology supported in [0, 1].

Proof. We first assume prove the lemma in the case where W = V is a vector space. 
In this situation, the divisor D comes from a morphism [V/G] → [Ar/Gr

m] defined by 
sections s1, . . . , sr of the trivial line bundle

S : [V/G] → [Ar/Gr
m]

v �→ (s1(v), . . . , sr(v)) .

There is a distinguished triangle in the derived category of [V/G]

LS∗L[Ar/Gr
m] → L[V/G] → Llog

[V/G] → LS∗L[Ar/Gr
m][1].

By [13] the tangent complex of [V/G] is given in degrees [−1, 0] by the differential of 
the action.

g⊗OV → O⊕ dimV
V (7)

The same reasoning tells us that the tangent complex of [Ar/Gr
m] is given in degrees 

[−1, 0] by
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O⊕r
Ar → O⊕r

Ar

ei �→ (0, . . . , 0, xi, 0, . . . , 0).

Pulling this back to [V/G] gives the complex

O⊕r
V → O⊕r

V

ei �→ (0, . . . , si(v), . . . , 0).

Taking the dual distinguished triangle

T log
[V/G] → T[V/G] → LS∗T[Ar/Gr

m] → T log
[V/G][1] (8)

tells us that we can build T log
[V/G] as the shift of the mapping cone of T[V/G] →

LS∗T[Ar/Gr
m]. Since the morphism (7) is injective it follows that the mapping cone ac-

tually has cohomology supported in [−1, 0] and so after shifting, T log
[V/G] has cohomology 

supported in [0, 1]. This concludes the proof of the lemma when W = V . Now we want 
to show that if we have W ↪→ V then T log

[W/G] also has cohomology supported in [0, 1]. 
Since we are only considering divisors pulled back from [V/G] we have morphisms

[W/G] [V/G] [Ar/Gr
m].i

S◦i

S (9)

The associated (dual) distinguished triangle is

T[W/G]/[V/G] → T log
[W/G] → Li∗T log

[V/G] → T[W/G]/[V/G][1] (10)

But by the cartesian diagram

W V

[W/G] [V/G]
i

together with the fact that W has only l.c.i. singularities (contained in W \ W s) and 
V → [V/G] is flat, we know that T[W/G]/[V/G] has cohomology supported in degree 1
[23, Section 4.5]. The distinguished triangle tells us we can build T log

[W/G] as the mapping 

cone of the morphism Li∗T log
[V/G][−1] → T[W/G]/[V/G] which by the result above must 

have cohomology supported in [0, 1]. �
We can also conclude that Lu∗T log

[W/G] also has cohomology supported in [0, 1]. Further-

more, we know that Rπ∗(Lu∗Llog
[W/G] ⊗ωπ) is quasi-isomorphic to 

(
Rπ∗(Lu∗T log

[W/G])
)∨

, 
see for example [30, 4.1].
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Proof of Proposition 4.8. We need to show that Rπ∗(Lu∗T log
[W/G]) is of perfect amplitude 

contained in [0, 1]. First we show that Rπ∗(Lu∗T log
[W/G]) has cohomology supported in 

[0, 1]. This will follow from the argument of [23, Theorem 4.5.2]. Let C be a geometric 
fibre of CQ, corresponding to a geometric point ip : SpecC ↪→ Qlog

g,α(X|D, β). Let F •

denote the restriction of Lu∗T log
[W/G] to C so that

Li∗pRπ∗
(
Lu∗T log

[W/G]

)
∼= RΓ(F •)

in the derived category. We show that R2Γ(F •) = 0. We have that H1(F •) is a torsion 
sheaf. This follows from the fact that away from the set B of finitely many basepoints 
on C the morphism u factors through X, and the restriction F •|C\B is quasi-isomorphic 
to the vector bundle T log

X . We have the spectral sequence

Ep,q
2 = RpΓ(Hq(F •)) ⇒ Rp+qΓ(F •) = Ep+q.

The second page looks like

H1(C,H0(F •)) H1(C,H1(F •))

H0(C,H0(F •)) H0(C,H1(F •))

but by the above we know that H1(C, H1(F •)) = 0. Consequently R2Γ(F •) = 0.
Using the criterion of [40, 3.6.4], the complex Rπ∗(Lu∗T log

[W/G]), which is cohomologi-
cally supported in [0, 1], is of perfect amplitude contained in [0, 1] if and only if for every 
point p we have

H−1
(
Li∗pRπ∗

(
Lu∗T log

[W/G]

))
= H−1(RΓ(F •)) = 0

But this is also clear by the above. �
Theorem 4.11. There is a relative perfect obstruction theory on Qlog

g,α(X|D, β) over 
Mlog

g,α([Ar/Gr
m]) leading to a virtual fundamental class [Qlog

g,α(X|D, β)]vir.

Proof. Combining Proposition 4.6 with Proposition 4.8, and since Mlog
g,α([Ar/Gr

m]) is 
irreducible, we get a virtual fundamental class on Qlog

g,α(X|D, β) by [51]. �
Remark 4.12. In the proof of Proposition 4.8, we have crucially used the assumption that 
the divisor is pulled back from V/ /G. There is an analogy with the proof of perfectness 
of the obstruction theory in [23, Section 4.5] in the case when W has l.c.i. singularities, 
where the embedding W ↪→ V is also used.
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4.3. Toric divisors

On the other hand Proposition 4.8 becomes significantly simpler in the case where X
is a toric variety and D = D1 + · · · + Dr is a subset of the toric boundary.

Let X be a smooth projective toric variety associated to some fan Σ. Recall we have 
the induced quotient description X = AM/ /Gs

m, see Remark 1.4. The weights of the 
action can be encoded in a matrix

⎛
⎜⎜⎝
a11 a12 . . . a1M
a21 a22 . . . a2M
...

. . . . . .
...

as1 as2 . . . asM

⎞
⎟⎟⎠

which can be read off from the second morphism in the exact sequence

0 → M → Z|Σ(1)| → Pic(X) → 0. (11)

Here M is the character lattice of the torus. The first morphism is given by the matrix 
whose rows are the rays of the fan {ρi}Mi=1. If D is any smooth divisor then by [25, 
Proposition 2.1] there is an isomorphism

H0(X,OX(D)) =
〈

M∏
i=1

xbi
i :

∑
i

bi[Dρi
] = [D]

〉
(12)

where Dρi
is the toric boundary divisor associated to the ray ρi. Therefore the section 

sD ∈ H0(X, OX(D) cutting out D has a well defined degree

⎛
⎜⎜⎝

deg1 sD
deg2 sD

...
degs sD

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
a11 a12 · · · a1M
a21 a22 · · · a2M
...

...
. . .

...
as1 as2 · · · asM

⎞
⎟⎟⎠×

⎛
⎜⎜⎝

b1
b2
...

bM

⎞
⎟⎟⎠

for any (b1, . . . , bM ) appearing as the monomial powers in (12). This degree is equivalently 
given by the grading in the homogeneous coordinate ring of X [25].

Lemma 4.13. Let X be a smooth projective toric variety associated to some fan Σ inducing 
a quotient description X = AM/ /Gs

m. If D = D1 + · · · + Dr is a subset of the toric 
boundary corresponding to rays ρj1 , . . . , ρjr ∈ Σ(1) (set J = {j1, . . . , jr}), then there is 
a logarithmic Euler sequence

0 → O⊕s
X →

⊕
Σ(1)\ρJ

OX(Dρ)
⊕
J

OX → T log
X → 0 (13)

Moreover, in this situation T log
M s is quasi-isomorphic to a sheaf.
[A /Gm]



Q. Shafi / Advances in Mathematics 438 (2024) 109469 23
Proof. When X is toric the morphism T[AM/Gs
m] → LS∗T[Ar/Gr

m] becomes very explicit, 
given by the following diagram

O⊕s
AM O⊕M

AM

O⊕r
AM O⊕r

AM

ei �→(ai,1x1,...,ai,MxM )

ei �→(degi sj)j ei �→
(

∂sj
∂xi

)
j

ei �→siei

(14)

If D = D1+· · ·+Dr is a subset of the toric boundary then s1, . . . sr are just xj1 , . . . , xjr

corresponding to the homogeneous coordinates on X. But since the right-hand vertical 
map is given by differentiating the sections this map becomes ei �→ (0, . . . , 1, . . . , 0) if 
i = jk for some k with 1 in the kth place and ei �→ (0, . . . , 0) otherwise. Consequently, by 
forming the mapping cone (and shifting) we have that T log

[AM/Gs
m] is given by the three 

term complex

O⊕s
AM → O⊕M

AM ⊕O⊕r
AM → O⊕r

AM

But the right-hand map is now surjective so this complex is quasi-isomorphic to a two 
term complex

O⊕s
AM → O⊕M−r

AM ⊕O⊕r
AM (15)

Where in the second term the first M − r copies have action according to the weight 
matrix and the latter r copies have the trivial action. Since the first map is injective the 
second part follows. For the first part we just pullback this complex under the inclusion 
X ↪→ [AM/Gs

m]. �
Corollary 4.14. If D is a subset of the toric boundary then the complex (Rπ∗Lu∗

T log
[AM/Gs

m])
∨ is of perfect amplitude contained in [−1, 0].

Corollary 4.15. There is a relative perfect obstruction theory on Qlog
g,α(X|D, β) over 

Mlog
g,α([Ar/Gr

m]) leading to a virtual fundamental class [Qlog
g,α(X|D, β)]vir.

5. Comparison with Battistella–Nabijou theory

In [9] the theory of relative quasimaps is developed in the case where X is a smooth 
projective toric variety, D ⊂ X is a smooth, very ample divisor (not necessarily toric) and 
in genus-zero. This is achieved by mimicking the relative Gromov–Witten construction 
in [31] and so the relative quasimap moduli space is defined as a closed substack of the 
space of absolute quasimaps.
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Let X be a smooth projective toric variety associated to a complete fan Σ and D a 
smooth (very ample) divisor, cut out by a section sD ∈ H0(X, OX(D)). Recall that given 
an ordinary quasimap from a (marked) curve C to X there is an induced line bundle 
section pair (LD, uD) and in the case where there are no basepoints these are just the 
pullbacks of OX(D) and sD respectively along the map C → X.

Definition 5.1. [[9]] Let n ≥ 2 be the number of marked points, let β be an effec-
tive curve class and α = (α1, . . . , αn) such that 

∑
i αi ≤ D · β. Define the mod-

uli space of relative quasimaps Qrel
0,α(X|D, β) to be the locus of absolute quasimaps (

(C, p1, . . . , pn), {Lρ, uρ}ρ∈Σ(1), {cm}m∈M

)
in Q0,n(X, β) such that for every Z, a con-

nected component of u−1
D (0) we have

(1) If Z is a point, then either it is unmarked or a marked point pi such that the 
multiplicity of f at pi is at least αi.

(2) If Z is one dimensional let C(i) for 1 ≤ i ≤ r be the irreducible components of C
not in Z, but intersecting Z, and let m(i) be the multiplicity of uD|C(i) at the node 
C(i) ∩ Z along D. Then we must have degLD|Z +

∑
i

m(i) ≥
∑

pi∈Z

αi.

Remark 5.2. The definition of absolute quasimap here is taken from [20]. If we write 
the toric variety X as a GIT quotient AM/ /Gs

m as prescribed by the fan Σ, then this 
definition is equivalent to the Definition 1.1, involving a morphism C → [AM/Gs

m].

Remark 5.3. let X = PN and let D = H ∼= PN−1 be the hyperplane given in coordinates 
by {x0 = 0}. Then Qrel

0,α(PN |H, d) is irreducible of dimension dimQ0,n(PN , d) −
∑
i

αi

and so has an actual fundamental class with which one can define relative quasimap 
invariants. For the general case of (X, D), note that OX(D) defines a map j : X ↪→ PN . 
Battistella and Nabijou show that the following diagram is cartesian (with d = j∗β)

Qrel
0,α(X|D,β) Qrel

0,α(PN |H, d)

Q0,n(X,β) Q0,n(PN , d).

i′

j′

Then they use diagonal pull-back to define a virtual fundamental class on Qrel
0,α(X|D, β)

and define relative quasimap invariants.

Remark 5.4. From now on we restrict to the case where 
∑

i αi = D · β in which case the 
inequalities in Definition 5.1 (2), become equalities.

Theorem 5.5. Let g = 0 and D ⊂ X be a smooth, very ample divisor inside a smooth 
projective toric variety. There is a morphism g : Qlog

0,α(X|D, β) → Qrel
0,α(X|D, β) and
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g∗[Qlog
0,α(X|D,β)]vir = [Qrel

0,α(X|D,β)]vir.

The strategy for proving Theorem 5.5 is as follows. We will first prove the existence 
of the morphism g. Then we prove Theorem 5.5 for the case of X = PN and D = H

a hyperplane. We will then use the ampleness condition to pullback this result to the 
general case.

Proposition 5.6. The natural morphism Qlog
0,α(X|D, β) → Q0,n(X, β) given by forget-

ting the logarithmic map to [A1/Gm] factors through the inclusion Qrel
0,α(X|D, β) ↪→

Q0,n(X, β).

Proof. Certainly on the locus where C ∼= P 1 is irreducible and the section u0 vanishes 
only at the marked points, this is true. Suppose now we have logarithmic quasimap which 
contains a connected component Z ⊂ C on which u0 ≡ 0. Then we need to show that

degLD|Z +
∑
i

m(i) =
∑
pi∈Z

αi.

Suppose first that Z is irreducible. We have a logarithmic morphism C → [A1/Gm]. 
This induces a morphism of the tropicalisations. As in toric geometry, a piecewise linear 
function on the tropicalisation induces a Cartier divisor. Alternatively, a logarithmic 
structure can be characterised by an association of a Cartier divisor to each element of 
the ghost sheaf. The identity function on R≥0 induces the divisor BGm. The fact that 
we have a logarithmic morphism necessarily implies that the pull back of this line bundle 
via the morphism is the same as the line bundle associated to the pull-back piecewise 
linear function. On the one hand the line bundle pulls back to LD, when restricting to 
Z we get LD|Z . On the other hand, the pull back piecewise linear function is defined 
by the slopes of the tropicalisation map on each ray. The associated line bundle on the 
component Z is shown to be O(

∑
pi∈Z αipi −

∑
i m

(i)qi), where qi are the nodes, in [62, 
2.4.1]. Since these line bundles are necessarily isomorphic, taking degrees gives us the 
desired equality. If Z is connected but reducible, then summing the resulting equalities 
obtained by the above over the irreducible components of Z produces the result. �
Lemma 5.7. Suppose (X|D) = (PN |H) where H is the hyperplane defined (in coor-
dinates) by {x0 = 0}. Then Qlog

0,α(PN |H, d) is irreducible of the expected dimension 
N · (d + 1) + n − 3.

Proof. Recall the obstruction theory on Qlog
0,α(PN |H, d) is defined by the complex (

Rπ∗
(
Lu∗T log

[AN+1/Gm]

))∨
Because PN |H admits a logarithmic Euler sequence (13)

0 → OPN → OPN ⊕
N⊕

OPN (1) → T log
PN → 0.
i=1
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It follows from Lemma 4.13 that Lu∗T log
[AN+1/Gm] is quasi-isomorphic to a sheaf F which 

fits into an exact sequence on C

0 → OC → OC ⊕
N⊕
i=1

L → F → 0.

Taking the long exact sequence in cohomology it follows that

H1(C,F) = 0

and so this moduli space is unobstructed over Mlog
0,α([A1/Gm]), which is logarithmically 

smooth. �
To distinguish from a general (X, D), we denote the morphism Qlog

0,α(PN |H, d) →
Qrel

0,α(PN |H, d) by f .

Proposition 5.8.

f∗[Qlog
0,α(PN |H, d)]vir = [Qrel

0,α(PN |H, d)].

Proof. By Lemma 5.7 we have that [Qlog
0,α(PN |H, d)]vir = [Qlog

0,α(PN |H, d)]. So the propo-
sition reduces to a statement about fundamental classes. By Lemma 5.7 and [9] we know 
that the locus where the source curve is irreducible and the u0 only vanishes at the 
marked points is dense in both spaces. Furthermore, on this locus the map is an isomor-
phism so the result follows. �

We now use Proposition 5.8 to prove Theorem 5.5.

Proposition 5.9. There is a perfect obstruction theory on Qlog
0,α(X|D, β) relative to 

Qlog
0,α(PN |H, d) such that the corresponding virtual class, given by virtual pullback of 

[Qlog
0,α(PN |H, d)], coincides with [Qlog

0,α(X|D, β)]vir.

Proof. Recall OX(D) defined a morphism j : X ↪→ PN such that j−1(H) = D. If we 
write X = AM/ /Gs

m as a GIT quotient, as in Remark 5.2, then this morphism induces a 
morphism of quotient stacks, which we also denote j,

j : [AM/Gs
m] → [AN+1/Gm]

such that j−1(H̄) = D̄, where D̄ and H̄ are the corresponding divisors on [AM/Gs
m] and 

[AN+1/Gm]. The divisors D̄, H̄ define logarithmic structures via morphisms to [A1/Gm]
such that there is a commutative diagram
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[AM/Gs
m] [AN+1/Gm] [A1/Gm].j

D̄

H̄

Taking the induced distinguished triangle (on tangent complexes) gives

Tj → T log
[AM/Gs

m] → Lj∗T log
[AN+1/Gm] → Tj [1].

Next, consider the diagram

CX CPN [AM/Gs
m] [AN+1/Gm]

Qlog
0,α(X|D,β) Qlog

0,α(PN |H, d).

π

u

πP
uP

j

i

(16)

If we apply Rπ∗ ◦ Lu∗ and dualise, we get a distinguished triangle in Qlog
0,α(X|D, β)

Li∗(R(πP )∗Lu∗
PT

log
[AN+1/Gm])

∨ → (Rπ∗Lu∗T log
[AM/Gs

m])
∨ → (Rπ∗Lu∗Tj)∨

→ Li∗(R(πP )∗Lu∗
PT

log
[AN+1/Gm])

∨[1].

Note that the first two complexes in the triangle define the obstruction theories for 
Qlog

0,α(X|D, β) and Qlog
0,α(PN |H, d).

We also have the commutative diagram

Qlog
0,α(X|D,β) Qlog

0,α(PN |H, d) M
log
0,α([A1/Gm])i

inducing a distinguished triangle

Li∗LQlog(P)/Mlog → LQlog(X)/Mlog → Li → Li∗LQlog(P)/Mlog [1]

where Qlog(X) = Qlog
0,α(X|D, β), Qlog(P ) = Qlog

0,α(PN |H, d) and Mlog = M
log
0,α([A1/Gm]). 

Putting these together we get

Li∗(R(πP )∗Lu∗
PT

log
[AN+1/Gm])

∨ (Rπ∗Lu∗T log
[AM/Gs

m])
∨ (Rπ∗Lu∗Tj)∨

Li∗LQlog(P)/Mlog LQlog(X)/Mlog Li .

[1]

[1]
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The first two vertical arrows come from the perfect obstruction theory from Theo-
rem 4.11. By [51, Construction 3.13] and [51, Remark 3.15] it follows that (Rπ∗Lu∗Tj)∨
defines a perfect obstruction theory. Moreover in the language of [51, Definition 4.5] the 
three perfect obstruction theories form a compatible triple and so by [51, Theorem 4.8]
we have that i![Qlog

0,α(PN |H, d)] = [Qlog
0,α(X|D, β)]vir. �

Proof of Theorem 5.5. Consider the tower of cartesian diagrams

Qlog
0,α(X|D,β) Qlog

0,α(PN |H, d)

Qrel
0,α(X|D,β) Qrel

0,α(PN |H, d)

Q0,n(X,β) Q0,n(PN , d)

g

i

f

i′

j′

The fact that the top square is cartesian follows from the fact that the both the 
bottom and large squares are cartesian. We want to show that g∗[Qlog

0,α(X|D, β)]vir =
[Qrel

0,α(X|D, β)]vir. By Proposition 5.8 we have that f∗[Qlog
0,α(PN |H, d)] = [Qrel

0,α(PN |H, d)]. 
In Proposition 5.9 we showed that [Qlog

0,α(X|D, β)]vir is defined via a perfect obstruction 
theory for i. In actual fact this obstruction theory is pulled back from j′. To see this, 
repeat the argument of Proposition 5.9, starting instead with the distinguished triangle

Tj → T[AM/Gs
m] → Lj∗T[AN+1/Gm] → Tj [1]

which shows that the perfect obstruction theory for j′ also pulls back to (Rπ∗Lu∗Tj)∨. 
This tells us that j′![Qlog

0,α(PN |H, d)] = [Qlog
0,α(X|D, β)]vir and since diagonal pullback 

coincides with virtual pullback [9, Lemma A.0.1], we have that j′![Qrel
0,α(PN |H, d)] =

[Qrel
0,α(X|D, β)]vir. Therefore, the theorem follows from [51, Proposition 5.29]. �
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